Principal Bundles over Chains or Cycles of Rational Curves

Titus Teodorescu

The objects of study in this paper are Zariski locally trivial principal bundles over chains or cycles of rational curves. A chain of rational curves is either \mathbb{P}^{1} or a connected reduced complex curve $X=X_{1} \cup \cdots \cup X_{k}$ with $k \geq 2$ irreducible components $X_{i}(1 \leq i \leq k)$, all of them smooth rational curves, such that X_{i} intersects X_{i+1} in a nodal singular point q_{i} for all $i=1, \ldots, k-1$. A cycle of rational curves is either an irreducible reduced rational nodal complex curve with exactly one singularity or a connected reduced complex curve $X=X_{1} \cup \cdots \cup X_{k}$ with $k \geq 2$ irreducible components $X_{i}(1 \leq i \leq k)$, all of them smooth rational curves, such that (a) X_{i} intersects X_{i+1} in a nodal singular point q_{i} for $i=1, \ldots, k-1$ and (b) X_{k} intersects X_{1} in a nodal singular point q_{k}. We are interested in classifying Zariski locally trivial principal G-bundles over chains and cycles when G is a connected reductive complex algebraic group. The motivation is to generalize the classification (see [1]) of vector bundles over a chain or a cycle of rational curves. As shown there, one can hope to get a complete classification of all the vector bundles over a connected nodal curve only when the curve is either a chain or a cycle of rational curves. In the terminology of [1], the classification problem for vector bundles is of finite type for a chain of rational curves and of tame type for a cycle of rational curves. For all the other nodal curves, the classification problem is of wild type, meaning that the problem is at least as hard as the classification of the representations of finitely generated complex algebras. We will see that the problem for principal bundles seems to have the same trichotomy. For a chain, the classification of principal bundles is determined by discrete parameters. In the case of a cycle, the classification seems to depend on a finite-dimensional space of parameters.

This paper is divided into four parts. In the first part, we take the case of a smooth rational curve X. We recall (Theorem 1.1) the classification (see [3]) of principal G-bundles over X, which says that the structure of any principal G-bundle can be reduced to a maximal torus T of G. This result can be reformulated by saying that any principal G-bundle can be obtained from the principal \mathbb{C}^{*}-bundle $\mathbb{C}^{2}-\{0\} \rightarrow$ \mathbb{P}^{1} by extending the structure group using a homomorphism $\lambda: \mathbb{C}^{*} \rightarrow T$. Let $X_{*}(T)$ be the abelian group of homomorphisms from \mathbb{C}^{*} to T, and let P_{λ} be the principal G-bundle over X obtained as before from $\lambda \in X_{*}(T)$.

In the second part, we consider the case of a chain of rational curves. We prove (Theorem 2.2) that the structure group of any principal G-bundle on a chain of

[^0]rational curves can be reduced to T. The classification of all principal G-bundles is obtained in Theorem 2.11. The classification data is discrete and consists of a k-tuple $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of homomorphisms from \mathbb{C}^{*} to T, representing the restrictions of the principal bundle P to the components X_{i}. The starting point of the proof of these results is Proposition 2.1, which states that any principal bundle on X is obtained from principal bundles on the components plus some gluing data at each of the singular points of X.

In the third part, we consider the case of an irreducible nodal singular curve X with exactly one singularity $q \in X$. If $\lambda \in X_{*}(T)$ is dominant and if $g \in G$, then we construct a principal G-bundle on X from the G-bundle P_{λ} over \mathbb{P}^{1} by identifying the fibers over two points of \mathbb{P}^{1} using the isomorphism of G given by the left multiplication with g. Two pairs $\left(\lambda_{1}, g_{1}\right),\left(\lambda_{2}, g_{2}\right)$ will define isomorphic G-bundles over X if and only if $\lambda_{1}=\lambda_{2}$ and $g_{2}=\left(a_{1} b_{2}\right)^{-1} g_{1}\left(a_{1} b_{1}\right)$, where $a_{1} \in Z\left(\lambda_{1}\right)$ and $b_{1}, b_{2} \in U\left(\lambda_{1}\right)$. Here $Z(\lambda) \subset G$ denotes the centralizer of the dominant element $\lambda \in X_{*}(T)$, and $U(\lambda)$ denotes the unipotent radical of the parabolic $P(\lambda)$ associated to λ. Thus the classification of principal G-bundles on X is equivalent to the classification of all equivalence classes of the equivalence relation \cong on G given by $g_{1} \cong g_{2}$ if and only if $g_{2}=\left(a_{1} b_{2}\right)^{-1} g_{1}\left(a_{1} b_{1}\right)$ for some $a_{1} \in Z\left(\lambda_{1}\right)$ and $b_{1}, b_{2} \in$ $U\left(\lambda_{1}\right)$.

In the fourth part, we consider the case of a cycle of rational curves with at least two irreducible components. The classification data for principal G-bundles over a cycle of rational curves consists of $\lambda_{1}, \ldots, \lambda_{k} \in X_{*}(T)$ dominant cocharacters (which represent the restrictions of the principal bundle to the components X_{i}), gluing data $n_{1}, \ldots, n_{k-1} \in N(T)$ for the points $q_{i}(1 \leq i \leq k-1)$, and an equivalence class \hat{g} of some equivalence relation on G, which represents the gluing data at q_{k}.

I would like to thank Robert Friedman for his encouragement and helpful comments.

Part I

In this part, we are interested in principal bundles over $X=\mathbb{P}^{1}$, the complex projective space of dimension 1 . The following theorem gives the classification of the principal G-bundles over X.

Theorems 1.1 [3]. Let G be a complex connected reductive algebraic group, $T \subset G$ a maximal torus, and W the Weyl group. We denote by $X_{*}(T)$ the abelian group of homomorphisms from \mathbb{C}^{*} to T, called the group of cocharacters of T.
(1) The structure group of any principal G-bundle over $X=\mathbb{P}^{1}$ can by reduced to the maximal torus $T \subset G$. Moreover, $\mathrm{H}^{1}\left(X, T\left(\mathcal{O}_{X}\right)\right) / W=\mathrm{H}^{1}\left(X, G\left(\mathcal{O}_{X}\right)\right)$.
(2) Let P_{λ} be the G-bundle obtained from the principal \mathbb{C}^{*}-bundle $\mathbb{C}^{2}-\{0\} \rightarrow$ \mathbb{P}^{1} extending the structure group using the homomorphism $\lambda \in X_{*}(T)$. Any principal G-bundle over $X=\mathbb{P}^{1}$ is isomorphic with P_{λ} for some $\lambda \in X_{*}(T)$. Two principal G-bundles $P_{\lambda}, P_{\lambda^{\prime}}$ are isomorphic if and only if $\lambda, \lambda^{\prime}$ belong to the same orbit under the Weyl group, that is, iff there is a $w \in W$ such that $\lambda=w \cdot \lambda^{\prime}$.

Observations 1.2. (1) Because, under the action of the Weyl group, any orbit in $X_{*}(T)$ contains a unique dominant element, any principal G-bundle over \mathbb{P}^{1} is isomorphic with P_{λ} for some (unique) dominant cocharacter $\lambda \in X_{*}(T)$.
(2) If q_{0}, q_{1} are two different points of X, we consider $X=V_{0} \cup V_{1}$ the open affine covering of X with two copies $\left(V_{0}=X-\left\{q_{1}\right\}\right.$ and $\left.V_{1}=X-\left\{q_{0}\right\}\right)$ of \mathbb{C}. The principal \mathbb{C}^{*}-bundle $\mathbb{C}^{2}-\{0\} \rightarrow \mathbb{P}^{1}$ has trivializations over V_{0} and V_{1} such that the cocycle with respect to these trivializations is a group isomorphism $V_{0} \cap V_{1}=$ $\mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$. It follows from Theorem 1.1(2) that any principal bundle over X has trivializations over V_{0} and V_{1} such that the cocycle with respect to these trivializations is a dominant group homomorphism $\lambda: V_{0} \cap V_{1}=\mathbb{C}^{*} \rightarrow T \subset G$. Such a cocharacter $\lambda \in X_{*}(T)$ is determined uniquely.
(3) If $\lambda \in X_{*}(T)$ then we can define the G-bundle P_{λ} in the following way. Let q_{0}, q_{1} be two different points of $X=\mathbb{P}^{1}$. Let $V_{1}=X-\left\{q_{0}\right\}$ and $V_{0}=X-\left\{q_{1}\right\}$. The two sets define an open affine covering of X. We define a principal G-bundle P_{λ} over X by gluing the trivialized G-bundles $\pi_{0}: V_{0} \times G \rightarrow V_{0}$ and $\pi_{1}: V_{1} \times G \rightarrow$ V_{1} over $V_{0} \cap V_{1}$. We define the gluing $\pi_{0}^{-1}\left(V_{0} \cap V_{1}\right) \rightarrow \pi_{1}^{-1}\left(V_{0} \cap V_{1}\right)$ by the rule $(x, g) \rightarrow(x, \lambda(x) g)$, where $\lambda: \mathbb{C}^{*}=V_{0} \cap V_{1} \rightarrow T \subset G$.
(4) In a similar way, we can define a principal T-bundle T_{λ} over X by gluing over $V_{0} \cap V_{1}$ the trivialized T-bundles $\pi_{0}: V_{0} \times T \rightarrow V_{0}$ and $\pi_{1}: V_{1} \times T \rightarrow V_{1}$. We define the gluing as a morphism $\pi_{0}^{-1}\left(V_{0} \cap V_{1}\right) \rightarrow \pi_{1}^{-1}\left(V_{0} \cap V_{1}\right)$ defined by the rule $(x, t) \rightarrow(x, \lambda(x) t)$. Clearly, the principal G-bundle P_{λ} is obtained from the principal T-bundle T_{λ} by extending the group structure using the inclusion homomorphism $T \rightarrow G$.

