Michigan Math. J. 50 (2002)

Principal Bundles over Chains
or Cycles of Rational Curves

TiTus TEODORESCU

The objects of study in this paper are Zariski locally trivial principal bundles over
chains or cycles of rational curves. A chain of rational curves is elfAesr a
connected reduced complex cut¥e= X;U- - -U X, with k > 2 irreducible com-
ponentsX; (1 < i < k), all of them smooth rational curves, such tiatintersects
X;+1in anodal singular poing; foralli =1, ..., k—1 Acycle of rational curves

is either an irreducible reduced rational nodal complex curve with exactly one sin-
gularity or a connected reduced complex cuk/e= X; U --- U X; with k > 2
irreducible componentX; (1 < i < k), all of them smooth rational curves, such
that (a) X; intersectsX;,; in a nodal singular poing; fori = 1,...,k — 1 and

(b) X, intersectsX; in a nodal singular poing,. We are interested in classify-

ing Zariski locally trivial principalG-bundles over chains and cycles wh@ris a
connected reductive complex algebraic group. The motivation is to generalize the
classification (see [1]) of vector bundles over a chain or a cycle of rational curves.
As shown there, one can hope to get a complete classification of all the vector bun-
dles over a connected nodal curve only when the curve is either a chain or a cycle
of rational curves. In the terminology of [1], the classification problem for vec-
tor bundles is of finite type for a chain of rational curves and of tame type for a
cycle of rational curves. For all the other nodal curves, the classification problem
is of wild type, meaning that the problem is at least as hard as the classification
of the representations of finitely generated complex algebras. We will see that the
problem for principal bundles seems to have the same trichotomy. For a chain,
the classification of principal bundles is determined by discrete parameters. In the
case of a cycle, the classification seems to depend on a finite-dimensional space
of parameters.

This paper is divided into four parts. Inthe first part, we take the case of a smooth
rational curveX. We recall (Theorem.1) theclassification (see [3]) of principal
G-bundles oveX, which says that the structure of any princigabundle can be
reduced to a maximal tordsof G. This result can be reformulated by saying that
any principalG-bundle can be obtained from the princifz-bundleC? — {0} —

P! by extending the structure group using a homomorphisn©* — 7. Let
X.(T) be the abelian group of homomorphisms fr@thto 7, and letP; be the
principal G-bundle overX obtained as before frome X, (7).

In the second part, we consider the case of a chain of rational curves. We prove

(Theorem 2.2) that the structure group of any princi@abundle on a chain of
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rational curves can be reducedfo The classification of all principal-bundles

is obtained in Theorem 2.11. The classification data is discrete and consists of a
k-tuple (A1, ..., Ax) of homomorphisms fronC* to T, representing the restric-
tions of the principal bundle® to the componentX;. The starting point of the
proof of these results is Proposition 2.1, which states that any principal bundle on
X is obtained from principal bundles on the components plus some gluing data at
each of the singular points of.

In the third part, we consider the case of an irreducible nodal singular élrve
with exactly one singularity € X. If A € X,(T) isdominantand i € G, then we
construct a principati-bundle onX from theG-bundleP; overP! by identifying
the fibers over two points @ using the isomorphism @ given by the left mul-
tiplication with g. Two pairs(iy, g1), (A2, g2) will define isomorphioG-bundles
overX ifand only if A, = A, andg, = (albz)_lgl(albl), wherea; € Z(A,) and
b1, by € U(M1). HereZ (1) C G denotes the centralizer of the dominant element
A € X.(T), andU()) denotes the unipotent radical of the parabd@li@.) associ-
ated toi. Thus the classification of principél-bundles onX is equivalent to the
classification of all equivalence classes of the equivalence relztion G given
by g1 = goifand only ifgo = (albz)flgl(albl) for somea, € Z(\1) andbq, b, €
U(ry).

In the fourth part, we consider the case of a cycle of rational curves with at least
two irreducible components. The classification data for prinaip&undles over
a cycle of rational curves consists ©f, ..., Ay € X,(T) dominant cocharacters
(which representthe restrictions of the principal bundle to the compoXentglu-
ing datang, ..., ny_1€ N(T) for the pointsy; (1 <i < k—1), and an equivalence
classg of some equivalence relation @h which represents the gluing datagat

| would like to thank Robert Friedman for his encouragement and helpful
comments.

