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Lagrangian Helicoids

Davip E. BLAIR

1. Introduction

In 1744, Euler showed that a catenoid is a minimal surface; in 1766, Meusnier
showed that a right helicoid is a minimal surface. The converse—that the catenoid
is the only surface of revolution that is minimal—is due to Meusnier in 1785 (see
e.g. [4]). That the helicoid is the only ruled minimal surface (aside from the plane)
was proved by Catalan in 1842. The reader is also referred to the historical para-
graphsin [9, pp. 207-208]). A remarkable feature of these surfaces is that they are
locally isometric. In fact, one can easily construct a family of minimal surfaces
depending on a parametesuch that. = 0 is a helicoid and. = 1 is a catenoid

(see e.g. [3, pp. 213, 221-224]).

In [1] the author showed that a conformally flat, minimal hypersurfdéegn >
4) of Euclidean spacR"*! is either totally geodesic or a hypersurface of revolu-
tion "1 x y(s), where the profile curve is determined by its curvature as a
function of arc length by = (1—n)/v" ands = [(v"~YyAv2"~2 — 1) dv (here
A is a constant). For hypersurfaces of dimension 4 in Euclidean space, con-
formal flatness implies quasi-umbilicity and hence is a natural generalization of a
surface of revolution. For = 3, replacing conformal flatness by quasi-umbilicity
gives the same result with the same proof. ket 2, the profile curve is a cate-
nary and hence these hypersurfaces are cgieeralized catenoidslagy [12]
gave an independent study of this question by assuming that the minimal hyper-
surface is foliated by spheres from the outset.

In [2], Vanstone and the author showed that a complete minimal hypersurface
M" of R"*! that admits a codimension-1 foliation by Euclidgan— 1)-spaces is
either totally geodesic or a produtf? x R"~2, whereM? is a helicoid inR3.

In contrast to the classical case, this generalized helicoid is not locally isometric
to the generalized catenoid just described because such an isometric deformation
would preserve the conformal flatness.

In [5], Castro and Urbano (see also Castro [4]) introduced the Lagrangian
catenoid. The manifold itself was introduced by Harvey and Lawson [11] as an
example of a minimal Lagrangian submanifold and is defined by

Mo={(x,y)eR" xR"=C":
lxly = |ylx, S(x| +ilyD" =1, |y| < |x[tan(z/n)}.
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Topologically,MyisR x S"~L. To describe it precisely, l&t" ! be the unit sphere
in R” and view a poinp € S"~! as am-tuple inR" giving its coordinates. Define
amapgo: R x S" 1 — C*"=R" x R" by

®o(u, p) = cosht"(nu)e”“p,

whereB(u) = - — 2 arctar{tanh) € (0, *) and the multiplicatiore*p multi-
plies each coordlnate pfby e’ and lists the real and imaginary parts asia@ple
in C" = R" x R”. Let gg be the standard metric of constant curvature Ftn';
then the metric induced dR x S" by ¢¢ is

ds? = costt/"(nu)(du® + go), (1.1

which clearly is conformally flat. This Lagrangian submanifold defined by the
mappinggo: R x S"~1 — C" together with its induced metrid.1) is known as
theLagrangian catenoidThe main result of [5] is the following.

THEOREM. Let¢: M" — C”" be a minimal(nonfla) Lagrangian immersion.
ThenM™" is foliated by pieces of rounth — 1)-spheres inC" if and only if ¢ is
congruent(up to dilationg to an open subset of the Lagrangian catenoid.

For future use we give the coordinate expression for theicas®. Writing p as
(cosb, sin@), we have

¢, (u, p) = +/cosh 2« (cosp cosh, cosg sing, sin S cosh, sin B sind).

Now 8 = Z — arctaritanhu) and

cos = V2 1+ tanhu sing — V2 1—tanhu
2 /1+tantfu 2 /1+tantu
v/cosh &
————— = coshu,
Vi+tantu
giving
eu —ll
@o(u, p) = (— €089, — sing, — sm@) (1.2)
V2 f 2 f

In view of the conformal flatness of the Lagrangian catenoid and the author’s
result on conformally flat minimal hypersurfacesRfi, it is natural to ask what
are the conformally flat minimal Lagrangian submanifold€ih This seems to
be a difficult question and is a continuing effort of A. Carriazo and the author. We
will see, however, that the only minimal Lagrangian submanifold8’irthat are
foliated by pieces ofn — 1)-planes are pieces afplanes. Thus we drop the min-
imality and study Lagrangian submanifolds@# that are foliated by Euclidean
(n — D-planes.

