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Lagrangian Helicoids

David E. Blair

1. Introduction

In 1744, Euler showed that a catenoid is a minimal surface; in 1766, Meusnier
showed that a right helicoid is a minimal surface. The converse—that the catenoid
is the only surface of revolution that is minimal—is due to Meusnier in 1785 (see
e.g. [4]). That the helicoid is the only ruled minimal surface (aside from the plane)
was proved by Catalan in 1842. The reader is also referred to the historical para-
graphs in [9, pp. 207–208]). A remarkable feature of these surfaces is that they are
locally isometric. In fact, one can easily construct a family of minimal surfaces
depending on a parameterλ such thatλ = 0 is a helicoid andλ = 1 is a catenoid
(see e.g. [3, pp. 213, 221–224]).

In [1] the author showed that a conformally flat, minimal hypersurfaceMn (n ≥
4) of Euclidean spaceRn+1 is either totally geodesic or a hypersurface of revolu-
tion S n−1× γ (s), where the profile curveγ is determined by its curvature as a
function of arc length byκ = (1− n)/ν n ands = ∫ (ν n−1/

√
Aν 2n−2 −1

)
dν (here

A is a constant). For hypersurfaces of dimensionn ≥ 4 in Euclidean space, con-
formal flatness implies quasi-umbilicity and hence is a natural generalization of a
surface of revolution. Forn = 3, replacing conformal flatness by quasi-umbilicity
gives the same result with the same proof. Forn = 2, the profile curve is a cate-
nary and hence these hypersurfaces are calledgeneralized catenoids.Jagy [12]
gave an independent study of this question by assuming that the minimal hyper-
surface is foliated by spheres from the outset.

In [2], Vanstone and the author showed that a complete minimal hypersurface
Mn of Rn+1 that admits a codimension-1 foliation by Euclidean(n−1)-spaces is
either totally geodesic or a productM 2 × Rn−2, whereM 2 is a helicoid inR3.

In contrast to the classical case, this generalized helicoid is not locally isometric
to the generalized catenoid just described because such an isometric deformation
would preserve the conformal flatness.

In [5], Castro and Urbano (see also Castro [4]) introduced the Lagrangian
catenoid. The manifold itself was introduced by Harvey and Lawson [11] as an
example of a minimal Lagrangian submanifold and is defined by

M0 = {(x, y)∈Rn × Rn ≡ Cn :

|x|y = |y|x, =(|x| + i|y|)n = 1, |y| < |x| tan(π/n)}.
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Topologically,M0 isR×S n−1. To describe it precisely, letSn−1 be the unit sphere
in Rn and view a pointp ∈ Sn−1 as ann-tuple inRn giving its coordinates. Define
a mapφ0 : R× S n−1→ Cn ≡ Rn × Rn by

φo(u, p) = cosh1/n(nu)eiβ(u)p,

whereβ(u) = π
2n − 2

n
arctan

(
tanhnu2

)∈ (0, π
n

)
and the multiplicationeiβp multi-

plies each coordinate ofp byeiβ and lists the real and imaginary parts as a 2n-tuple
in Cn ≡ Rn ×Rn. Let g0 be the standard metric of constant curvature 1 onSn−1;
then the metric induced onR× S n−1 by φ0 is

ds2 = cosh2/n(nu)(du2 + g0), (1.1)

which clearly is conformally flat. This Lagrangian submanifold defined by the
mappingφ0 : R× S n−1→ Cn together with its induced metric(1.1) is known as
theLagrangian catenoid.The main result of [5] is the following.

Theorem. Let φ : Mn → Cn be a minimal(nonflat) Lagrangian immersion.
ThenMn is foliated by pieces of round(n − 1)-spheres inCn if and only if φ is
congruent(up to dilations) to an open subset of the Lagrangian catenoid.

For future use we give the coordinate expression for the casen = 2. Writing p as
(cosθ, sinθ), we have

φo(u, p) =
√

cosh 2u(cosβ cosθ, cosβ sinθ, sinβ cosθ, sinβ sinθ).