For future use we recall the following result about the automorphism group of a principal G-bundle over the projective line. Let $\lambda \in X_{*}(T)$ be dominant. We fix a maximal torus T and a Borel subgroup $T \subset B \subset G$ of the algebraic group G. Let $N(T)$ be the normalizer of T in G and let $W=N(T) / T$ be the Weyl group of G. Let $P(\lambda)$ be the parabolic associated to λ generated by T and by the root groups U_{α} with $(\lambda, \alpha) \geq 0$. The centralizer $Z(\lambda)$ of the subgroup of T determined by λ is a connected reductive group and $P(\lambda)=Z(\lambda) U(\lambda)$, where $U(\lambda)$ is the unipotent radical of $P(\lambda)$. For the Lie algebras we have $\mathfrak{z}(\lambda)=\mathfrak{t} \oplus \sum_{(\lambda, \alpha)=0} \mathfrak{u}_{\alpha}$ and $\mathfrak{u}(\lambda)=$ $\sum_{(\lambda, \alpha)>0} \mathfrak{u}_{\alpha}$.

Theorem 1.3 [4]. Let $\lambda \in X_{*}(T)$ be a dominant cocharacter and P_{λ} the corresponding principal G-bundle on the projective line. Then the group of automorphisms of P_{λ} (acting trivially on the base) is isomorphic to

$$
\operatorname{Aut}\left(P_{\lambda}\right)=Z(\lambda) \times \prod_{(\lambda, \alpha)>0} \mathrm{H}^{0}\left(\mathbb{P}^{1}, T_{\lambda}\left(\mathfrak{u}_{\alpha}\right)\right),
$$

where T_{λ} is the principal T-bundle induced from λ and $T_{\lambda}\left(\mathfrak{u}_{\alpha}\right):=T_{\lambda} \times_{T} \mathfrak{u}_{\alpha}$ is the associated line bundle.

Since $T_{\lambda}\left(\mathfrak{u}_{\alpha}\right)$ is a line bundle on \mathbb{P}^{1} of degree (λ, α), we have the following corollary.

Corollary 1.4. Let $\lambda \in X_{*}(T)$ be a dominant cocharacter and let q_{0}, q_{1} be two different points of X. Let P_{λ} be the principal G-bundle on \mathbb{P}^{1} associated to λ, as in Observation 1.2(3).
(1) Let $g \in Z(\lambda)$ and $a, b \in U(\lambda)$. Then there is an automorphism $\phi \in \operatorname{Aut}\left(P_{\lambda}\right)$ such that $\phi_{q_{0}}=g a$ and $\phi_{q_{1}}=g b$ in the corresponding trivializations.
(2) Let $b \in B$. Then there is an automorphism $\phi \in \operatorname{Aut}\left(P_{\lambda}\right)$ such that $\phi_{q_{0}}=b$ in the corresponding trivialization around q_{0}.

Observation 1.5. If $\lambda \in X_{*}(T)$ and $n \in N(T)$, let $\lambda^{\prime}=n \lambda n^{-1} \in X_{*}(T)$. The element λ^{\prime} depends only on the class of n in $W=N(T) / T$. Since $P_{\lambda^{\prime}}=P_{\lambda} \times{ }_{\rho} G$, where $\rho: G \rightarrow G$ is the inner conjugation in G with $n \in N(T)$, we have an isomorphism $\phi_{n}: P_{\lambda} \rightarrow P_{\lambda^{\prime}}$ of principal G-bundles. If q_{0}, q_{1} are different points of X and if $P_{\lambda}, P_{\lambda^{\prime}}$ are defined as in Observation 1.2(3), then the isomorphism ϕ_{n} is represented by the multiplication on the left with n in the trivializations used to define P_{λ} and $P_{\lambda^{\prime}}$.

Part II

In this part we study Zariski locally trivial principal G-bundles over a reducible chain of rational curves. Such a chain is a connected reduced complex curve $X=$ $X_{1} \cup \cdots \cup X_{k}$ with $k \geq 2$ irreducible components $X_{i}(1 \leq i \leq k)$, all of them smooth rational curves, such that X_{i} intersects X_{i+1} in a nodal singular point q_{i} for all $1 \leq i \leq k-1$. We choose $q_{0} \in X_{1}$ different from q_{1} and $q_{k} \in X_{k}$ different from q_{k-1}. The base curve X can be viewed as coming from k copies X_{1}, \ldots, X_{k} of a smooth rational curve by gluing $X_{i}-\left\{q_{i-1}\right\}$ to $X_{i+1}-\left\{q_{i+1}\right\}$ at the point q_{i} for $1 \leq i \leq k-1$. The gluing can be thought of in this way: $X_{i}-\left\{q_{i-1}\right\}$ is an affine space $\operatorname{Spec}(A)$, and the point $q_{i} \in X_{i}-\left\{q_{i-1}\right\}$ corresponds to a homomorphism $f: A \rightarrow \mathbb{C}$; similarly, $X_{i+1}-\left\{q_{i+1}\right\}$ is an affine space $\operatorname{Spec}(B)$, and the point $q_{i} \in X_{i+1}-\left\{q_{i+1}\right\}$ corresponds to a homomorphism $g: B \rightarrow \mathbb{C}$. The result of gluing $X_{i}-\left\{q_{i-1}\right\}$ to $X_{i+1}-\left\{q_{i+1}\right\}$ at q_{i} is $\operatorname{Spec}(C)$, where C is the algebra $C=\{(a, b) \in A \oplus B \mid f(a)=g(b)\}$.

Let G be a connected reductive complex algebraic group. The starting point of the study of principal bundles over X is Proposition 2.1, which claims that any principal G-bundle over X is obtained from principal G-bundles P_{i} over X_{i} by gluing the fibers over the common points $q_{i}, 1 \leq i \leq k-1$.

Proposition 2.1. Let $Y=Y_{1} \cup \cdots \cup Y_{k}$ be a reduced curve with $k \geq 2$ irreducible components Y_{i} such that (a) Y_{i} intersects Y_{i+1} in a point q_{i} for $1 \leq i \leq k-1$ and (b) the structure sheaf \mathcal{O}_{Y} is given by $\left(f_{1}, \ldots, f_{k}\right) \in \mathcal{O}_{Y_{1}} \oplus \cdots \oplus \mathcal{O}_{Y_{k}}$, with $f_{i}\left(q_{i}\right)=f_{i+1}\left(q_{i}\right)$ for $1 \leq i \leq k-1$. Let j_{i} be the inclusion of q_{i} in Y_{i} and let j_{i}^{\prime} be the inclusion of q_{i} in Y_{i+1}. Let \mathcal{C}_{k} be the category of tuples $\left(P_{1}, A_{1}, P_{2}, A_{2}, \ldots\right.$, A_{k-1}, P_{k}), where P_{i} is a principal G-bundle over Y_{i} and $A_{i}: j_{i}^{*} P_{i} \rightarrow j_{i}^{\prime *} P_{i+1}$ is a morphism of G-bundles over q_{i}. A morphism in \mathcal{C}_{k} between $\left(P_{1}, A_{1}, P_{2}, A_{2}, \ldots\right.$, $\left.A_{k-1}, P_{k}\right)$ and $\left(Q_{1}, B_{1}, Q_{2}, B_{2}, \ldots, B_{k-1}, Q_{k}\right)$ is given by a tuple $\left(\phi_{1}, \ldots, \phi_{k}\right)$, where $\phi_{i}: P_{i} \rightarrow Q_{i}$ is a G-morphism over $Y_{i}(1 \leq i \leq k)$ such that $B_{i} \circ j_{i}^{*} \phi_{i}=$ $j_{i}^{\prime *} \phi_{i+1} \circ A_{i}$. There is an equivalence of categories between the category of
principal G-bundles on Y and the category \mathcal{C}_{k}. Under this equivalence, the bundles P_{1}, \ldots, P_{k} are the pull-backs of the bundle P.