Part |

In this part, we are interested in principal bundles a¥e& P, the complex pro-
jective space of dimension 1. The following theorem gives the classification of the
principal G-bundles oveX.

THeorEMs 1.1 [3]. Let G be a complex connected reductive algebraic group,
T C G amaximal torus, andV the Weyl group. We denote iy (T) the abelian
group of homomorphisms frof¥* to 7, called the group of cocharacters &t

(1) The structure group of any princip&l-bundle overX = P! can by reduced to
the maximal torug” c G. Moreover, HY(X, T(Ox))/W = HYXX, G(Ox)).

(2) Let P, be theG-bundle obtained from the principdl*-bundleC? — {0} —
P! extending the structure group using the homomorphiseX, (7). Any
principal G-bundle overX = P! is isomorphic withP, for somei € X, (T).
Two principalG-bundlesP;, P;, are isomorphic if and only if., 2’ belong to
the same orbit under the Weyl group, that is, iff there i® & W such that
A=w- M.



Principal Bundles over Chains or Cycles of Rational Curves 175

OBservaTIONS 1.2. (1) Because, under the action of the Weyl group, any orbit
in X,(T) contains a unique dominant element, any princ@@diundle ovefP?! is
isomorphic withP; for some (unique) dominant cocharactet X, (T').

(2) If g0, g1 are two different points ok, we considerX = Vy U V; the open
affine covering ofX with two copiegVp = X —{q1} andV; = X —{go}) of C. The
principal C*-bundleC? — {0} — P has trivializations ove¥, and V; such that
the cocycle with respect to these trivializations is a group isomorpkismV; =
C* — C*. It follows from Theoreml.1(2) that any principal bundle ovéf has
trivializations overVy andV; such that the cocycle with respect to these trivializa-
tions is a dominant group homomorphismVoNV; = C* - T C G. Such a
cocharactek € X, (T) is determined uniquely.

(3) If » € X..(T) then we can define th&-bundle P, in the following way. Let
o, g1 be two different points ok = P Let Vi = X — {go} andVp = X — {¢1}.
The two sets define an open affine coveringfofWe define a principat;-bundle
P; overX by gluing the trivializedz-bundlestg: VoxG — Vpandry: VixG —

V1 over Vo N V4. We define the gluing (Vo N V1) — ;% (Vo N V4) by the rule
(x,8) = (x,A(x)g), wherer: C*=VyNVy > T CG.

(4) In a similar way, we can define a princigglbundleT; over X by gluing
over Vo N Vq the trivializedT -bundlestg: Vo x T — Vpandny: Vi x T — Vi
We define the gluing as a morphisrg*(Vo N V1) — 77 (Vo N V1) defined by the
rule (x, 1) — (x, A(x)r). Clearly, the principatG-bundleP; is obtained from the
principal T-bundleT; by extending the group structure using the inclusion homo-
morphismT — G.

For future use we recall the following result about the automorphism group of a
principal G-bundle over the projective line. Lete X, (7) be dominant. We fix a
maximal torusl” and a Borel subgroup C B C G of the algebraic grouf. Let
N(T) be the normalizer of’ in G and letW = N(T)/T be the Weyl group o&.

Let P(A) be the parabolic associatedit@enerated by" and by the root groups

U, with (A, «) > 0. The centralize (1) of the subgroup of" determined by is

a connected reductive group aRdr) = Z(A)U()), whereU (1) is the unipotent
radical of P(1). For the Lie algebras we hayé.) = t® Z(M)zo u, andu(i) =

Z(A,a)>0 Ug.
THEOREM 1.3 [4]. Leti € X, (T) be a dominant cocharacter an®, the corre-

sponding principalG-bundle on the projective line. Then the group of automor-
phisms ofP, (acting trivially on the baskis isomorphic to

Aut(P) =Z0) x [ HPY Thua)),
A,a)>0
whereT; is the principalT-bundle induced from and T, (i) := T; X7 u, isthe
associated line bundle.