Now β = π
4 − arctan(tanhu) and

cosβ =
√

2

2

1+ tanhu√
1+ tanh2 u

, sinβ =
√

2

2

1− tanhu√
1+ tanh2 u

,

√
cosh 2u√

1+ tanh2 u
= coshu,

giving

φo(u, p) =
(
eu√

2
cosθ,

eu√
2

sinθ,
e−u√

2
cosθ,

e−u√
2

sinθ

)
. (1.2)

In view of the conformal flatness of the Lagrangian catenoid and the author’s
result on conformally flat minimal hypersurfaces inRn+1, it is natural to ask what
are the conformally flat minimal Lagrangian submanifolds inCn. This seems to
be a difficult question and is a continuing effort of A. Carriazo and the author. We
will see, however, that the only minimal Lagrangian submanifolds inCn that are
foliated by pieces of(n−1)-planes are pieces ofn-planes. Thus we drop the min-
imality and study Lagrangian submanifolds inCn that are foliated by Euclidean
(n−1)-planes.

The program in this paper will be the following five points.

Theorem 1. LetMn be a complete Lagrangian submanifold ofCn that is foli-
ated by(n−1)-planes. ThenMn is either totally geodesic, flatH-umbilical, or the
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product of a ruled( foliated by lines) Lagrangian surface inC2 and a Lagrangian
(n− 2)-plane inCn−2.

FlatH-umbilical Lagrangian submanifolds ofCn were completely classified by
Chen in [8] and they are foliated by(n − 1)-planes. Thus our main point here is
to consider the casen = 2 in detail.

Theorem 2. LetM 2 be a nonflat Lagrangian submanifold inC2 that is foliated
by lines. Then there exist local coordinates(t, x) such that the induced metric takes
the formds2 = f 2dt 2+ dx 2, wheref 2 is a positive function that is quadratic in
x. The Weingarten mapsA1 andA2 corresponding to the normalsζ1= 1

f
J ∂
∂t

and
ζ2 = J ∂

∂x
are given byA1=

(
b a

a 0

)
andA2 =

(
a 0
0 0

)
,wherea = A(t)/f 2,−4A(t)2

is the discriminant off 2, and

b = 1

f

[ ∫
A′(t)f 2 − A(t)(f 2)t

f 4
dx + B(t)

]
for some functionB(t). Conversely, letM 2 be a simply connected domain in the
(t, x)-plane and let

f 2 = F(t)x 2 +G(t)x +H(t)
be a positive quadratic function onM 2. Then there exists an isometric Lagrangian
immersion ofM 2 intoC2 that is foliated by line segments whose first and second
fundamental forms are as given in this theorem.

We now suppose there is a 1-parameter family of Lagrangian surfaces inC2 con-
necting a ruled Lagrangian surface to the Lagrangian catenoid. Let(v1 + iv2,

v3 + iv4) denote the coordinates onC2 and letv be the mappingv : M 2 → C2

given byvi = vi(t, x).
Theorem 3. Suppose there exists a1-parameter family of Lagrangian surfaces
in C2 connecting a ruled Lagrangian surfaceM 2 to the Lagrangian catenoid.
ThenM 2 is given by

v1= k(cost)x + β1(t), v
2 = l(cost)x + β2(t),

v3 = k(sint)x + β3(t), v4 = l(sint)x + β4(t),

wherek and l are constants satisfyingk2 + l2 = 1. The quadratic then becomes
x 2 +G(t)x +H(t), and theβi are determined by

β ′1= −
(
kG(t)

2
+ lA(t)

)
sint, β ′2 =

(
− lG(t)

2
+ kA(t)

)
sint,

β ′3 =
(
kG(t)

2
+ lA(t)

)
cost, β ′4 =

(
lG(t)

2
− kA(t)

)
cost,

where−4A(t)2 = G(t)2 − 4H(t).

We call a surface given as in Theorem 3 aLagrangian helicoid.
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Our next result is that, even though the Lagrangian helicoids can be connected
to a Lagrangain catenoid through a family of Lagrangian surfaces, the Lagrangian
submanifolds of Theorem 1 cannot be locally isometric to a Lagrangian catenoid.

Theorem 4. Let Mn be a Lagrangian submanifold ofCn that is foliated by
(n− 1)-planes. ThenMn is not locally isometric to a Lagrangian catenoid.

Finally, one can raise the question of whether it is possible to have Lagrangian sub-
manifolds ofCn that are “doubly ruled”—that is, for which there exist two folia-
tions by(n−1)-planes. The answer is negative except for the totally geodesic case.

Proposition 5. If a Lagrangian submanifoldMn of Cn admits two foliations
by (n− 1)-planes, thenMn is totally geodesic.