The program in this paper will be the following five points.

THEOREM 1. Let M" be a complete Lagrangian submanifold ©f that is foli-
ated by(n —1)-planes. Them!" is either totally geodesic, flaf-umbilical, or the
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product of a ruled foliated by line} Lagrangian surface it© 2 and a Lagrangian
(n — 2)-plane inC" 2.

Flat H-umbilical Lagrangian submanifolds @ were completely classified by
Chen in [8] and they are foliated iy — 1)-planes. Thus our main point here is
to consider the case= 2 in detalil.

THEOREM 2. Let M? be a nonflat Lagrangian submanifold @? that is foliated
by lines. Thenthere existlocal coordinatesr) such that the induced metric takes
the formds? = f2dt? + dx?, where f? is a positive function that is quadratic in
x. The Weingarten maps$; and A, corresponding to the normatg = 1]% and
t2=J2 aregivenbyd; = (*¢) andAz = (47), wherea = A(t)/f2, —4A(t)?

is the discriminant off 2, and

1 [/ A0 f2 = AD >
f fe

for some functiorB(¢). Conversely, led/? be a simply connected domain in the
(¢, x)-plane and let

b=

dx + B(t)i|

f2=FOx2+G@)x + H(t)

be a positive quadratic function ovf?. Then there exists an isometric Lagrangian
immersion ofM 2 into C? that is foliated by line segments whose first and second
fundamental forms are as given in this theorem.

We now suppose there is a 1-parameter family of Lagrangian surfac&sdan-
necting a ruled Lagrangian surface to the Lagrangian catenoid(vtet iv?,
v3 + iv*) denote the coordinates @ and letv be the mappingy: M2 — C?
given byv’ = vi(t, x).

THEOREM 3. Suppose there existslgparameter family of Lagrangian surfaces
in C? connecting a ruled Lagrangian surfadé? to the Lagrangian catenoid.
ThenM? is given by

vl = k(cost)x + Bi(t), v?=I1(cost)x + Ba(t),

v3 = k(sint)x + B3(t), v* =I(sint)x + Ba(r),

wherek and! are constants satisfying? + /> = 1. The quadratic then becomes
x?+ G(t)x + H(r), and theg; are determined by

) kG (1) . , 1G (1) -
B, = _<T + lA(t)) sint, B, = <_T + kA(t)> sint,

By = (kGZ(t) + lA(t)> cost, fB,= <@ - kA(t)) cost,

where—4A(1)2 = G(t)2 — 4H(¢).

We call a surface given as in Theorem Bagrangian helicoid
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Our next result is that, even though the Lagrangian helicoids can be connected
to a Lagrangain catenoid through a family of Lagrangian surfaces, the Lagrangian
submanifolds of Theorem 1 cannot be locally isometric to a Lagrangian catenoid.

THEOREM 4. Let M" be a Lagrangian submanifold of” that is foliated by
(n — 1-planes. Thef" is not locally isometric to a Lagrangian catenoid.

Finally, one can raise the question of whether it is possible to have Lagrangian sub-
manifolds ofC” that are “doubly ruled”—that is, for which there exist two folia-
tions by(n —1)-planes. The answer is negative except for the totally geodesic case.

ProrosiTioN 5. If a Lagrangian submanifold/” of C" admits two foliations
by (n — 1)-planes, therM" is totally geodesic.

2. Preliminaries

If (vt +iv?, ..., v?"1+ v?") are the coordinates di’, then arm-dimensional
submanifoldM” of C" is said to bd_agrangianif the restriction of the canonical
symplectic formQ = Y"7_, dv¥~1 A dv? to M" vanishes.

For an isometrically immersed submanifalat, g) of (C”, (-, -)), the Levi—
Civita connectionVv of g and the second fundamental foemare related to the
ambient Levi—Civita connectioW by

VxY = VxY +0(X,Y). (2.1

For a normal vector field, we denote by, the corresponding Weingarten map
and we denote by the connection in the normal bundle; in particulay,and D
are defined by _

Vxl) = —AUX + Dxl).
The Gauss equation is

R(X,Y,Z, W)=(c(Y,Z),0(X,W))—(0(X,Z),0(Y,W)).
Defining the covariant derivative of by
(V'o)X,Y,Z) = Dxo(Y,Z) — o(VxY, Z) — (¥, Vx Z),
the Codazzi equation is
(RxyyZ)* = (V'o)(X,Y,Z) — (Vo)Y, X, Z).