Since T;(u,) is a line bundle orP! of degree(i, «), we have the following
corollary.
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CoroLLARY 1.4. Leti € X, (T) be a dominant cocharacter and lgg, g1 be two
different points ofX. Let P; be the principalG-bundle onP! associated ta., as
in Observation 1.2(3).

(1) Letg € Z(») anda, b € U(X). Then there is an automorphisine Aut(P;)
such thatp,, = ga and¢,, = gb in the corresponding trivializations.

(2) Letb € B. Then there is an automorphisgne Aut(P;) such thatp,, = b in
the corresponding trivialization aroungh.

OBSERVATION 1.5. If A € X,(T) andn € N(T), let X' = nin~t e X.(T). The
element’ depends only on the classofn W = N(T)/T. SincePy = P, x, G,
wherep: G — G is the inner conjugation 6 with n € N(T'), we have an iso-
morphism¢,, : P, — P, of principal G-bundles. Ifgq, g1 are different points of
X and if P,, P, are defined as in Observation 1.2(3), then the isomorphisia
represented by the multiplication on the left within the trivializations used to
defineP, andP;,.

Part 11

In this part we study Zariski locally trivial principaF-bundles over a reducible
chain of rational curves. Such a chain is a connected reduced complextusve
XU .- U X with k£ > 2 irreducible component; (1 < i < k), all of them
smooth rational curves, such th¥t intersectsX; 1 in a nodal singular poing;
foralll <i < k — 1 We choosgjg € X; different fromg; andg; € X different
from ¢g;_1. The base curv& can be viewed as coming frokncopiesXy, ..., X
of a smooth rational curve by gluing; — {g;_1} to X; 11 — {¢;+1} at the pointy;
forl <i < k — 1 The gluing can be thought of in this wayx; — {g;_1} is an
affine space Spé€d), and the point;; € X; — {g;_1} corresponds to a homomor-
phismf: A — C; similarly, X; .1 — {g:+1} is an affine space SpeR), and the
pointg; € X;1+1 — {¢i+1} corresponds to a homomorphigm B — C. The result
of gluing X; — {gi—1} to X;+1 — {¢i+1} atg; is Spe€C), whereC is the algebra
C={abeA®dB]| fla) = gb))}.

Let G be a connected reductive complex algebraic group. The starting point
of the study of principal bundles ovéf is Proposition 2.1, which claims that any
principal G-bundle overX is obtained from principaG-bundlesP; over X; by
gluing the fibers over the common poigis 1 <i <k — 1

ProrosITION 2.1. LetY = Y, U-.-U Y; be a reduced curve with > 2 irre-
ducible componentg such that@); intersects;;inapointg; forl <i < k-1
and (b) the structure shea®y is given by(fi, ..., fi) € Oy, ® - - - ® Oy,, with
filgi)) = fixa(q) for1 <i <k — 1 Let j; be the inclusion of; in ¥; and let/
be the inclusion of; in Y; ;. LetC; be the category of tuplgs,, A, Po, Ao, ...,
Ag—1, Pr), whereP; is a principal G-bundle ovett; and A; : j*P; — j/*P;j1isa
morphism ofG-bundles oveg;. A morphism irC; between Py, Ay, Po, Ao, ...,
Ay_1, Pr) and (Q1, By, 02, Bo, ..., Bi—1, Q) is given by a tupleg, ..., ¢r),
whereg;: P; — Q; is aG-morphism ovet; (1 <i < k) such thatB; o j'¢; =
Jj*¢iy1 0 A;. There is an equivalence of categories between the category of
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principal G-bundles or¥ and the categor¢,. Under this equivalence, the bun-
dlesPy, ..., Py are the pull-backs of the bundie.