2. Preliminaries

If (v1 + iv2, . . . , v2n−1+ iv2n) are the coordinates onCn, then ann-dimensional
submanifoldMn of Cn is said to beLagrangianif the restriction of the canonical
symplectic form� =∑n

i=1dv
2i−1∧ dv2i toMn vanishes.

For an isometrically immersed submanifold(M, g) of (Cn, 〈·, ·〉), the Levi–
Civita connection∇ of g and the second fundamental formσ are related to the
ambient Levi–Civita connection̄∇ by

∇̄XY = ∇XY + σ(X, Y ). (2.1)

For a normal vector fieldν, we denote byAν the corresponding Weingarten map
and we denote byD the connection in the normal bundle; in particular,Aν andD
are defined by

∇̄Xν = −AνX +DXν.

The Gauss equation is

R(X, Y,Z,W ) = 〈σ(Y, Z), σ(X,W )〉 − 〈σ(X,Z), σ(Y,W )〉.
Defining the covariant derivative ofσ by

(∇′σ)(X, Y,Z) = DXσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ),
the Codazzi equation is

(RXYZ)
⊥ = (∇′σ)(X, Y,Z)− (∇′σ)(Y,X,Z).

For a Lagrangian submanifold, the almost complex structureJ of the Kähler man-
ifold Cn is an isometry between the tangent bundle and the normal bundle and
hence the equation of Ricci–Kühn,R⊥(X, Y, ν, ζ) = g([Aν,Aζ ]X, Y ), gives no
further information.

A non–totally geodesic Lagrangian submanifold of a Kähler manifold is said to
be LagrangianH-umbilical ([6] or [9, p. 333]) if there exist functionsλ andµ
and a local orthonormal basis{e1, . . . , en} with respect to which the second fun-
damental form is given by

σ(e1, e1) = λJe1, σ(e2, e2) = · · · = σ(en, en) = µJe1,

σ(e1, ej ) = µJej, σ(ej, ek) = 0, j 6= k, j, k = 2, . . . , n.
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In [8], Chen gave a classification of flatH-umbilical Lagrangian submanifolds of
Cn for which we need some ideas about Legendre curves. Letz : I → S2n−1 ⊂
Cn be a unit-speed Legendre curve in the unit hypersphere centered at the ori-
gin; that is,z = z(s) is a unit-speed curve inS2n−1 satisfying〈z ′(s), iz(s)〉 =
0. Moreover, sincez(s) is spherical, it follows that〈z(s), z ′(s)〉 = 0. Thus
z(s), iz(s), z ′(s), iz ′(s) are orthonormal vector fields defined along the Legendre
curve, and we can extend to a full orthonormal frame field along the curve by nor-
mal fieldsP3(s), iP3(s), . . . , Pn(s), iPn(s). The Legendre curve is called aspecial
Legendre curveif the Pj are parallel along the curve and if

z ′′(s) = iλ(s)z ′(s)− z(s)−
n∑

j=3

aj(s)Pj(s)

for some functionsλ, a3, . . . , an. We can now state the classification of Chen.

Theorem. Letλ, b, a3, . . . , an ben functions defined on an open intervalI with
n ≥ 2 and λ nowhere zero, and letz : I → S2n−1 ⊂ Cn be a special Legendre
curve. Set

f(t, u2, . . . , un) = b(t)+ u2 +
n∑

j=3

aj(t)uj .

LetMn be the product manifoldI × Rn−1 with the twisted product metricg =
f 2dt 2 + du2

2 + · · · + du2
n. ThenMn is a flat Riemannian manifold and

L(t, u2, . . . , un) = u2z(t)+
n∑

j=3

ujPj(t)+
∫ t

b(t)z ′(t) dt (2.2)

defines a LagrangianH-umbilical isometric immersion ofMn intoCn.
Conversely, up to rigid motions ofCn, locally every flat LagrangianH-umbili-

cal submanifold inCn without totally geodesic points is either a Lagrangian
cylinder over a curve or a Lagrangian submanifold obtained in the manner just
described.

We also recall the following existence theorem of Chen (see e.g. [7, p. 292]) for
Lagrangian isometric immersions into complex space forms.