For a Lagrangian submanifold, the almost complex structu&the Kahler man-
ifold C" is an isometry between the tangent bundle and the normal bundle and
hence the equation of Ricci-KuhR; (X, Y, v, ¢) = g([A,, A;] X, Y), gives no
further information.

A non—totally geodesic Lagrangian submanifold of a Kéhler manifold is said to
be Lagrangian H-umbilical ([6] or [9, p. 333]) if there exist functions and u
and a local orthonormal basfe,, ..., e,} with respect to which the second fun-
damental form is given by

o(ey, e1) = AJey, o(ez, ex) =--- =o0(ey, e,) = nley,

o(e, e)) =ulej, olej,er) =0, j#k, jk=2,...,n.



Lagrangian Helicoids 191

In [8], Chen gave a classification of flat-umbilical Lagrangian submanifolds of

C" for which we need some ideas about Legendre curvesz Lét— §2'~1 ¢

C” be a unit-speed Legendre curve in the unit hypersphere centered at the ori-
gin; that is,z = z(s) is a unit-speed curve 82"~ satisfying (z'(s), iz(s)) =

0. Moreover, sincez(s) is spherical, it follows thatz(s), z'(s)) = 0. Thus
z(s),iz(s), 7/(s), iz'(s) are orthonormal vector fields defined along the Legendre
curve, and we can extend to a full orthonormal frame field along the curve by nor-
mal fieldsP3(s), iP3(s), ..., P,(s), iP,(s). The Legendre curve is callecdpecial
Legendre curvéf the P; are parallel along the curve and if

2(s) = iM($)Z'(s) — 2(s) = Y _ a;(s) P;(s)

j=3

for some functions., as, ..., a,,. We can now state the classification of Chen.

THEOREM. Leth,b,as, ..., a, ben functions defined on an open intervalith
n > 2 and A nowhere zero, and let: I — S?"~! ¢ C" be a special Legendre
curve. Set

ft ug, ... uy) =b@) +us+ Zaj(t)u_,-.
j=3

Let M" be the product manifold x R"~! with the twisted product metrig =
f2dt? + du5 + - - - + du?. ThenM" is a flat Riemannian manifold and

n t
Lt uz, ..., u,) =uz(t) + Zu,Pj(t) +/ b(t)z'(t) dt (2.2)
Jj=3

defines a Lagrangiai/-umbilical isometric immersion a¥#/" into C".

Conversely, up to rigid motions @”, locally every flat Lagrangiai-umbili-
cal submanifold inC" without totally geodesic points is either a Lagrangian
cylinder over a curve or a Lagrangian submanifold obtained in the manner just
described.

We also recall the following existence theorem of Chen (see e.g. [7, p. 292]) for
Lagrangian isometric immersions into complex space forms.

THEOREM. Let M" be a simply connected Riemannian manifold. &dbe a
TM-valued symmetric bilinear form ol satisfying

(1) g(@(X,Y), Z) is totally symmetric

(2) (Va)(X,Y,Z) =Vxa(Y,Z)—a(VxY, Z)—a(Y, VxZ) is totally symmetric
) RxyyZ=a(a¥,Z2),X) —a(x(X, Z),Y).

Then there exists a Lagrangian isometric immersiomdfinto C” whose second
fundamental formis given (X, Y) = Ja(X, Y).

Finally, we recall a reduction theorem of Erbacher [10] (see also [9, pp. 206—207]).

THEOREM. Let M" be a submanifold of a complete simply connected Riemann-
ian manifoldM ™ (c) of constant curvature. If there exists a normal subbundie
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of rank! that is parallel in the normal bundle and if the first normal spésgan of
the second fundamental foyrat each pointc € M" is contained inE,, EhenM"
is contained in an(n + /)-dimensional totally geodesic submanifoldif’(c).