Proof. We prove the proposition for $k=2$; the general case is similar. Let P be a principal G-bundle over Y. Let $l_{i}: Y_{i} \rightarrow Y$ be the inclusion morphism and let $P_{i}=l_{i}^{*} P$ be the pull-back G-bundle on Y_{i}. Since $l_{1} \circ j_{1}=l_{2} \circ j_{1}^{\prime}$, there is a canonical isomorphism $A_{1}: j_{1}^{*} P_{1} \rightarrow j_{1}^{\prime *} P_{2}$ of principal G-bundles over q_{1}. We define a functor S from the category of principal G-bundles on Y to the category \mathcal{C}_{2}, which on objects associates to a principal G-bundle P the triple $\left(P_{1}, A_{1}, P_{2}\right)$. We prove that S defines an equivalence of categories by constructing an inverse functor T from the category \mathcal{C}_{2} to the category of principal G-bundles on Y. If (P_{1}, A_{1}, P_{2}) is an object of \mathcal{C}_{2}, then we define a principal G-bundle $T\left(P_{1}, A_{1}, P_{2}\right)$ on Y as follows. We choose trivializations of P_{1} over an open covering $\mathcal{U}^{1}=\left\{U_{\alpha}^{1} \mid \alpha \in I\right\}$ of Y_{1} such that there is exactly one open set $U_{\alpha_{0}}^{1} \in \mathcal{U}^{1}$ that contains q_{1}. We denote the cocycle of P_{1} with respect to \mathcal{U}^{1} by $g_{\alpha, \alpha^{\prime}}^{1}$. Similarly, we choose trivializations of P_{2} over an open covering $\mathcal{U}^{2}=\left\{U_{\beta}^{2} \mid \beta \in J\right\}$ of Y_{2} such that there is exactly one open set $U_{\beta_{0}}^{2} \in \mathcal{U}^{2}$ that contains q_{1}. The trivialization of P_{1} on $U_{\alpha_{0}}^{1}$ induces a trivialization of $j_{1}^{*} P_{1}$ on q_{1}, and the trivialization of P_{2} on $U_{\beta_{0}}^{2}$ induces a trivialization of $j_{1}^{*} P_{2}$ on q_{1}. In these trivializations, the morphism A_{1} is the multiplication on the left with an element of G. We can choose a trivialization of P_{2} on $U_{\beta_{0}}^{2}$ such that the morphism A_{1}, in the given trivialization at q_{1}, is the identity. We denote the cocycle of P_{2} with respect to \mathcal{U}^{2} by $g_{\beta, \beta^{\prime}}^{2}$. Let $U=U_{\alpha_{0}}^{1} \cup U_{\beta_{0}}^{2}$. We construct a G-bundle $T\left(P_{1}, A_{1}, P_{2}\right)$ on Y from trivial G-bundles over $U_{\alpha}^{1}\left(\alpha \neq \alpha_{0}\right), U_{\beta}^{2}$ ($\beta \neq \beta_{0}$), and U by gluing according to the cocycles $g_{\alpha, \alpha^{\prime}}^{1}$ and $g_{\beta, \beta^{\prime}}^{2}$. A choice of other trivializations will, as before, define an isomorphic G-bundle on Y. We can extend this construction on morphisms. Thus we have a functor T from \mathcal{C}_{2} to the category of principal G-bundles on Y. If $Q=T\left(P_{1}, A_{1}, P_{2}\right)$ then there are natural isomorphisms $h_{1}: P_{1} \rightarrow l_{1}^{*} Q$ and $h_{2}: P_{2} \rightarrow l_{2}^{*} Q$. If $C: j_{1}^{*} l_{1}^{*} Q \rightarrow j_{1}^{\prime *} l_{2}^{*} Q$ is the canonical isomorphism, we have $C \circ j_{1}^{*} h_{1}=A_{1} \circ j_{1}^{\prime *} h_{2}$. These observations show that T is an inverse, in both orders, of S.

The next theorem shows that the classification of principal G-bundles over a chain of rational curves is similar to the classification of principal bundles over a smooth rational curve. See also Theorem 2.11 for a description of the classification data.

Theorem 2.2. Let G be a complex connected reductive group. The structure of a principal G-bundle over a chain of rational curves can be reduced to a maximal torus.

Corollary 2.3. A vector bundle over a chain of rational curves is a direct sum of line bundles.

We now fix some notation and we recall some results about connected reductive complex algebraic groups. Let G be a complex reductive algebraic group, and let T be a maximal torus. Let W be the Weyl group of G. Let $T \subset B$ be a Borel subgroup, and let $X_{*}(T)$ be the abelian group of homomorphisms from \mathbb{C}^{\times}to T.

If $r=\operatorname{rank}(G)$ is the rank of G, then $T \cong\left(\mathbb{C}^{\times}\right)^{r}$ and we have a group isomorphism $X_{*}(T) \cong \mathbb{Z}^{r}$ that associates to $\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{Z}^{r}$ the homomorphism $z \rightarrow$ ($z^{a_{1}}, \ldots, z^{a_{r}}$) from \mathbb{C}^{\times}to T. (Note: $X_{*}(T)$ is the standard notation in the literature, and there is no connection with the base curve X.) Let $\lambda \in X_{*}(T)$ be a dominant element; that is, let $(\lambda, \alpha) \geq 0$ for all positive roots α of G, where positivity is defined with respect to a fixed Borel subgroup. Let $P(\lambda)$ be the parabolic associated to λ generated by T and by the root groups U_{α} with $(\lambda, \alpha) \geq 0$. (Here we are using the standard notation $P(\lambda)$ from the literature for the parabolic subgroups; the parabolic subgroup $P(\lambda)$ should not be confused with the principal G-bundle P_{λ} defined in the previous part.) The centralizer in G of the subgroup im $\left(\mathbb{C}^{\times} \xrightarrow{\lambda} T\right)$ of T is denoted by $Z(\lambda)$. The centralizer $Z(\lambda)$ is a connected reductive group generated by T and the root groups U_{α} for which α satisfies ($\left.\lambda, \alpha\right)=0$. The unipotent radical of $Z(\lambda)$ is denoted $U(\lambda)$. The group $U(\lambda)$ is generated by the root groups U_{α} with $(\lambda, \alpha)>0$. We have $P(\lambda)=Z(\lambda) U(\lambda)$. If \mathfrak{u}_{α} is the Lie algebra of the root group U_{α} and if \mathfrak{t} is the Lie algebra of T, then $\mathfrak{z}(\lambda)=\mathfrak{t} \oplus \sum_{(\lambda, \alpha)=0} \mathfrak{u}_{\alpha}$ and $\mathfrak{u}(\lambda)=\sum_{(\lambda, \alpha)>0} \mathfrak{u}_{\alpha}$.

We recall the Bruhat decomposition.
Theorem 2.4. There is a bijective correspondence between the set $B \backslash G / B$ and the elements of the Weyl group W. More precisely, for any $g \in G$, there are elements $b_{1}, b_{2} \in B$ and $n \in N(T)$ such that $g=b_{2} n b_{1}^{-1}$. The element n is unique up to the multiplication by an element of T. That is, if $n, n^{\prime} \in N(T)$ and $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime} \in B$ are such that $b_{2} n b_{1}^{-1}=b_{2}^{\prime} n^{\prime} b_{1}^{\prime-1}$, then there is an element $t \in T$ such that $n^{\prime}=n t$.

The next result is an immediate corollary of the Bruhat decomposition.
Corollary 2.5. If $n \in N(T)$, let $B^{\prime}=n B n^{-1}$. There is a bijective correspondence between the set $B \backslash G / B^{\prime}$ and the elements of the Weyl group W. More precisely, for any $g \in G$, there are elements $b_{1} \in B^{\prime}, b_{2} \in B$, and $n \in N(T)$ such that $n=b_{2} g b_{1}^{-1}$. The element n is unique up to the multiplication by an element of T. That is, if $n, \tilde{n} \in N(T), b_{1}, \tilde{b}_{1} \in B^{\prime}$, and $b_{2}, \tilde{b}_{2} \in B$ are such that $n=b_{2} g b_{1}^{-1}$ and $\tilde{n}=\tilde{b}_{2} g \tilde{b}_{1}^{-1}$, then there is an element $t \in T$ such that $\tilde{n}=n t$.