Theorem. Let Mn be a simply connected Riemannian manifold. Letα be a
TM-valued symmetric bilinear form onMn satisfying:

(1) g(α(X, Y ), Z) is totally symmetric;
(2) (∇α)(X, Y,Z) = ∇Xα(Y,Z)−α(∇XY,Z)−α(Y,∇XZ) is totally symmetric;
(3) RXYZ = α(α(Y, Z),X)− α(α(X,Z), Y ).
Then there exists a Lagrangian isometric immersion ofMn intoCn whose second
fundamental form is given byσ(X, Y ) = Jα(X, Y ).
Finally, we recall a reduction theorem of Erbacher [10] (see also [9, pp. 206–207]).

Theorem. LetMn be a submanifold of a complete simply connected Riemann-
ian manifoldM̃m(c) of constant curvaturec. If there exists a normal subbundleE
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of rankl that is parallel in the normal bundle and if the first normal space(span of
the second fundamental form) at each pointx ∈Mn is contained inEx, thenMn

is contained in an(n+ l )-dimensional totally geodesic submanifold ofM̃m(c).

3. Proof of Theorem 1

Since the given submanifoldMn is foliated by(n− 1)-planes, there exists a unit
vector fieldU tangent toMn and orthogonal to the leaves of the foliation. The fo-
liation is by Euclidean spaces and hence we can completeU to an orthonormal
basis by vector fieldse2, . . . , en such that∇̄ei ej = 0; moreover, we may choose
local coordinates(t, x 2, . . . , xn) such thatei = ∂

∂xi
andU = 1

f
∂
∂t
, f > 0. Letp =

−ln f. Then [U, ei ] = −piU, wherepi = ∂p

∂xi
. With respect to these coordinates,

the induced metric onMn is given by

ds2 = f 2dt 2 + (dx 2)2 + · · · + (dxn)2.
From this form of the metric we have immediately that

∇UU =
n∑
i=2

piei, ∇eiU = 0, ∇Uei = −piU, ∇ei ej = 0. (3.1)

Introduce local normal fields byζ1 = JU andζi = Jei, and denote the corre-
sponding Weingarten maps byA1 andAi. Then

−A1X +DXζ1= ∇̄Xζ1= J ∇̄XU = J(∇XU + σ(X,U)).
Now, takingX equal toU and (respectively)ei, we obtain

A1U = −Jσ(U,U), DUζ1=
n∑
i=2

piζi, A1ei = −Jσ(ei, U), Dei ζ1= 0.

Similarly,

−AjU +DUζj = ∇̄Uζj = J ∇̄Uej = J(−pjU + σ(U, ej )),
whence

AjU = −Jσ(U, ej ) = A1ej and DUζj = −pjζ1.

Finally,
−Ajei +Dei ζj = ∇̄ei ζj = J ∇̄ei ej = 0,

giving
Ajei = 0 and Dei ζj = 0.

In particular, we see that the matrices of the Weingarten maps are of the form

A1=


b a · · · a

a
... 0
a

 , Aj =


a 0 · · · 0
0
... 0
0

 . (3.2)

We pause to remark that one now readily obtains the result mentioned in the in-
troduction: that the only minimal Lagrangian submanifolds inCn that are foliated
by pieces of(n−1)-planes are pieces ofn-planes (i.e., the totally geodesic case).
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We now utilize the Codazzi equation: For any indexk ≥ 1,

∇XAkY−Ak∇XY+
n∑
l=1

〈DXζl, ζk〉AlY = ∇YAkX−Ak∇YX+
n∑
l=1

〈DYζl, ζk〉AlX.

Applying this toU and theei (i ≥ 2), for indicesi, j ≥ 2 we have

∇eiA1U = ∇UA1ei + A1(piU), (3.3)

∇eiAjU = Aj(piU)+ pjA1ei, (3.4)

∇eiA1ej = ∇ejA1ei . (3.5)

Using the matrices in (3.2) for the Weingarten maps, these three equations imply
the following, which we will need both here and in our later work. Equation (3.5)
implieseia = ej a for i, j ≥ 2. Similarly, equation (3.4) implieseia = a(pi+pk)
for i, k ≥ 2. From these we have

eia = 2api (3.6)

and hence either
p2 = · · · = pn or a = 0.

In the same manner, equation (3.3) implies

eib = Ua + bpi. (3.7)

We deal first with the casep2 = · · · = pn. Let

V = 1√
n−1

n∑
j=2

ej and Wk = 1√
2
(ek − e2), k = 3, . . . , n.