Proof. We prove the proposition fdr = 2; the general case is similar. L&tbe

a principalG-bundle overY. Let!l;: ¥; — Y be the inclusion morphism and let
P; = I}'P be the pull-baclG-bundle onY;. Sincel; o ji = I, 0 jj, there is a canon-
ical isomorphismi: jiP1 — j;*P, of principal G-bundles ovey;. We define a
functor S from the category of principak-bundles orY to the categorg,, which
on objects associates to a princigabundleP the triple(Py, A1, P,). We prove
that S defines an equivalence of categories by constructing an inverse fuhctor
from the category, to the category of principali-bundles or¥. If (Py, A1, P2)

is an object of’,, then we define a princip&-bundleT (P, A;, P») onY as fol-
lows. We choose trivializations df; over an open covering! = {U?! | « € I} of
Y1 such that there is exactly one open Sﬁot e U* that containg;. We denote the
cocycle of P; with respect td/! by g ,. Similarly, we choose trivializations of
P> over an open covering? = {U2 | ﬂ € J} of Y, such that there is exactly one
open seU; € ? that containg;. The trivialization of P, on Uy, induces a trivi-
alization of] P71 ong,, and the trivialization ofP, on U2O mduces a trivialization
of j{*P, ongy. In these trivializations, the morphisay is the multiplication on
the left with an element of;. We can choose a trivialization d@f, on Uﬁz0 such
that the morphisnm,, in the given trivialization aty;, is the identity. We denote
the cocycle ofP, with respect td/* by g7 . LetU = U, U U, . We construct
a G-bundleT (P4, A1, P») onY from trivial G-bundles ovean1 (¢ # wp), Uﬁ2
(B # Bo), andU by gluing according to the cocyclg§ andg/3 g A choice of
other trivializations will, as before, define an |somorp6iebundle onY. We can
extend this construction on morphisms. Thus we have a furitfoom C, to the
category of principatG-bundles orv. If O = T (P, A1, P2) then there are natu-
ral isomorphism#;: Py — [5Q andhy: P — 12Q If C: jilfQ — ji*I50is
the canonical isomorphism, we ha@fe> jyh, = A1 o j{*hy. These observations
show thatT is an inverse, in both orders, §f O

The next theorem shows that the classification of prindipalundles over a chain
of rational curves is similar to the classification of principal bundles over a smooth
rational curve. See also Theorem 2.11 for a description of the classification data.

THEOREM 2.2. LetG be a complex connected reductive group. The structure of
a principal G-bundle over a chain of rational curves can be reduced to a maximal
torus.

CoROLLARY 2.3. A vector bundle over a chain of rational curves is a direct sum
of line bundles.

We now fix some notation and we recall some results about connected reductive
complex algebraic groups. L&t be a complex reductive algebraic group, and let

T be a maximal torus. LeW be the Weyl group ofz. Let T C B be a Borel
subgroup, and lex,.(T") be the abelian group of homomorphisms fr@mto 7.
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If » = rank(G) is the rank ofG, thenT = (C*)" and we have a group isomor-
phismX,(T) = Z" that associates t@y, ..., a,) € Z" the homomorphism —
(z4,...,z%)fromC*toT. (Note: X, (T) is the standard notation in the literature,
and there is no connection with the base cuxveLet 1 € X,.(T) be a dominant
element; that is, leth, «) > O for all positive rootsx of G, where positivity is de-
fined with respect to a fixed Borel subgroup. IR) be the parabolic associated
to A generated by" and by the root groups,, with (A, «) > 0. (Here we are us-
ing the standard notatioR(1) from the literature for the parabolic subgroups; the
parabolic subgrou@ (1) should not be confused with the princigatbundle P;,
defined in the previous part.) The centralizedrof the subgroup iC* N T)
of T is denoted byZ (1). The centralizeZ (1) is a connected reductive group gen-
erated byl' and the root groups,, for which« satisfiegx, &) = 0. The unipotent
radical of Z (1) is denoted/(A). The groupU (1) is generated by the root groups
U, with (A, @) > 0. We haveP(1) = Z(M)U(L). If u, is the Lie algebra of the
root groupl, and if t is the Lie algebra of, thenz(A) = t@ > _; ,)—oUe and
u(d) = Z(A,a)>0ua'

We recall the Bruhat decomposition.

THEOREM 2.4. There is a bijective correspondence between thé§€ét/B and
the elements of the Weyl group More precisely, for ang € G, there are elements
b1, b, € Bandn € N(T) such thatg = bgnbl‘l. The element is unique up to the
multiplication by an element df. That is, ifn, n’ € N(T) andby, b, by, b, € B
are such thab,nb;* = byn'b, ™, then there is an element T such tha’ = nt.

The next result is an immediate corollary of the Bruhat decomposition.