We will need the next propositions in the proof of Theorem 2.2.
Proposition 2.6. Let G be a connected reductive algebraic group, $T \subset G a$ maximal torus, and B a Borel subgroup of G containing T. Let $\lambda \in X_{*}(T)$ be dominant and let $n \in N(T)$. Then there is an element $m \in N(T)$ such that

$$
m B m^{-1} \subset\left(Z(\lambda) \cap n B n^{-1}\right) U(\lambda)
$$

Proof. We first claim that $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}$ is a Borel subgroup of $Z(\lambda)$, where $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}$ is the connected component of the identity of $Z(\lambda) \cap n B n^{-1}$. The group $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}$ is a connected closed solvable subgroup of $Z(\lambda)$. It is also maximal with these properties because its Lie algebra is

$$
\mathfrak{t} \sum_{\alpha>0, w \alpha>0,(\lambda, \alpha)=0} \mathfrak{u}_{\alpha} \bigoplus \sum_{\alpha<0, w \alpha>0,(\lambda, \alpha)=0} \mathfrak{u}_{\alpha}
$$

where $w \in W=N(T) / T$ is the element defined by $n \in N(T)$. Using the previous claim, $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}$ and $(Z(\lambda) \cap B)^{0}$ are two Borel subgroups in the reductive group $Z(\lambda)$. Since any two Borel subgroups in a connected reductive group are conjugated, there is an element $m \in Z(\lambda)$ such that $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}=$ $m(Z(\lambda) \cap B)^{0} m^{-1}$. Because the two Borel subgroups $\left(Z(\lambda) \cap n B n^{-1}\right)^{0}$ and $(Z(\lambda) \cap B)^{0}$ contain T, the element m must normalize T, that is, $m \in N(T)$. Since $m \in Z(\lambda)$ normalizes $U(\lambda)$ and since $(Z(\lambda) \cap B)^{0} U(\lambda)=B$, we obtain the result of the proposition.

Proposition 2.7. Let $v \in X_{*}(T)$ be another dominant cocharacter. Then there is an element $m \in N(T)$ such that

$$
m B m^{-1} \subset\left(Z(\lambda) \cap n P(v) n^{-1}\right) U(\lambda)
$$

Proof. Since $B \subset P(\nu)$, the result follows from Proposition 2.6.
Proposition 2.8. Let $\lambda_{1}, \ldots, \lambda_{i} \in X_{*}(T)$ be dominant and let $n_{1}, \ldots, n_{i-1} \in$ $N(T)$. Define $A_{1}=P\left(\lambda_{1}\right)$ and $A_{j+1}=\left(Z\left(\lambda_{j+1}\right) \cap n_{j} A_{j} n_{j}^{-1}\right) U\left(\lambda_{j+1}\right)$ for $1 \leq j \leq$ $i-1$. Then there is an element $m \in N(T)$ such that $m B m^{-1} \subset A_{i}$.

Proof. This follows from Proposition 2.7 by induction on i.
Corollary 2.9. Let $\lambda_{1}, \ldots, \lambda_{i} \in X_{*}(T)$ be dominant. Let $n_{1}, \ldots, n_{i-1} \in N(T)$ and let m be as in Proposition 2.8. Let $a \in m B m^{-1}$. Then there exist $a_{j} \in Z\left(\lambda_{j}\right)$ and $c_{j} \in U\left(\lambda_{j}\right)$ for $1 \leq j \leq i$ such that $\left(a_{j+1}\right) n_{j}\left(a_{j} c_{j}\right)^{-1}=n_{j}(1 \leq j \leq i-1)$ and $a=a_{i} c_{i}$.

We are now ready for the proof of the Theorem 2.2.
Proof of Theorem 2.2. Let P be a principal G-bundle over X. Using Proposition 2.1, P is constructed from principal G-bundles over the components of X by gluing the fibers over the common points q_{i}. Let P_{i} be the pull-back of P to X_{i}. Applying Observation 1.2(2) to the bundle P_{i} over X_{i} and to the points $q_{i-1}, q_{i} \in X_{i}$, we obtain a dominant cocharacter $\lambda_{i} \in X_{*}(T)$ such that $P_{i}=P_{\lambda_{i}}$. We can view $P_{i}=P_{\lambda_{i}}$ as the principal G-bundle obtained from the trivial bundles $\pi: X_{i}-\left\{q_{i-1}\right\} \times G \rightarrow$ $X_{i}-\left\{q_{i-1}\right\}$ and $\pi^{\prime}: X_{i}-\left\{q_{i}\right\} \times G \rightarrow X_{i}-\left\{q_{i}\right\}$ by gluing $\pi^{-1}\left(X_{i}-\left\{q_{i-1}, q_{i}\right\}\right) \rightarrow$ $\pi^{\prime-1}\left(X_{i}-\left\{q_{i-1}, q_{i}\right\}\right)$ via the formula $(x, g) \rightarrow\left(x, \lambda_{i}(x) g\right)$, where we consider λ_{i} as a morphism $\lambda_{i}: X_{i}-\left\{q_{i-1}, q_{i}\right\}=\mathbb{C}^{*} \rightarrow T$. Using Proposition 2.1, the principal G-bundle corresponds to the object $\left(P_{\lambda_{1}}, A_{1}, P_{\lambda_{2}}, \ldots, A_{k-1}, P_{\lambda_{k}}\right)$ of \mathcal{C}_{k}. Using the trivialization of $P_{\lambda_{i}}$ over $X_{i}-\left\{q_{i-1}\right\}$ and the trivialization of $P_{\lambda_{i+1}}$ over $X_{i+1}-\left\{q_{i+1}\right\}, A_{i}$ can be considered as an element g_{i} of G. We fix these trivializations of P_{i} over $X_{i}-\left\{q_{i-1}\right\}$ and $X_{i+1}-\left\{q_{i+1}\right\}$ because we will refer to them in the proof. In this way, the gluing data is equivalent to a tuple $\left(g_{1}, \ldots, g_{k-1}\right) \in G^{k-1}$.

Lemma 1. We claim that, by using automorphisms of P, we can replace the tuple $\left(g_{1}, \ldots, g_{k-1}\right) \in G^{k-1}$ with a tuple $\left(n_{1}, \ldots, n_{k-1}\right) \in N(T)^{k-1}$ of elements of $N(T)$, the normalizer of T in G.

Let's see first how an automorphism of P will affect the gluing data. If $\phi_{i} \in$ $\operatorname{Aut}\left(P_{i}\right), 1 \leq i \leq k$, are automorphisms of P_{i}, then the tuple $\left(\phi_{1}, \ldots, \phi_{k}\right)$ is an automorphism of the object $\left(P_{\lambda_{1}}, A_{1}, P_{\lambda_{2}}, \ldots, A_{k-1}, P_{\lambda_{k}}\right)$ of \mathcal{C}_{k}, which by Proposition 2.1 corresponds to an automorphism of P. The automorphism $\left(\phi_{1}, \ldots, \phi_{k}\right)$ affects the gluing data $\left(A_{1}, \ldots, A_{k-1}\right)$ by replacing it with

$$
\begin{aligned}
\left(\phi_{2}\left(q_{1}\right) \circ A_{1} \circ \phi_{1}\left(q_{1}\right)^{-1}, \phi_{3}\left(q_{2}\right) \circ\right. & A_{2} \circ \phi_{2}\left(q_{2}\right)^{-1} \\
& \left.\ldots, \phi_{k}\left(q_{k-1}\right) \circ A_{k-1} \circ \phi_{k-1}\left(q_{k-1}\right)^{-1}\right),
\end{aligned}
$$

where $\phi_{i}(q)$ denotes the automorphism of the pull-back of P_{i} over q induced by the automorphism ϕ_{i} of P_{i}. By identifying the gluing data (A_{1}, \ldots, A_{k-1}) with a tuple $\left(g_{1}, \ldots, g_{k-1}\right) \in G^{k-1}$ and by using the fixed trivializations of P_{i} over $X_{i}-\left\{q_{i-1}\right\}$ and $X_{i+1}-\left\{q_{i+1}\right\}$, we can use the automorphism $\left(\phi_{1}, \ldots, \phi_{k}\right)$ to replace the tuple $\left(g_{1}, \ldots, g_{k-1}\right)$ with the tuple

$$
\left(\phi_{2, q_{1}} \cdot g_{1} \cdot \phi_{1, q_{1}}^{-1}, \phi_{3, q_{2}} \cdot g_{2} \cdot \phi_{2, q_{2}}^{-1}, \ldots, \phi_{k, q_{k-1}} \cdot g_{k-1} \cdot \phi_{k-1, q_{k-1}}^{-1}\right),
$$