Then
∇UV = −

√
n−1p2U and ∇V U = 0

and hence [U,V ] = −√n−1p2U. We also have [Wk,Wl ] = 0. Therefore,Mn

is locally a productM 2 ×Mn−2. Moreover,

∇UU =
n∑
i=2

piei = p2

√
n−1V and ∇VV = 0;

henceM 2 is totally geodesic inMn. Also, since∇̄WkWl = 0, it follows thatMn−2

is totally geodesic inCn and thus (by completeness)Mn−2 is Euclidean(n− 2)-
space.

Now considerM 2 as a submanifold inCn as well as the bundle overM 2 spanned
by ζ1 andν = JV. LetD ′ andσ ′ denote the connection in the normal bundle and
the second fundamental form ofM 2 in Cn. We have easily that

D ′Uζ1= p2

√
n−1ν, D ′Uν = −p2

√
n−1ζ1, D ′V ζ1= 0, D ′Uν = 0.

Thus the bundle{ζ1, ν} is a parallel subbundle of the normal bundle ofM 2 in Cn.
Furthermore,
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〈σ ′(X, Y ), JWk〉 = −〈∇̄XJWk, Y 〉 = −1√
2
〈∇̄XJek − ∇̄XJe2, Y 〉

= −1√
2
〈AkX − A2X, Y 〉 = 0.

This, together with the fact thatM 2 is totally geodesic inMn, implies that the first
normal space ofM 2 in Cn is contained in the bundle{ζ1, ν}. Thus, by the theo-
rem of Erbacher [10] stated in Section 2,M 2 lies in someC2 with theC2 being a
totally geodesic submanifold ofCn.

If a = 0, then the second fundamental form simplifies to

σ(U,U) = bζ1, σ(U, ei) = 0, σ(ei, ej ) = 0;
in particular,Mn isH-umbilical inCn. Moreover, the Gauss equation gives im-
mediately thatMn is flat. The result now follows from the classification of flat
H-umbilical Lagrangian submanifolds given in [8] and stated in Section 2. Note
that equation (2.2) is linear in theui and so flatH-umbilical Lagrangian subman-
ifolds ofCn are foliated by(n−1)-planes.

4. Proof of Theorem 2

Here we consider a ruled Lagrangian surfaceM 2 in C2. In light of the forego-
ing development we have local coordinates(t, x), and the information from the
Codazzi equations (3.6) and (3.7) becomes

∂a

∂x
= 2a

∂p

∂x
,

∂b

∂x
= ep ∂a

∂t
+ b∂p

∂x
.

Moreover, computing both sides of the Gauss equation

g(Re2UU, e2) = 〈σ(U,U), σ(e2, e2)〉 − |σ(U, e2)|2
yields

e2p2 − (p2)
2 = −a2.

Returning to the functionf = e−p and denoting differentiation by subscripts, our
equations become

ax = −2a

f
fx, bx = 1

f
at − b

f
fx, fxx = fa2. (4.1)

Differentiating the third and using the first gives

fxxx = −3
fxx

f
fx or (ffxx + f 2

x )x = 0.

Therefore
(ffx)x = ffxx + f 2

x = F(t)
and, in turn,(

1
2f

2
)
x
= ffx = F(t)x + 1

2G(t), f 2 = F(t)x 2 +G(t)x +H(t).
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Writing the first equation of (4.1) as(ln a + ln f 2)x = 0, we see thata is of the
form a = A(t)/f 2. Since we began by differentiating the third equation of (4.1),
some information was lost and we return toffxx + f 2

x = F(t):

a2 = fxx

f
= F

f 2
− f

2
x

f 2
= 4FH −G2

4f 4
;

hence−4A(t)2 is the discriminant off 2. Writing the second equation of (4.1) as
(bf )x = at = A′(t)/f 2 − (A/f 4)(f 2)t and then integrating, we have

b = 1

f

[ ∫
A′(t)f 2 − A(t)(f 2)t

f 4
dx + B(t)

]
, (4.2)

where the integral is elementary and can be computed as desired.
Conversely, ifM 2 is a simply connected domain in the(t, x)-plane and if

f 2 = F(t)x 2 +G(t)x +H(t)
is a positive quadratic function onM 2, leta = A(t)/f 2 (where 4A2 = 4FH −G2)

and letb be a function of the form given by (4.2). Thena, b, andf satisfy the
Gauss and Codazzi equations (4.1). SetU = 1

f
∂
∂t

ande2 = ∂
∂x

and, with respect
to this basis, define linear transformation fields onM 2 by

A1=
(
b a

a 0

)
, A2 =

(
a 0
0 0

)
.