3. Proof of Theorem 1

Since the given submanifold” is foliated by(n — 1)-planes, there exists a unit
vector fieldU tangent taM” and orthogonal to the leaves of the foliation. The fo-
liation is by Euclidean spaces and hence we can completie an orthonormal
basis by vector fields,, ..., e, such that@eiej = 0; moreover, we may choose
local coordinate#, x2, ..., x") such that; = f andU = %% f>0.Letp=
—In f. Then [U, ¢;] = —p;U, wherep; = fx” With respect to these coordinates,
the induced metric oM™" is given by

ds? = f2dt?> + (dx®)? + - + (dx")°.

From this form of the metric we have immediately that

VuU = Zp,-e[, Ve[U = 0, V(/e,' = —p,'U, Veiej =0. (31)
i=2
Introduce local normal fields byy = JU and¢; = Je;, and denote the corre-
sponding Weingarten maps by andA;. Then
—A1X + Dxty = Vxto = JVxU = J(VxU + o(X, U)).
Now, takingX equal toU and (respectivelyy;, we obtain

AU = —Jo(U,U), Dytr=) pi&i, Awei=—Jo(e;,U), Dyl1=0.
i=2

Similarly,
—A;U + Dy¢j = Vyt; = JVye; = J(—p;U +o(U, ¢))),
whence
AU =—Jo(U,e;) = Aze; and Dyt = —pjl1.
Finally, B B
—Ajei + D¢ =Vt = JV,e; =0,
giving

Aje,- =0 and De,-{j =0.

In particular, we see that the matrices of the Weingarten maps are of the form

b a --- a a 0 ... 0
a 0

A= : 0 , Aj = : 0 . (3.2)
a 0

We pause to remark that one now readily obtains the result mentioned in the in-
troduction: that the only minimal Lagrangian submanifold€ihthat are foliated
by pieces ofn — 1)-planes are pieces afplanes (i.e., the totally geodesic case).
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We now utilize the Codazzi equation: For any index 1,

n n
VxAY —ANVxY+) (Dxgp. G)A)Y = Vy A X —AVyX+Y (Dylr. () AX.
=1 =1

Applying this toU and thee; (i > 2), for indicesi, j > 2 we have

Ve, AU = VyAie; + Ai(piU), (3.3
Ve, AjU = Aj(piU) + pjAse;, (3.4)
Ve,- Alej = VejA]_Ei. (35)

Using the matrices in (3.2) for the Weingarten maps, these three equations imply
the following, which we will need both here and in our later work. Equation (3.5)
impliese;a = ejafori, j > 2. Similarly, equation (3.4) impliega = a(p; + pi)
fori, k > 2. From these we have

eja = 2ap; (3.6)
and hence either
p2=---=p, OF a=0.

In the same manner, equation (3.3) implies

e;b = Ua + bp;. (3.7
We deal first with the casg, = --- = p,,. Let
1 & 1
V=—o ei and W, = —(ex —e2), k=3,...,n.
m; j k \/E(  — €2)

Then
VyV = —+/n—1p,U and VyU =0

and hencel, V] = —v/n — 1p,U. We also haveW;, W;] = 0. Therefore, M"
is locally a product? x M"~2. Moreover,

VyU = Zpie,- = p2n/n =1V and V,V =0,
i=2

henceM? is totally geodesic iM". Also, sinceVy, W, = 0, it follows thatM"—2
is totally geodesic it€” and thus (by completenesi)”~2 is Euclidean(n — 2)-
space.

Now considen ? as a submanifold i€ as well as the bundle ovéf 2 spanned
by ¢1 andv = JV. Let D’ ando’ denote the connection in the normal bundle and
the second fundamental form #f2 in C". We have easily that

Djt1=pav/n—1v, Djv=—ppv/n—1a, Dya=0, Djv=0.

Thus the bundléy, v} is a parallel subbundle of the normal bundlef in C”.
Furthermore,
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_ -1 _ _
(0"(X,Y), IWi) = —(VxJW;, Y) = E(VXJek — VxJes, Y)
= _1(A X —A;X,Y)=0
- ﬁ k 2 9 - M

This, together with the fact that ? is totally geodesic i/, implies that the first
normal space oM? in C” is contained in the bundlg, v}. Thus, by the theo-
rem of Erbacher [10] stated in Section™? lies in someC? with the C? being a
totally geodesic submanifold @f”.