where $\phi_{i, q_{i}}, \phi_{i+1, q_{i}} \in G$ represents the automorphisms $\phi_{i}\left(q_{i}\right)$ and $\phi_{i+1}\left(q_{i}\right)$ in the fixed trivializations of P_{i} and P_{i+1} over $X_{i}-\left\{q_{i-1}\right\}$ and $X_{i+1}-\left\{q_{i+1}\right\}$, respectively. Lemma 1 states that, by using automorphisms of type $\left(\phi_{1}, \ldots, \phi_{k}\right)$, we can replace the tuple $\left(g_{1}, \ldots, g_{k-1}\right) \in G^{k-1}$ with a tuple $\left(n_{1}, \ldots, n_{k-1}\right) \in N(T)^{k-1}$ of elements of $N(T)$. We prove Lemma 1 by induction. In the initial step (Lemma 2), we show that we can replace the tuple $\left(g_{1}, \ldots, g_{k-1}\right)$ with an equivalent tuple in which the first component is an element of $N(T)$. The inductive step is presented in Lemma 3. We prove there that, if $\left(g_{1}, \ldots, g_{i}, g_{i+1}, \ldots, g_{k-1}\right)$ is a tuple such that $g_{j} \in N(T)$ for $1 \leq j \leq i$, then by using an automorphism $\left(\phi_{1}, \ldots, \phi_{k}\right)$ we can replace the tuple $\left(g_{1}, \ldots, g_{k}\right)$ with a tuple $\left(g_{1}, \ldots, g_{i}, g_{i+1}^{\prime}, \ldots, g_{n-1}^{\prime}\right)$, where $g_{i+1}^{\prime} \in$ $N(T)$. This will finish the proof of Lemma 1.

Lemma 2. We can replace the tuple $\left(g_{1}, \ldots, g_{k-1}\right)$ with an equivalent tuple in which the first component is an element of $N(T)$.

This follows from the Bruhat decomposition (Theorem 2.4) as follows. There exist $b_{1}, b_{2} \in B$ and $n \in N(T)$ such that $b_{2} n b_{1}^{-1}=g_{1}$. Let $\phi_{1} \in \operatorname{Aut}\left(P_{\lambda_{1}}\right)$ as in Corollary $1.4(2)$ be such that, in the trivialization of $P_{\lambda_{1}}$ around q_{1}, we have $\phi_{1, q_{1}}=$ b_{1}. Let $\phi_{2} \in \operatorname{Aut}\left(P_{\lambda_{2}}\right)$ as in Corollary 1.4(2) be such that, in the trivialization of $P_{\lambda_{2}}$ around q_{2}, we have $\phi_{2, q_{1}}=b_{2}$. Let $\operatorname{Id}_{i} \in \operatorname{Aut}\left(P_{\lambda_{i}}\right)$ denote the identity automorphism of $P_{\lambda_{i}}$. Then the automorphism $\left(\phi_{1}, \phi_{2}, \mathrm{Id}_{3}, \ldots, \mathrm{Id}_{k}\right)$ replaces the tuple $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with the tuple $\left(n, g_{2}^{\prime}, \ldots, g_{k-1}^{\prime}\right)$. This ends the proof of Lemma 2 and also the first step of the induction.

Lemma 3. If $\left(g_{1}, \ldots, g_{i}, g_{i+1}, \ldots, g_{k-1}\right)$ is a tuple such that $g_{j} \in N(T)$ for $1 \leq$ $j \leq i$, then using an automorphism $\left(\phi_{1}, \ldots, \phi_{k}\right)$ allows us to replace the tuple $\left(g_{1}, \ldots, g_{k}\right)$ with a tuple $\left(g_{1}, \ldots, g_{i}, g_{i+1}^{\prime}, \ldots, g_{k-1}^{\prime}\right)$, where $g_{i+1}^{\prime} \in N(T)$.

We apply Proposition 2.8 to $\lambda_{1}, \ldots, \lambda_{i} \in X_{*}(T)$ and $n_{1}, \ldots, n_{i-1} \in N(T)$. Let $m \in$ $N(T)$ be as in that proposition. Using Corollary 2.5 for $m \in N(T)$ and $g_{i+1} \in G$, we can find elements $b_{1} \in m B m^{-1}$ and $b_{2} \in B$ such that $b_{2} g_{i+1} b_{1}^{-1}=n \in N(T)$. Applying Corollary 2.9 to $b_{1} \in m B m^{-1}$, there exist $a_{j} \in Z\left(\lambda_{j}\right)$ and $c_{j} \in U\left(\lambda_{j}\right)$
for $1 \leq j \leq i$ such that $\left(a_{j+1}\right) n_{j}\left(a_{j} c_{j}\right)^{-1}=n_{j}(1 \leq j \leq i-1)$ and $b_{1}=a_{i} c_{i}$. Let $\phi_{1} \in \operatorname{Aut}\left(P_{\lambda_{1}}\right)$ as in Corollary 1.4(2) be such that, in the trivialization of $P_{\lambda_{1}}$ around q_{1}, we have $\phi_{1, q_{1}}=a_{1} c_{1}$. Let $\phi_{j} \in \operatorname{Aut}\left(P_{\lambda_{j}}\right)(2 \leq j \leq i)$ as in Corollary $1.4(1)$ be such that we have $\phi_{j, q_{j-1}}=a_{j}$ in the trivialization of $P_{\lambda_{j}}$ around q_{j-1} and $\phi_{j, q_{j}}=a_{j} c_{j}$ in the trivialization of $P_{\lambda_{j}}$ around q_{j}. Let $\phi_{i+1} \in \operatorname{Aut}\left(P_{\lambda_{i+1}}\right)$ as in Corollary $1.4(2)$ be such that, in the trivialization of $P_{\lambda_{i+1}}$ around q_{i}, we have $\phi_{i+1, q_{i}}=b_{2}$. The automorphism $\left(\phi_{1}, \ldots, \phi_{i}, \phi_{i+1}, \operatorname{Id}_{i+2}, \ldots, \operatorname{Id}_{k}\right)$ replaces the tuple $\left(g_{1}, \ldots, g_{k}\right)$ with $\left(g_{1}, \ldots, g_{i}, n, g_{i+2}^{\prime}, \ldots, g_{k-1}^{\prime}\right)$. This ends the proof of Lemma 3 and hence of Lemma 1.

We have thus proved that P is isomorphic to a principal G-bundle P^{\prime} on X obtained by gluing the fibers over q_{i} of the principal G-bundles $P_{\lambda_{i}}$ with gluing data, which in some fixed trivializations is a tuple $\left(n_{1}, \ldots, n_{k-1}\right)$ of elements of $N(T)$. To finish the proof of the Theorem 2.2, it suffices to prove that the structure group of the P^{\prime} can be reduced to T. Let $l_{i+1}=n_{i} n_{i-1} \cdots n_{1} \in N(T)$ for $1 \leq i \leq k-1$ and let $l_{1}=e \in N(T)$, where e denotes the identity element of G. Let $\overline{\lambda_{i}^{\prime}}=l_{i}^{-1} \lambda_{i} l_{i}$ for $1 \leq i \leq k$. Let $\phi_{i}=\phi_{l_{i}^{-1}}: P_{\lambda_{i}} \rightarrow P_{\lambda_{i}^{\prime}}(1 \leq i \leq k)$ be the isomorphism defined in Observation 1.5. Then $\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right)$ is an isomorphism in \mathcal{C}_{k} between the principal G-bundle P^{\prime} given by ($P_{\lambda_{1}}, n_{1}, P_{\lambda_{2}}, \ldots, n_{k-1}, P_{\lambda_{k}}$) and another principal G-bundle $P^{\prime \prime}$ given by $\left(P_{\lambda_{1}^{\prime}}, e, P_{\lambda_{2}^{\prime}}, \ldots, e, P_{\lambda_{k}^{\prime}}\right)$. The structure group of $P^{\prime \prime}$ can be reduced to T because the principal G-bundle $P^{\prime \prime}$ is obtained from the principal T-bundle $\left(T_{\lambda_{1}^{\prime}}, e, T_{\lambda_{2}^{\prime}}, \ldots, e, T_{\lambda_{k}^{\prime}}\right)$ by extending the group structure via the group inclusion $T \rightarrow G$. This ends the proof of the Theorem 2.2.

Observation 2.10. The proof can be briefly explained like this. A reduction of the group structure G of the principal bundle P to the subgroup $T \subset G$ is equivalent to a section of the fiber bundle P / T. The proof constructs such a section over X from sections over the components X_{i}. (Sections over the components exist by Theorem 1.1.)