Now define a tangent bundle–valued symmetric bilinear form by

α(X, Y ) = g(A1X, Y )U + g(A2X, Y )e2.

It is easy to check that〈α(X, Y ), Z〉 is symmetric inX, Y,Z. Using the first two
equations of (4.1) (Codazzi equations), direct computation shows that the second
condition of Chen’s existence theorem is satisfied. Similarly, using the third equa-
tion of (4.1) (Gauss equation), direct computation shows that the third condition
of Chen’s existence theorem is satisfied. Thus, by the Chen existence theorem
(see [7] or Section 2), there exists a Lagrangian isometric immersion ofM 2 with
metric ds2 = f 2dt 2 + dx 2 into C2 whose second fundamental form is given
by Jα(X, Y ).

5. Geometry of Ruled Lagrangian Surfaces
and Proof of Theorem 3

We now discuss the geometry of ruled Lagrangian surfaces inC2 in more detail.
Let (v1+ iv2, v3+ iv4) be the coordinates ofC2;we study the mappingv : M 2→
C2 given byvi = vi(t, x) and adopt the notation∂t = ∂vi

∂t
∂vi , et cetera. Sincex

is the coordinate along the rulings, we have

0= ∇̄∂x∂x =
∂2vi

∂x 2
∂vi

and hence thevi are linear inx, say,
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vi = αi(t)x + βi(t).
Fromds2 = f 2dt 2 + dx 2 we obtain

f 2 =
∑

(α ′i x + β ′i )2,
∑

α2
i = 1,

∑
αi(α

′
i x + β ′i ) = 0. (5.1)

BecauseM 2 is Lagrangian, the restriction ofdv1∧ dv2 + dv3 ∧ dv4 toM 2 van-
ishes, giving

(α ′1x + β ′1)α2 − (α ′2x + β ′2)α1+ (α ′3x + β ′3)α4 − (α ′4x + β ′4)α3 = 0;
therefore,

α ′1α2 − α ′2α1+ α ′3α4 − α ′4α3 = 0, β ′1α2 − β ′2α1+ β ′3α4 − β ′4α3 = 0. (5.2)

Next we compare

σ(∂x, U) = JA1∂x = J(aU)

= a

f
J∂t = a

f

(
∂v1

∂t
∂v2 − ∂v

2

∂t
∂v1 + ∂v

3

∂t
∂v4 − ∂v

4

∂t
∂v3

)
with

∇̄∂x
1

f
∂t = −fx

f

∑
(α ′i x + β ′i )∂vi +

1

f

∑
α ′i∂vi

and so obtain the following equations:

−fx
f
(α ′1x + β ′1)+ α ′1= −a(α ′2x + β ′2),

−fx
f
(α ′2x + β ′2)+ α ′2 = a(α ′1x + β ′1),

−fx
f
(α ′3x + β ′3)+ α ′3 = −a(α ′4x + β ′4),

−fx
f
(α ′4x + β ′4)+ α ′4 = a(α ′3x + β ′3).

(5.3)

Multiplying each of these by its own right side and then adding and using (5.1)
and (5.2) yields

af 2 = A = β ′1α ′2 − β ′2α ′1+ β ′3α ′4 − β ′4α ′3. (5.4)

Now turning to the proof of Theorem 3, suppose there is a 1-parameter family
of Lagrangian surfaces inC2 connecting the Lagrangian ruled surface described
above to the Lagrangian catenoid (1.2) of Castro and Urbano. In particular, con-
sider the surfaces whose position vectors are

P(λ)
(
α1(t)x + β1(t), α2(t)x + β2(t), α3(t)x + β3(t), α4(t)x + β4(t)

)
+Q(λ)

(
ex√

2
cost,

e−x√
2

cost,
ex√

2
sint,

e−x√
2

sint

)
,

where for the parameterλ we haveP(0) = 1 andP(3) = 0 as well asQ(0) = 0
andQ(3) = 1, with P andQ being continuous functions on an interval [0,3].
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Applying dv1 ∧ dv2 + dv3 ∧ dv4 to ∂t and∂x shows that, if the surface is La-
grangian for eachλ, then

α ′1 cost + α ′3 sint = 0,

α ′2 cost + α ′4 sint = 0,

α1 sint − β ′1 cost − α3 cost − β ′3 sint = 0,

α2 sint + β ′2 cost − α4 cost + β ′4 sint = 0.