COROLLARY 2.5. If n e N(T), let B’ = nBn". There is a bijective correspon-
dence between the sBt G/B’ and the elements of the Weyl groip More pre-
cisely, for anyg € G, there are elements, € B’, b, € B, andn € N(T) such that
n= bngil. The element is unique up to the multiplication by an elementrof
Thatis, ifn, 7i € N(T), by, b1 € B’, andb,, b, € B are such thak = b,gb;* and

ii = boghy*, then there is an element T such thaii = nt.

We will need the next propositions in the proof of Theorem 2.2.

ProrosiTION 2.6. Let G be a connected reductive algebraic group,C G a
maximal torus, andB a Borel subgroup of5 containing?. Let A € X, (T) be
dominant and lek € N(T). Then there is an elemente N(T) such that

mBm™t c (ZO\) NnBn HUu ).

Proof. We first claim that(Z (1) N an‘l)O is a Borel subgroup of (1), where
(Z(») NnBnYH? is the connected component of the identityZxf.) N nBn~L.

The group(Z (1) N an‘l)o is a connected closed solvable subgrou@ of). It
is also maximal with these properties because its Lie algebra is

te Y w® Y U

a>0,wa>0,(1,a)=0 a<0,wa>0,(A,a)=0
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wherew € W = N(T)/T is the element defined by € N(T). Using the pre-
vious claim,(Z(x) N nBn~Y% and(Z(») N B)° are two Borel subgroups in the
reductive groupZ(1). Since any two Borel subgroups in a connected reductive
group are conjugated, there is an element Z (1) such tha{Z(») NnBn™)° =
m(Z(x) N B)°m~L Because the two Borel subgroupZ(x) N nBn™1)° and
(Z(») N B)? contain7, the elementn must normalizeT, that is,m € N(T).
Sincem € Z (1) normalizes/ (1) and sinc&Z (1) N B)°U(A) = B, we obtain the
result of the proposition. O

ProposITION 2.7. Letv € X, (T) be another dominant cocharacter. Then there
is an elemeni € N(T') such that

mBm™t C (Z(L) NnPO)n HUW).
Proof. SinceB c P(v), the result follows from Proposition 2.6. O

PROPOSITION 2.8. Let Ay, ..., A; € X,.(T) be dominant and lety, ...,n;_1 €
N(T). DefineA; = P(A1) andAj1 = (Z(Aj40) ﬂnjAjnjfl) UMjrpforl<j<
i —1 Then there is an elementc N(T) such thatnBm ™ C A;.

Proof. This follows from Proposition 2.7 by induction én O

COROLLARY 2.9. LetAq, ..., A; € X, (T) be dominant. Lety, ..., n,_1 € N(T)
and letm be as in Proposition 2.8. Let e mBm . Then there exist; € Z(1))
andc; e U(xj) for 1 < j < i such that(a;.)nj(aje) ™ =n (1< j <i—1
anda = a;c;.

We are now ready for the proof of the Theorem 2.2.

Proof of Theorem 2.2Let P be a principalG-bundle overX. Using Proposition
2.1, P is constructed from principaf-bundles over the componentsXby gluing
the fibers over the common poirjs Let P; be the pull-back oP to X;. Applying
Observation 1.2(2) to the bundR over X; and to the pointg;_3, ¢; € X;, we ob-
tain a dominant cocharacter e X, (T') such that; = P,,. We canviewP; = P,
as the principat;-bundle obtained from the trivial bundles X; —{q;,_1} x G —
X; —{gi—yandn’: X; —{g;} x G — X; —{g;} by gluingw ~X(X; — {gi_1, ¢;}) —
7' X; — {gi_1, ¢;}) via the formula(x, g) — (x, 1;(x)g), where we consider
A; @as a morphismk;: X; — {¢;—1,¢;} = C* — T. Using Proposition 2.1, the
principal G-bundle corresponds to the objéé,,, A1, Py, ..., Axk—1, P,,) Of Cy.
Using the trivialization ofP,, over X; — {g;_1} and the trivialization ofP,,, over
X:+1—{qi+1}, A; can be considered as an elemgmf G. We fix these trivializa-
tions of P; overX; — {¢;_1} andX; .1 — {g; 11} because we will refer to them in the
proof. In this way, the gluing data is equivalent to a tugde ..., gi_1) € G¥ %