If a = 0, then the second fundamental form simplifies to

o(U,U)=>bt1, oUe)=0, o(e,e)=0;

in particular,M" is H-umbilical in C". Moreover, the Gauss equation gives im-
mediately thatM” is flat. The result now follows from the classification of flat
H-umbilical Lagrangian submanifolds given in [8] and stated in Section 2. Note
that equation (2.2) is linear in the and so flatH-umbilical Lagrangian subman-
ifolds of C" are foliated by(n — 1)-planes.

4. Proof of Theorem 2

Here we consider a ruled Lagrangian surfa¢é in C2. In light of the forego-
ing development we have local coordinatesr), and the information from the
Codazzi equations (3.6) and (3.7) becomes

da_, O 9b_ 04 dp

ox ox ax ot ox
Moreover, computing both sides of the Gauss equation

g(R,uU, €2) = (0(U, U), 0 (e2, €2)) — lo(U, e2)[?

’

yields
eap2 — (p2)? = —a”.

Returning to the functiorf = ¢~” and denoting differentiation by subscripts, our
equations become

2a 1 b

ay =——fx, bi=—a;— —fx, xx — a2~ 41
7 /; 7 ff Jex = f (4.1)
Differentiating the third and using the first gives
fxxx = _3f}x fx or (ffxx + fxz)x =0.
Therefore
(ffox = ffax + fE=F()
and, in turn,

(1£2). = ffi = FOx +3G@®),  f2=FOx?+ G@®)x + H().
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Writing the first equation of (4.1) adna + In £2), = 0, we see that is of the
forma = A(t)/f?. Since we began by differentiating the third equation of (4.1),
some information was lost and we returnftfy, + f2 = F(z):

2 fuo F f2 AFH-G?

CTT T R AT T
hence—4A(r)? is the discriminant off 2. Writing the second equation of (4.1) as
(bf)y =a, = A'(1)/f? — (A/fH(f?), and then integrating, we have

1 [ / A') 2 = AD (>

f 4

where the integral is elementary and can be computed as desired.
Conversely, ifM? is a simply connected domain in tie x)-plane and if

f2=F®)x2+ G@)x + H(t)

is a positive quadratic function av?, leta = A(r)/f? (where 44?2 = 4FH — G?)
and letb be a function of the form given by (4.2). Then b, and f satisfy the
)

Gauss and Codazzi equations (4.1). Bet %5 ande, = % and, with respect

to this basis, define linear transformation fieldsi@A by

b 0
w3 e (s 9)

Now define a tangent bundle—valued symmetric bilinear form by
a(X,Y) =g(A1X,Y)U + g(A2X, Y)eo.

Itis easy to check thax (X, Y), Z) is symmetric inX, Y, Z. Using the first two
equations of (4.1) (Codazzi equations), direct computation shows that the second
condition of Chen’s existence theorem is satisfied. Similarly, using the third equa-
tion of (4.1) (Gauss equation), direct computation shows that the third condition
of Chen’s existence theorem is satisfied. Thus, by the Chen existence theorem
(see [7] or Section 2), there exists a Lagrangian isometric immersidfofith
metricds? = f2dt?> + dx? into C? whose second fundamental form is given

by Ja(X,Y).

b=

dx + B(t)], (4.2)

5. Geometry of Ruled Lagrangian Surfaces
and Proof of Theorem 3

We now discuss the geometry of ruled Lagrangian surfac€s iim more detail.
Let (v +iv?, v3 +iv*) be the coordinates @f?; we study the mapping: M? —
C2 given byv’ = vi(t, x) and adopt the notatiody = 2-9,,, et cetera. Since
is the coordinate along the rulings, we have

92y’

0=V, 0, = —=d,
O 9x2

and hence the' are linear inx, say,
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v = ()x + Bi(D).
Fromds? = f2dt? + dx? we obtain
2= (ex+p)% Y o?=1 Y aejx+p)=0 (51

BecauseV 2 is Lagrangian, the restriction @f! A dv? + dv® A dv* to M? van-
ishes, giving

(a1x + oz — (apx + Bo)ar+ (ajx + B5)as — (ayx + By)az = 0;
therefore,
gy — aho + agoa —oyaz =0, Brop — Bhrar+ Byoea — Pz =0, (5.2)
Next we compare
0 (0, U) = JA10, = J(aU)

a a (vt v av3 v?
=—Jo, = 7 —0y2 — —0y1 + — 04 — — 0,3

f ot ot ot ot
with 1
vax—at_ Z((xx+,3)8v,~|— Z(x 3y
and so obtain the following equatlons.
—%(al + B1) + g = —alarx + B5),
fx
——(azx + ,32) + a2 = a(alx + ,81)
f
7 (5.3)
—7x(a3x + ,33) + oz3 = —a(a4x + ,34)
Jx