(5.5)

From equations (5.3) we have

β ′1= −α ′1x +
ffxα

′
1+ af 2α ′2

f 2
x + a2f 2

, β ′2 = −α ′2x +
ffxα

′
2 − af 2α ′1

f 2
x + a2f 2

,

β ′3 = −α ′3x +
ffxα

′
3+ af 2α ′4

f 2
x + a2f 2

, β ′4 = −α ′4x +
ffxα

′
4 − af 2α ′3

f 2
x + a2f 2

.

Using these and the first two equations of (5.5), we haveβ ′1 cost + β ′3 sint = 0;
in turn, from the third equation of (5.5) we haveα1 sint − α3 cost = 0. This, to-
gether with the first equation of (5.5), givesα3/α1= tant = −α ′1/α ′3, from which
α2

1 + α2
3 = k2, a constant. Writingα1 = k cosγ (t) andα3 = k sinγ (t), from

α3/α1= tant we may, in fact, takeγ (t) = t. Using a similar argument forβ2 and
β4, we now have:

α1= k cost, α2 = l cost, α3 = k sint, α4 = l sint,

β ′1 cost + β ′3 sint = 0, β ′2 cost + β ′4 sint = 0.

Returning to the second equation in (5.1) we see thatk2+ l2 = 1; in turn, from
the first equation in (5.1) we obtain

f 2 = x 2 − 2[k(β ′1 sint − β ′3 cost)+ l(β ′2 sint − β ′4 cost)]x +
∑

β ′2i .

In particular,F = 1 in the quadraticf 2 = Fx 2 +Gx +H.
Now the equations for theβi become

β ′1=
(
kx − kffx + laf

2

f 2
x + a2f 2

)
sint, . . . .

Then from equation (5.4) we have

af 2 = A = −l(β ′1 sint − β ′3 cost)+ k(β ′2 sint − β ′4 cost) = af 2

f 2
x + a2f 2

,

giving f 2
x + a2f 2 = 1. Note also thatx − ffx = −G/2. Thus the functionsβi

are determined fromG andA by

β ′1= −
(
kG

2
+ lA

)
sint, β ′2 =

(
− lG

2
+ kA

)
sint,

β ′3 =
(
kG

2
+ lA

)
cost, β ′4 =

(
lG

2
− kA

)
cost.
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6. Proof of Theorem 4

Since the Lagrangian catenoid is not flat, it is enough to consider the nonflat case
of Theorem 1. Ifn ≥ 4 then the theorem is quite easy. Since the Lagrangian
catenoid is conformally flat, ifM 2 × Rn−2 is locally isometric to the Lagrangian
catenoid then it, too, must be conformally flat. Lete1, e2 be orthonormal vectors
tangent toM 2 and letρ andτ denote (respectively) the Ricci tensor and scalar
curvature ofM 2×Rn−2. Then, from the well-known form of the curvature tensor
of a conformally flat manifold,

g(RXYZ,W ) = 1

n− 2

(
g(Y, Z)ρ(X,W )− ρ(X,Z)g(Y,W )

+ ρ(Y,Z)g(X,W )− g(X,Z)ρ(Y,W ))
− τ

(n−1)(n− 2)

(
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )),

the Gaussian curvature ofM 2 is given by

K = g(Re1e2e2, e1) = 1

n− 2
(ρ(e1, e1)+ ρ(e2, e2))− τ

(n−1)(n− 2)

= 2K

n− 2

(
1− 1

n−1

)
;

this yieldsK = 0, which contradicts the nonflatness ofM 2.

If n = 3 then we recall that, on a 3-dimensional conformally flat manifold,

(∇Xρ)(Y, Z)− Xτ
4
g(Y, Z) = (∇Y ρ)(X,Z)− Yτ

4
g(X,Z).

By the Riemannian product structure onM 2 × R, we can choosee1, e2, e3 to
diagonalizeρ onM 2 × R with e1, e2 tangent toM 2; then

(∇e1ρ)(e3, e3)− e1τ

4
= (∇e3ρ)(e1, e3),

which yieldse1K = 0. Similarly e2K = 0, and henceM 2 is of constant curva-
ture. From the Gauss equation,a = const. By (3.6) this implies that eithera =
0 or eachpi = 0, but if eachpi = 0 then the Gauss equation will givea = 0 as
well. Thus, as in the proof of Theorem 1, ifa = 0 thenMn is flat.