The data for classification of principal G-bundles over X is a tuple $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in$ $X_{*}(T)^{k}$. For any such tuple, we define a principal G-bundle $Q\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ on X as follows. Applying Observation 1.2(3) to $\lambda_{i} \in X_{*}(T)$ and to the points $q_{i-1}, q_{i} \in$ X_{i}, we obtain a principal G-bundle $P_{\lambda_{i}}$ on X_{i}. As in the proof of Theorem 2.2, using the trivialization of $P_{\lambda_{i}}$ on $X_{i}-\left\{q_{i-1}\right\}$ and $X_{i}-\left\{q_{i}\right\}$ enables us to identify the gluing data with a $(k-1)$-tuple of elements of G. We consider the gluing data $\left(A_{1}, \ldots, A_{k-1}\right)$ that correspond to the tuple $(e, \ldots, e) \in G^{k-1}$, where e is the identity element of G. Using Proposition 2.1, we define $Q\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ as the principal G-bundle on X that corresponds to ($P_{\lambda_{1}}, A_{1}, \ldots, A_{k-1}, P_{\lambda_{k}}$). The next theorem, which follows from the proof of Theorem 2.2, gives the classification of principal G-bundles on X.

Theorem 2.11.

(1) Any principal G-bundle on X is isomorphic with $Q\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ for some tuple $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in X_{*}(T)^{k}$.
(2) If $\lambda_{i}^{\prime}=w \cdot \lambda_{i}$ for some $w \in W$, then $Q\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $Q\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ are isomorphic.

The converse of the second part of Theorem 2.11 is equivalent to the following conjecture.

Conjecture 2.12. Let G be a complex reductive algebraic group. Let λ_{1}, \ldots, $\lambda_{k} \in X_{*}(T)$. Let $n_{i}^{\prime}, n_{i} \in N(T)$ for $1 \leq i \leq k-1$. If $n_{i}^{\prime}=\left(a_{i+1} c_{i+1}\right) n_{i}\left(a_{i} b_{i}\right)^{-1}$ $(1 \leq i \leq k-1)$ for some $a_{i} \in Z\left(\lambda_{i}\right)$ and $b_{i}, c_{i} \in U\left(\lambda_{i}\right)$, then for all $1 \leq i \leq k-1$ there exist $m_{i} \in N(T) \cap Z\left(\lambda_{i}\right)$ such that $n_{i}^{\prime}=m_{i+1} n_{i} m_{i}^{-1}$.

Part III

In this part, X is an irreducible singular nodal rational curve with exactly one singular point $q \in X$. Let $\pi: \mathbb{P}^{1} \rightarrow X$ be the normalization of X and let $q_{0}, q_{1} \in$ \mathbb{P}^{1} be the preimages of $q \in X$ under the morphism π. We study Zariski locally trivial principal G-bundles over X. The next proposition says that any principal G-bundle Q on X is obtained from a principal G-bundle P on \mathbb{P}^{1} by gluing the fibers over the points q_{0} and q_{1}.

Proposition 3.1. Let $Z=\operatorname{Spec}(\mathbb{C})$. Let $j_{0}: Z \rightarrow \mathbb{P}^{1}$ be the morphism that factorizes through the point q_{0}, and let $j_{1}: Z \rightarrow \mathbb{P}^{1}$ be the morphism that factorizes through the point q_{1}. Let \mathcal{D} be the category of pairs (P, A), where P is a principal G-bundle over \mathbb{P}^{1} and $A: j_{0}^{*} P \rightarrow j_{1}^{*} P$ is a morphism of G-bundles on Z. A morphism in \mathcal{D} from (P, A) to $\left(P^{\prime}, A^{\prime}\right)$ is given by a morphism $\phi: P \rightarrow P^{\prime}$ of principal G-bundles over \mathbb{P}^{1} such that $A^{\prime} \circ j_{0}^{*} \phi=j_{1}^{*} \phi \circ A$. There is an equivalence of category of principal G-bundles on X and the category of pairs \mathcal{D}. Under this equivalence, the principal G-bundle Q over X corresponds to a pair (P, A), where the bundle P over \mathbb{P}^{1} is the pull-back of Q.

Proof. Let Q be a principal G-bundle over X. Let $P=\pi^{*} Q$ be the pull-back G bundle on \mathbb{P}^{1}. Since $\pi \circ j_{0}=\pi \circ j_{1}$, there is a canonical isomorphism $A: j_{0}^{*} P \rightarrow$ $j_{1}^{*} P$ of principal G-bundles over q_{1}. We define a functor S from the category of principal G-bundles on X to the category \mathcal{D}, which on objects associates to a principal G-bundle Q the pair (P, A). We prove that S defines an equivalence of categories by constructing an inverse functor T from the category \mathcal{D} to the category of principal G-bundles on X. If (P, A) is an object of \mathcal{D}, we construct a principal G-bundle $T(P, A)$ on X as in [2].

Let $p \in X$ be a point different from the singular point $q \in X$. Let $U=X-\{p\}$ and $\tilde{U}=\mathbb{P}^{1}-\pi^{-1}(p)$ and let $\pi: \tilde{U} \rightarrow U$ be the restriction of the normalization morphism π. We may assume $\tilde{U} \cong \operatorname{Spec}(\tilde{R})$, where $\tilde{R}=\mathbb{C}[t]$. Then $U=\operatorname{Spec}(R)$, where $R=\left\{f \in \tilde{R} \mid f\left(q_{0}\right)=f\left(q_{1}\right)\right\}$. Since any principal G-bundle over \mathbb{C} is trivial, we have a trivialization $\left.P\right|_{\tilde{U}} \cong \tilde{U} \times G$ of P over \tilde{U}. Using this trivialization, the isomorphism A is equivalent to an automorphism of G, the mapping $\phi: G \rightarrow$ G given by multiplication on the left with an element of G. If $G=\operatorname{Spec}(S)$, then $\phi: G \rightarrow G$ corresponds to a \mathbb{C}-algebra isomorphism $\phi^{*}: S \rightarrow S$. Let B be the finitely generated R-algebra given by $B=\left\{s \in S \otimes_{\mathbb{C}} \tilde{R}=S[t] \mid s(x)=\right.$ $\left.\phi^{*}(s(y))\right\} \subset S[t]$. We consider $h: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(R)$, which will be the restriction of $T(P, A)$ on $X-\{p\}$. There is a natural right action of $G=\operatorname{Spec}(S)$
on $\operatorname{Spec}(B)$ induced from the right action of G on $\operatorname{Spec}(S[t])$. The morphism $h: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(R)$ is G-invariant and Zariski locally trivial. Local triviality follows after a pull-back under the étale morphism $\operatorname{Spec} R_{1} \rightarrow \operatorname{Spec} R$, where $R_{1}=\{(f, g) \in \mathbb{C}[t] \oplus \mathbb{C}[t] \mid f(x)=g(y)\}$. Note that $B \otimes_{R} R_{1} \cong B_{1}$, where $B_{1}=$ $\{(r, s) \in S[t] \oplus S[t] \mid r(x)=s(y)\}$. Since $\operatorname{Spec}\left(B_{1}\right) \rightarrow \operatorname{Spec}\left(R_{1}\right)$ is Zariski locally trivial, by faithful flatness we obtain that $h: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(R)$ is Zariski locally trivial.

This construction depends on the trivialization of P over \tilde{U}. For another trivialization, the isomorphism A defines an automorphism $\phi^{\prime}: G \rightarrow G$ and hence another R-algebra B^{\prime} and a morphism $h^{\prime}: \operatorname{Spec}\left(B^{\prime}\right) \rightarrow \operatorname{Spec}(R)$. We can prove that there is a R-algebra isomorphism $B \rightarrow B^{\prime}$ compatible with the actions of G on $\operatorname{Spec}(B)$ and $\operatorname{Spec}\left(B^{\prime}\right)$. Thus we have a G-equivariant isomorphism $f: \operatorname{Spec}\left(B^{\prime}\right){ }_{\tilde{R}} \rightarrow \operatorname{Spec}(B)$ such that $h \circ f=h^{\prime}$. There is a canonical morphism $B \otimes_{R} \tilde{R} \rightarrow \tilde{R} \otimes_{\mathbb{C}} S$, which is an isomorphism that is compatible with the actions of G. That the morphism is an isomorphism can be seen by tensoring with the faithfully flat morphism $R \rightarrow R_{1}$. This means that the base change of $h: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(R)$ using the base morphism $\pi: \operatorname{Spec}(\tilde{R}) \rightarrow \operatorname{Spec}(R)$ is the projection $\operatorname{Spec}(\tilde{R}) \times G \rightarrow \operatorname{Spec}(\tilde{R})$.