—7(014)( + ﬂ4) + a4 = a(agx + ﬂg)

Multiplying each of these by its own right side and then adding and using (5.1)
and (5.2) yields

af? = A = Blay — Bhas + Phay — Bhas. (5.4)

Now turning to the proof of Theorem 3, suppose there is a 1-parameter family
of Lagrangian surfaces ii? connecting the Lagrangian ruled surface described
above to the Lagrangian catenoid (1.2) of Castro and Urbano. In particular, con-
sider the surfaces whose position vectors are

P (aa(1)x + Ba(1), aa(1)x + B2(1), as(t)x + B3(1), 014(l)x + ﬁ4(l))

X —X
+ Q(A)( cost, cost, sint, sin t)

V2 f f «/_

where for the parametérwe haveP(0) = 1andP(A) = 0 aswellagD(0) =0
andQ(A) = 1, with P and Q being continuous functions on an interval [Q].
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Applying dv! A dv? + dv® A dv* to 3, andd, shows that, if the surface is La-
grangian for each, then
oy cost + agsint =0,
oy COSt + ary Sint = 0,
_ _ (5.5)
a1Sint — B cost — azcost — Bzsint =0,
oy Sint + B cost — g cOSt + B sint = 0.

From equations (5.3) we have

o) + afal L —af?a]
ﬂi:—aix+—ffx 21+ 2f2 2, ﬁ’g:—aéx+—ffxoéz 2f2 L

fe+asf fé+asf

ok + af?a o — aflal
ﬁé:—aéx—i——ffx 21, ,lez—oejlx—i-—ffx = 2f2 3,

fé+acf fé+acf

Using these and the first two equations of (5.5), we hgj\esr + g5 sint = 0;
in turn, from the third equation of (5.5) we hawgsint — a3 cost = 0. This, to-
gether with the first equation of (5.5), gives/a1 = tant = —a;/ag, from which
o? + a2 = k?, a constant. Writingy; = k cosy (1) andaz = ksiny(z), from
az/ay = tant we may, in fact, take (r) = ¢. Using a similar argument fg#, and
B4, we now have:

a1 =kcost, op=1c0St, «a3z=ksint, a4 =1sint,
Bicost + Bsint =0, B, cost + B, sint = 0.

Returning to the second equation in (5.1) we seekhat /%> = 1; in turn, from
the first equation in (5.1) we obtain

f?=x? = 2[k(Bisint — Bycost) + (B, sint — Bycost)]x + Y Bj%

In particular,F = 1in the quadratigf? = Fx? + Gx + H.
Now the equations for thg; become

kffe +laf?\
B1=|kx — kff +laf sint, ....
f2 4 a2f2

Then from equation (5.4) we have

af?
fx2 + a2f2’
giving f2 + a?f? = 1. Note also that — ff, = —G/2. Thus the functiong,
are determined fron& andA by

kG . IG .
B1= _<7 + lA) sint, B, = <—? + kA) sint,

kG IG
B3 = (7 + IA) cost, 4= (; — kA) Ccost.

af? = A = —I(Bysint — p5cost) + k(B,sint — B, cost) =
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6. Proof of Theorem 4

Since the Lagrangian catenoid is not flat, it is enough to consider the nonflat case
of Theorem 1. Ifn > 4 then the theorem is quite easy. Since the Lagrangian
catenoid is conformally flat, iM? x R”~2 is locally isometric to the Lagrangian
catenoid then it, too, must be conformally flat. legte, be orthonormal vectors
tangent toM 2 and letp andt denote (respectively) the Ricci tensor and scalar
curvature of\f? x R*~2. Then, from the well-known form of the curvature tensor

of a conformally flat manifold,

1
§RxyZ, W) = m(g(Y, Z)p(X, W) —p(X, Z)g(Y, W)

T
T D=2 8T DX W) — g(X. 2)g(V. W)).
the Gaussian curvature 8f? is given by
T

1
K = g(Ree €2, 1) = n—_Z(P(ela e1) +plez, €2)) — m

2K 1
n—2< n—l)

this yieldskK = 0, which contradicts the nonflatness &f.
If n = 3 then we recall that, on a 3-dimensional conformally flat manifold,

Xt Yt
(Vxp)(Y, Z) — Tg(Y, Z)=(Vyp)(X,Z) — Tg(X, Z).