LemMma 1. We claim that, by using automorphismsm@fwe can replace the tuple
(81, ..., gr—1) € G*twith atuple(ny, ..., ny_1) € N(T)** of elements oN(T),
the normalizer ofT in G.
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Let’s see first how an automorphism &f will affect the gluing data. lip;
Aut(P;), 1 < i < k, are automorphisms a®;, then the tuplg¢s, ..., ¢;) is an
automorphism of the obje¢®P,,, A1, P,,, ..., Ax—1, P,,) of Cx, which by Propo-
sition 2.1 corresponds to an automorphismPofThe automorphisnigs, ..., ¢x)
affects the gluing datéA;, ..., A_1) by replacing it with

(62(q1) © A10 $1(q1) " $3(q2) © Az 0 ¢2(q2)
o Br(qr-) © Ar—10 Pro1(qr-1) ).

whereg;(¢) denotes the automorphism of the pull-backPpbverq induced by the
automorphisng; of P;. By identifying the gluing datéA,, ..., Ax_1) with atuple
(g1, ..., g—1) € GF"1and by using the fixed trivializations @ over X; — {g;_1}
andX;,1 — {g;+1}, we can use the automorphigiy, ..., ¢;) to replace the tuple
(g1, ..., g—1) With the tuple

-1 -1 -1
(¢2,q1 - 81 ¢1,C11’ ¢3,q2 82 ¢2’q27 R ¢k,qk71 * 8k—1" ¢k_lqk—l)’

whereg; 4, ¢it+1q € G represents the automorphisggg;) and¢;1(qg;) in the
fixed trivializations of P; and P over X; — {¢;_1} and X; 11 — {qi11}, respec-
tively. Lemma 1 states that, by using automorphisms of tyge... ., ¢;), we can
replace the tuplég., ..., gr_1) € G¥ T with a tuple(ny, ..., ny_1) € N(T)*~* of
elements ofN(T'). We prove Lemma 1 by induction. In the initial step (Lemma
2), we show that we can replace the tu@de, ..., gx_1) with an equivalent tuple in
which the first component is an element™f7’). The inductive step is presented
in Lemma 3. We prove there that (if1, ..., g, git1, ..., g—1) iS atuple such that
gi € N(T) forl < j < i, then by using an automorphis@;, ..., ¢;) we can re-
place the tuplégs, ..., g«) with atuple(gs, ..., g, &1, ---» &,_1), Whereg/,, €
N(T). This will finish the proof of Lemma 1. O

LeEmMA 2. We can replace the tuplégy, ..., gx—1) with an equivalent tuple in
which the first component is an elemeniNgiT’).

This follows from the Bruhat decomposition (Theorem 2.4) as follows. There exist
b1, by € B andn € N(T) such tha%znbfl = g1. Let ¢y € Aut(P;,) as in Corol-

lary 1.4(2) be such that, in the trivialization &, aroundg;, we haveg, ,, =

by. Let ¢ € Aut(P;,) as in Corollary 1.4(2) be such that, in the trivialization of
P;, aroundg,, we havep, ,, = bo. Let Id; € Aut(P;,) denote the identity auto-

morphism ofP,,. Then the automorphisi@, ¢, Ids, ..., 1d;) replaces the tuple
(81, 82, ..., &—1) Withthe tuple(n, g5, ..., g/_,). This ends the proof of Lemma 2
and also the first step of the induction. O

Lemma 3. If (g1,..., &, 8i+1, --.» 8&k—1) IS atuple such thag; e N(T) for 1 <
j < i, then using an automorphisKis, ..., ¢;) allows us to replace the tuple
(81, ..., &) With atuple(ga, ..., &, &1, ---» &_1)» Whereg/ , € N(T).