Let $p_{1} \in X$ be another point of X different from $p_{\tilde{U}}$ and q. As before, let $U_{1}=X-\left\{p_{1}\right\}$ and $\tilde{U}_{1}=\mathbb{P}^{1}-\pi^{-1}\left(p_{1}\right)$ and let $\pi: \tilde{U}_{1} \rightarrow U_{1}$ be the restriction of π. If $\tilde{U}_{1}=\operatorname{Spec}\left(\tilde{R}_{1}\right)$ where $\tilde{R}_{1}=\mathbb{C}\left[t_{1}\right]$, then $U_{1}=\operatorname{Spec}\left(R_{1}\right)$ where $R_{1}=\left\{f \in \tilde{R}_{1} \mid f(x)=f(y)\right\}$. We choose a trivialization of P over \tilde{U}_{1} and let $\phi_{1}: G \rightarrow G$ be the morphism corresponding to A. As before, we construct $h_{1}: \operatorname{Spec}\left(B_{1}\right) \rightarrow \operatorname{Spec}\left(R_{1}\right)$, where B_{1} is a R_{1}-algebra defined by $B_{1}=\{s \in$ $\left.S \otimes_{\mathbb{C}} \tilde{R}_{1}=S\left[t_{1}\right] \mid s(x)=\phi_{1}^{*}(s(y))\right\} \subset S\left[t_{1}\right]$. We think of $h_{1}: \operatorname{Spec}\left(B_{1}\right) \rightarrow$ $\operatorname{Spec}\left(R_{1}\right)$ as the restriction of $T(P, A)$ on $X-\left\{p_{1}\right\}$.

We now glue together h and h_{1} into a principal G-bundle on X. The gluing is done over $X-\left\{p, p_{1}\right\}=\operatorname{Spec}(W)$, where $W=\left\{f \in \tilde{W}=\mathcal{O}_{\mathbb{P}^{1}}\left(\mathbb{P}^{1}-\left\{z, z_{1}\right\}\right) \mid f\left(q_{0}\right)=\right.$ $\left.f\left(q_{1}\right)\right\}$ and $z, z_{1} \in \mathbb{P}^{1}$ are the points over p and p_{1}, respectively. Note that the restriction of the normalization morphism is $\pi: \operatorname{Spec}(\tilde{W}) \rightarrow \operatorname{Spec}(W)$. The restriction of $h: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(R)$ to $\operatorname{Spec}(W)$ can be identified with $\bar{h}: \operatorname{Spec}(C) \rightarrow$ $\operatorname{Spec}(W)$, where $C=\left\{s \in \tilde{W} \otimes_{\mathbb{C}} S \mid s\left(q_{0}\right)=\phi^{*}\left(s\left(q_{1}\right)\right)\right\} \subset \tilde{W} \otimes_{\mathbb{C}} S$. This identification is induced from the natural W-algebra morphism $B \otimes_{R} W \rightarrow C$, which is an isomorphism. Similarly, the restriction of $h_{1}: \operatorname{Spec}\left(B_{1}\right) \rightarrow \operatorname{Spec}\left(R_{1}\right)$ to $\operatorname{Spec}(W)$ can be identified with $\bar{h}_{1}: \operatorname{Spec}\left(C_{1}\right) \rightarrow \operatorname{Spec}(W)$, where $C_{1}=\{s \in$ $\left.\tilde{W} \otimes_{\mathbb{C}} S \mid s\left(q_{0}\right)=\phi_{1}^{*}\left(s\left(q_{1}\right)\right)\right\}$. The cocycle of P with respect to the trivializations over \tilde{U} and \tilde{U}_{1} is a morphism $\lambda: \tilde{U} \cap \tilde{U}_{1}=\operatorname{Spec}(\tilde{W}) \rightarrow G$. The cocycle λ defines an automorphism $\tilde{\lambda}$ of $\tilde{W} \otimes_{\mathbb{C}} S$ corresponding to the action on the right with λ. Since $\phi_{1} \circ \lambda(x)=\lambda(y) \circ \phi$, the automorphism $\tilde{\lambda}$ factorizes through a W algebra isomorphism $\bar{\lambda}$ between C and C_{1}. We glue $\bar{h}: \operatorname{Spec}(C) \rightarrow \operatorname{Spec}(W)$ and $\bar{h}_{1}: \operatorname{Spec}\left(C_{1}\right) \rightarrow \operatorname{Spec}(W)$ by using the automorphism $\bar{\lambda}: \operatorname{Spec}(C) \rightarrow \operatorname{Spec}(C)$. The result is a Zariski locally trivial principal G-bundle on X, which we will denote by $T(P, A)$. This construction extends on morphisms. Thus we have a functor T from \mathcal{D} to the category of principal G-bundles on X. If $Q=T(P, A)$, then there is a natural isomorphism $h: P \rightarrow \pi^{*} Q$ such that the canonical isomorphism
$j_{0}^{*} Q \rightarrow j_{1}^{*} Q$ is identified with $A: j_{0}^{*} P \rightarrow j_{1}^{*} P$. These observations show that T is a two-sided inverse of S.

If $\lambda \in X_{*}(T)$ is dominant and $g \in G$, we define a principal G-bundle $P(\lambda, g)$ on X as follows. Consider the bundle P_{λ} over \mathbb{P}^{1} constructed in Observation 1.2(3), and recall that P_{λ} has trivializations over $\mathbb{P}^{1}-\left\{q_{0}\right\}$ and $\mathbb{P}^{1}-\left\{q_{1}\right\}$ such that the transition function over $\mathbb{P}^{1}-\left\{q_{0}, q_{1}\right\}$ is λ. We consider $A: j_{0}^{*} P_{\lambda} \rightarrow j_{1}^{*} P_{\lambda}$ as a morphism of G-bundles on Z, which in the given trivializations of P_{λ} is given by the left multiplication by $g \in G$. The pair $\left(P_{\lambda}, A\right)$ is an object of the category \mathcal{D}. Let $P(\lambda, g)$ be the principal G-bundle on X corresponding, as in Proposition 3.1, to the object $\left(P_{\lambda}, A\right)$.

Theorem 3.2. Any principal G-bundle on X is isomorphic with $P(\lambda, g)$ as defined previously, where $\lambda \in X_{*}(T)$ is dominant and $g \in G$. If $\lambda, \lambda^{\prime} \in X_{*}(T)$ are dominant and if $g, g^{\prime} \in G$, then the principal G-bundles $P(\lambda, g)$ and $P\left(\lambda^{\prime}, g^{\prime}\right)$ are isomorphic if and only if $\lambda^{\prime}=\lambda$ and $g^{\prime}=\left(a b^{\prime}\right)^{-1} g(a b)$, where $a \in Z(\lambda)$ and $b, b^{\prime} \in U(\lambda)$.

Proof. Let Q be a principal G-bundle on X. Using Proposition 3.1, we can think of the principal G-bundle Q as being obtained from a principal G-bundle P on \mathbb{P}^{1} by gluing the fibers over q_{0} and q_{1} using a morphism $A: j_{0}^{*} P \rightarrow j_{1}^{*} P$ of G-bundles on Z. From Observation 1.2(2), the bundle P has trivializations over $\mathbb{P}^{1}-\left\{q_{0}\right\}$ and $\mathbb{P}^{1}-\left\{q_{1}\right\}$ such that the transition function over $\mathbb{P}^{1}-\left\{q_{0}, q_{1}\right\}$ is a dominant element $\lambda \in X_{*}(T)$. In these trivializations of P, the morphism A is given by the left multiplication with an element $g \in G$. It follows from all this that the bundle Q is isomorphic with $P(\lambda, g)$ as defined previously. This ends the proof of the first part of the theorem.

As in the proof of Theorem 2.2, an automorphism $\phi \in \operatorname{Aut}(P)$ replaces the gluing data $g \in G$ with $\phi_{q_{1}} \cdot g \cdot \phi_{q_{0}}^{-1}$, where $\phi_{q_{i}} \in G$ represents the automorphism of the fiber $P\left(q_{i}\right)$ over q_{i} induced by ϕ in the corresponding trivializations of P. By Theorem 1.4, there exist $a \in Z(\lambda)$ and $b, b^{\prime} \in U(\lambda)$ such that $\phi_{q_{1}}=a b^{\prime}$ and $\phi_{q_{0}}=a b$. It follows that the automorphism ϕ replaces the gluing data g with $\left(a b^{\prime}\right) g(a b)^{-1}$. Since λ is uniquely determined from Q, we have proved the claim of the theorem.

Motivated by the preceding theorem, we define an equivalence relation \cong on G by $g \cong g^{\prime}$ if and only if $g^{\prime}=\left(a b^{\prime}\right) g(a b)^{-1}$ for some $a \in Z(\lambda)$ and $b, b^{\prime} \in U(\lambda)$. The data for the construction of principal G-bundles on X is a pair (λ, \hat{g}), where λ is a dominant element of $X_{*}(T)$ and \hat{g} is an equivalence class of the equivalence relation \cong on G. For a complete description of the principal G-bundles on X, one needs a description of all the equivalence classes of the relation \cong on G.