By the Riemannian product structure 8> x R, we can choosey, e,, ez to
diagonalizeo on M? x R with ey, e, tangent taM ?; then

et
(Velp)(ea, e3) — T

which yieldse; K = 0. Similarly K = 0, and henceM? is of constant curva-
ture. From the Gauss equatian= const By (3.6) this implies that eithetr =
0 or eachp; = 0, but if eachp; = 0 then the Gauss equation will give= 0 as
well. Thus, as in the proof of Theorem 1gif= 0 thenM" is flat.
The proof is more difficult in dimension 2. We will show that the metti¢) on
the Lagrangian catenoids? = cosh 2:(du? + d#?), and also the metrids? =
f2dt? + dx?, wheref? = F(t)x?> + G(t)x + H(t), cannot be locally isometric.
We suppose that = u(z, x) andd = (¢, x) is a local isometry mapping one met-
ric to the other and then seek a contradiction. Preservation of the metric implies
that

f?=cosh2u(?+ 6%, 0=uu,+6,6,, 1=coshu?+6?).

The Gaussian cuvature @§2 = cosh 2 (du? + d6?) is K = —2/(coslt 2u) and
that ofds? = f2dt?> + dx?is K = (G? — 4FH)/Af*. Thus,u as a function of
andx must be given by

= (Vezp)(en, e3),
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8r4

4FH — G%'

Now 02 = f2?/(cosh ) — u?, 2 = 1/(cosh ) — u?, and6?26? = u?u?, from

cosh 2u =

> Ux t%xo
which we havef? = f2(cosh 2i)u? + (cosh 2)u?. The first two equations, for
62 andd?, then yield

0, =+fu, and 6, = :F%u,.
Comparing,, andé,,, we see that the integrability condition for these equations is
%(fz)xux + fzuxx = %(In fz)tut — Ugte
Settingz = coskt 2u, the integrability condition becomes
2f%% S
3z 3(z — 7¥3)

1
E(fz)xzx + fzzxx -

272 z2

=}(Inf2)z —ut ot — 5
2 t&t 1t 3Z 3(Z —Zl/'?’).
For simplicity we setb = F(1)x? + G(t)x + H(t) andD = 4F(t)H(t) — G(t)?
and we uséto denote differentiation with respectaoThen the integrability con-
dition becomes
—24(2Fx 4+ G)?®3 — 2(2Fx 4+ G)2®*3D?/3 4 96F d* — 24F 9®/3p?/3

®30'D’ E(I>5/3<I>’D/ A(I)“D’Z

= 720202 — 100%/3¢'2D?/® — 12 -5 —24
D D1/3 D2
8/3p’? - 5 ®*D” _®Y3D”
_ ' /32/3%" 1 24 _
+ 8 — 48070 + 120%°D P 4 24— R

In this equation, half the terms are polynomials iof degree 8 and the other terms
have expansions im with highest exponer&f. Thus, taking the corresponding
coefficients yields

0=6F?— FE'D™ ZFZD/2 — AFF" + 2F2DN
D D?
and
FF/D/ FZDIZ FZD//
—32F% = —10F'? -5 +8 +12FF" — 6 .
D D? D

Multiplying the first of these by 3 and adding to the second gives
/7 2
—-32F3 = 2<2F’ —~ 2) ,
D
contradicting the positivity of the quadrati(t)x? + G(¢)x + H(z).

7. Proof of Proposition 5

If a Lagrangian submanifold?” of C* admits two foliations by(n — 1)-planes,
then there exists a vector fieWd= U + > g;¢; with § = 0 and satisfying/yV =
0. Using (2.1) and (3.1), we have
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0=VyV =8USU + 82<Zp[e,- +o(U, U))

+6) (Weei+8) ei(=piU + (U, &)

+ Ze,-((e,&)U +80(e;, U) + Z(@j&‘i)Gi),
J i

Then, taking the normal part and its inner product witth and Je; and using the
matrices (3.2), we obtain

0=08"+2a8) & and O=as?,

from which botha andb vanish; hence we see thit" is totally geodesic.
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