The proof is more difficult in dimension 2. We will show that the metric(1.1) on
the Lagrangian catenoid,ds2 = cosh 2u(du2 + dθ 2), and also the metricds2 =
f 2dt 2 + dx 2, wheref 2 = F(t)x 2 +G(t)x +H(t), cannot be locally isometric.
We suppose thatu = u(t, x) andθ = θ(t, x) is a local isometry mapping one met-
ric to the other and then seek a contradiction. Preservation of the metric implies
that

f 2 = cosh 2u(u2
t + θ 2

t ), 0= utux + θtθx, 1= cosh 2u(u2
x + θ 2

x ).

The Gaussian cuvature ofds2 = cosh 2u(du2+ dθ 2) isK = −2/(cosh3 2u) and
that ofds2 = f 2dt 2 + dx 2 isK = (G2 − 4FH )/4f 4. Thus,u as a function oft
andx must be given by
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cosh3 2u = 8f 4

4FH −G2
.

Now θ 2
t = f 2/(cosh 2u) − u2

t , θ
2
x = 1/(cosh 2u) − u2

x, andθ 2
t θ

2
x = u2

t u
2
x, from

which we havef 2 = f 2(cosh 2u)u2
x + (cosh 2u)u2

t . The first two equations, for
θ 2
t andθ 2

x , then yield

θt = ±fux and θx = ∓ 1
f
ut .

Comparingθtx andθxt ,we see that the integrability condition for these equations is
1
2(f

2)xux + f 2uxx = 1
2(ln f

2)tut − utt .
Settingz = cosh3 2u, the integrability condition becomes

1

2
(f 2)xzx + f 2zxx − 2f 2z2

x

3z
− f 2z2

x

3(z− z1/3)

= 1

2
(ln f 2)t zt − ztt + 2z2

t

3z
+ z2

t

3(z− z1/3)
.

For simplicity we set8 = F(t)x 2+G(t)x +H(t) andD = 4F(t)H(t)−G(t)2
and we use′ to denote differentiation with respect tot. Then the integrability con-
dition becomes

−24(2Fx +G)283− 2(2Fx +G)285/3D2/3+ 96F84 − 24F88/3D2/3

= 72828′2 −1082/38′2D2/3−12
838′D ′

D
− 5

85/38′D ′

D1/3
− 24

84D ′2

D2

+ 8
88/3D ′2

D4/3
− 48838′′ +1285/3D2/38′′ + 24

84D ′′

D
− 6

88/3D ′′

D1/3
.

In this equation, half the terms are polynomials inx of degree 8 and the other terms
have expansions inx with highest exponent16

3 . Thus, taking the corresponding
coefficients yields

0= 6F ′2 − FF
′D ′

D
− 2

F 2D ′2

D2
− 4FF ′′ + 2

F 2D ′′

D
and

−32F 3 = −10F ′2 − 5
FF ′D ′

D
+ 8

F 2D ′2

D2
+12FF ′′ − 6

F 2D ′′

D
.

Multiplying the first of these by 3 and adding to the second gives

−32F 3 = 2

(
2F ′ − FD

′

D

)2

,

contradicting the positivity of the quadraticF(t)x 2 +G(t)x +H(t).

7. Proof of Proposition 5

If a Lagrangian submanifoldMn of Cn admits two foliations by(n − 1)-planes,
then there exists a vector fieldV = δU+∑ εiei with δ 6= 0 and satisfyinḡ∇VV =
0. Using (2.1) and (3.1), we have
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0= ∇̄VV = δ(Uδ)U + δ2

(∑
i

piei + σ(U,U)
)

+ δ
∑
i

(Uεi)ei + δ
∑
i

εi(−piU + σ(U, ei))

+
∑
j

εj

(
(ej δ)U + δσ(ej, U)+

∑
i

(ej εi)ei

)
.

Then, taking the normal part and its inner product withJU andJej and using the
matrices (3.2), we obtain

0= bδ2 + 2aδ
∑
i

εi and 0= aδ2,

from which botha andb vanish; hence we see thatMn is totally geodesic.
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