Part IV

In this part we study Zariski locally trivial principal G-bundles over a cycle of rational curves. A cycle of rational curves is a connected reduced complex curve
$X=X_{1} \cup \cdots \cup X_{k}$ with $k \geq 2$ irreducible components $X_{i}(1 \leq i \leq k)$, all of them smooth rational curves, such that (a) X_{i} intersects X_{i+1} in a nodal singular point q_{i} for all $1 \leq i \leq k-1$ and (b) X_{k} intersects X_{1} in a nodal singular point q_{k}. We identify X_{i} with X_{i+k} and q_{i} with q_{i+k}. The curve X is obtained from k copies X_{1}, \ldots, X_{k} of a smooth rational curve by gluing $X_{i}-\left\{q_{i-1}\right\}$ to $X_{i+1}-\left\{q_{i+1}\right\}$ at the point q_{i} for $1 \leq i \leq k$, as in Part II. The starting point of the study of principal bundles over X is Proposition 4.1, which states that any principal G-bundle over X is obtained from principal G-bundles P_{i} over X_{i} by gluing the fibers over the common points $q_{i}, 1 \leq i \leq k$. The proof is similar to the proof of the Proposition 2.1.

Proposition 4.1. Let $Y=Y_{1} \cup \cdots \cup Y_{k}$ be a reduced curve with $k \geq 2$ irreducible components Y_{i} such that (a) Y_{i} intersects Y_{i+1} in a point q_{i} for $1 \leq i \leq$ k and (b) the structure sheaf \mathcal{O}_{Y} is given by $\left(f_{1}, \ldots, f_{k}\right) \in \mathcal{O}_{Y_{1}} \oplus \cdots \oplus \mathcal{O}_{Y_{k}}$ with $f_{i}\left(q_{i}\right)=f_{i+1}\left(q_{i}\right)$ for $1 \leq i \leq k$. Here we identify Y_{i} with Y_{i+k} and q_{i} with q_{i+k}. Let j_{i} be the inclusion of q_{i} in Y_{i} and let j_{i}^{\prime} be the inclusion of q_{i} in Y_{i+1}. Let \mathcal{D}_{k} be the category of tuples $\left(P_{1}, A_{1}, P_{2}, A_{2}, \ldots, A_{k-1}, P_{k}, A_{k}\right)$, where P_{i} is a principal G-bundle over Y_{i} and $A_{i}: j_{i}^{*} P_{i} \rightarrow j_{i}^{\prime *} P_{i+1}$ is a morphism of G bundles over q_{i}. A morphism in \mathcal{D}_{k} between $\left(P_{1}, A_{1}, P_{2}, A_{2}, \ldots, A_{k-1}, P_{k}, A_{k}\right)$ and $\left(Q_{1}, B_{1}, Q_{2}, B_{2}, \ldots, B_{k-1}, Q_{k}, B_{k}\right)$ is given by a tuple $\left(\phi_{1}, \ldots, \phi_{k}\right)$, where $\phi_{i}: P_{i} \rightarrow Q_{i}$ is a G-morphism over $Y_{i}(1 \leq i \leq k)$ such that $B_{i} \circ j_{i}^{*} \phi_{i}=$ $j_{i}^{\prime *} \phi_{i+1} \circ A_{i}$. There is an equivalence of categories between the category of principal G-bundles on Y and the category \mathcal{D}_{k}. Under this correspondence, the bundles P_{1}, \ldots, P_{k} are the pull-backs of the bundle P.

The classification of the principal G-bundles over X is presented in Theorem 4.2. We describe first the parameters of the classification. The data for the construction of a principal G-bundle on X is a triple $\mathbf{d}=(\Lambda, N, \hat{g})$, where $\Lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a tuple of dominant elements of $X_{*}(T), N=\left(n_{1}, \ldots, n_{k-1}\right)$ is a tuple of elements of $N(T)$, and \hat{g} is an equivalence class of an equivalence relation \sim described momentarily. If $a \in Z\left(\lambda_{1}\right)$, define the sets $S_{i+1}(a)=$ $Z\left(\lambda_{i+1}\right) \cap n_{i} S_{i}(a) n_{i}^{-1} U\left(\lambda_{i+1}\right)(1 \leq i \leq k-1)$ and $S_{1}(a)=a U\left(\lambda_{1}\right)$. We define an equivalence relation on G by $g \sim(a b) g(\tilde{a} c)^{-1}$, where $b \in U\left(\lambda_{1}\right), c \in$ $U\left(\lambda_{k}\right), a \in Z\left(\lambda_{1}\right)$, and $\tilde{a} \in S_{k}(a)$; here \hat{g} is an equivalence class with respect to the equivalence relation \sim. If \mathbf{d} is as just described, let $P(\mathbf{d})$ be the principal G-bundle associated to ($P_{\lambda_{1}}, n_{1}, P_{\lambda_{2}}, \ldots, n_{k-1}, P_{\lambda_{k}}, g$), considered as an object in \mathcal{D}_{k}. Here $g \in G$ is a representative of the equivalence class \hat{g}. Any other representative will define an isomorphic principal G-bundle.

Theorem 4.2. Any principal G-bundle on X is isomorphic with $P(\mathbf{d})$, for some data \mathbf{d} as described previously.

Proof. The proof is similar to that for Theorem 2.2. We start with a principal G bundle on X. Using Proposition 4.1, we can think of the principal G-bundle P as being obtained from principal G-bundles over the components by gluing the fibers over $q_{i}, 1 \leq i \leq k$. Let P_{i} be the pull-back of P to the component $X_{i}, 1 \leq i \leq k$.

From Observation 1.2(2), the bundle P_{i} has trivializations over $X_{i}-\left\{q_{i-1}\right\}$ and over $X_{i}-\left\{q_{i}\right\}$ such that the transition function over $X_{i}-\left\{q_{i-1}, q_{i}\right\}=\mathbb{C}^{*}$ is λ_{i}, a dominant element of $X_{*}(T)$. We fix the two trivializations of $P_{\lambda_{i}}$. Using Proposition 4.1, the principal G-bundle P is obtained from the principal G-bundles $P_{\lambda_{i}}$ over X_{i} by gluing data $\left(A_{1}, \ldots, A_{k-1}, A_{k}\right)$, where $A_{i}: j_{i}^{*} P_{\lambda_{i}} \rightarrow j_{i}^{\prime *} P_{\lambda_{i+1}}$ is an isomorphism of principal G-bundles over q_{i}. Using the fixed trivializations of P_{i} and P_{i+1} over q_{i}, the morphism A_{i} corresponds to an element $g_{i} \in G$ and so the gluing data is the tuple $\left(g_{1}, \ldots, g_{k}\right)$. We consider automorphisms $\left(\phi_{1}, \ldots, \phi_{k}\right)$ of P, where $\phi_{i} \in \operatorname{Aut}\left(P_{\lambda_{i}}\right)$, and we consider how such an automorphism affects a gluing tuple $\left(g_{1}, \ldots, g_{k}\right)$. As in the proof of Theorem 2.2, we can construct automorphisms of P such that the tuple $\left(g_{1}, \ldots, g_{k}\right)$ is replaced with ($n_{1}, \ldots, n_{k-1}, g$), where $n_{1}, \ldots, n_{k-1} \in N(T)$ and $g \in G$. A similar argument shows that an automorphism of P replaces the tuple $\left(n_{1}, \ldots, n_{k-1}, g\right)$ with the tuple $\left(n_{1}, \ldots, n_{k-1}, g^{\prime}\right)$ if and only if $g^{\prime} \sim g$, where \sim is the equivalence relation previously defined. This completes the proof.

References

[1] Y. Drozd and G.-M. Greuel, On the classification of vector bundles on projective curves, preprint 〈http://www.mathematik.uni-kl.de/~wwwagag/E/Greuel〉.
[2] R. Friedman and J. Morgan, Holomorphic principal bundles over elliptic curves III: Singular curves and fibrations (to appear).
[3] A. Grothendieck, Sur la classification des fibres holomorphes sur la sphere de Riemann, Amer. J. Math. 79 (1957), 121-138.
[4] A. Ramanathan, Deformations of principal bundles on the projective line, Invent. Math. 71 (1983), 165-191.
[5] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49-80.

Department of Mathematics
Oklahoma State University
Stillwater, OK 74078

Current address

Department of Mathematics
University of Minnesota
Minneapolis, MN 55455
teodores@math.umn.edu

[^0]: Received February 15, 2001. Revision received September 14, 2001.