We apply Proposition 2.8 thy, ..., A; € X.(T) andny, ..., n,_1€ N(T). Letm €
N(T) be as in that proposition. Using Corollary 2.5 fere N(T) andg; .1 € G,
we can find elements; e mBm ! andb, € B such thatbzg,-ﬂb;l =ne N(T).
Applying Corollary 2.9 tob; € mBm ™, there existy; € Z(x;) andc; € U(}))
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forl < j < i such thatiaj )n;(ajc;) ™ =n; A< j <i—1 andb; = a;c;.
Let ¢ € Aut(P;,) as in Corollary 1.4(2) be such that, in the trivialization®f
aroundq;, we haveg, ,, = aica1. Let¢; € Aut(Py;) (2 < j < i) as in Corol-
lary 1.4(1) be such that we hayg ,,_, = a; in the trivialization of P, around
gj-1andg; ,, = a;jc; in the trivialization of P;; aroundy;. Let¢; 1 € Aut(P;, ;)
as in Corollary 1.4(2) be such that, in the trivialization Bf ,, aroundg;, we
haveg; 1, = bo. The automorphisnigs, ..., @i, ¢i+1, Id; 42, ..., Idy) replaces
the tuple(gu, ..., g) With (g1, ..., gi. 1, &/, 5. ..., &_1)- This ends the proof of
Lemma 3 and hence of Lemma 1. O

We have thus proved that is isomorphic to a principatz-bundle P’ on X ob-
tained by gluing the fibers over of the principalG-bundlespP;, with gluing data,
which in some fixed trivializations is a tupl@y, ..., ny_1) of elements ofV(T).

To finish the proof of the Theorem 2.2, it suffices to prove that the structure group
of the P’ can be reduced t6. Letl; ;1 =nn;_1---me N(T)forl<i <k-1
andlet; = e € N(T), wheree denotes the identity element6f LetA, = lflk,-l,-
forl<i <k Letg;, = ¢t Py, — Py (1 < i < k) be the isomorphism de-
fined in Observation 1.5. Theibs, ¢», ..., ¢;) is an isomorphism i€, between
the principalG-bundleP’ given by(Py,, n1, Ps,, ..., ng-1, Px,) and another prin-
cipal G-bundle P” given by (P, e, Py,, ..., e, Py,). The structure group oP”
can be reduced td because the principal-bundleP” is obtained from the prin-
cipal T-bundle(7;,, e, Ty, ..., e, Ty,) by extending the group structure via the
group inclusionl” — G. This ends the proof of the Theorem 2.2. O

OBSERVATION 2.10. The proof can be briefly explained like this. A reduction of
the group structur& of the principal bundleP to the subgrouf c G is equiva-
lent to a section of the fiber bundl®y T. The proof constructs such a section over
X from sections over the componerXs (Sections over the components exist by
Theoreml.1.)

The data for classification of princip&@bundles oveKX isatuple(rsy, ..., Ax) €
X..(T)*. For any such tuple, we define a princigadbundleQ (A4, ..., Ax) on X
as follows. Applying Observation 1.2(3) ¢ € X,.(T) and to the pointg;_1, ¢; €
X;, we obtain a principaG-bundleP,, on X;. As in the proof of Theorem 2.2,
using the trivialization ofP,, on X; — {¢;_1} andX; — {¢;} enables us to identify
the gluing data with & — 1)-tuple of elements of;. We consider the gluing data
(A, ..., Ar_1) that correspond to the tuple, . .., ) € G¥1, wheree is the iden-
tity element ofG. Using Proposition 2.1, we defin@(A4, ..., A;) as the principal
G-bundle onX that corresponds toP;,, Ax, ..., Ax_1, P;,). The next theorem,
which follows from the proof of Theorem 2.2, gives the classification of principal
G-bundles onx.

THEOREM 2.11.

(1) Any principalG-bundle onX is isomorphic withQ (A4, ..., A;) for some tuple
(A, ..., Ap) € X (D)X,

(2) If X; = w - A; for somew € W, thenQ(Ay,..., Ax) and Q(A3, ..., ) are
isomorphic.
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The converse of the second part of Theorem 2.11 is equivalent to the following
conjecture.

ConNJECTURE 2.12. Let G be a complex reductive algebraic group. Let ...,
A € Xi(T). Letni’, ne NT)forl<i<k-11If I’l[ = (ai+1ci+1)n,»(aib,~)*l
1<i<k-1 forsomes; € Z(A;) andb;,c; cU();), thenforalll<i <k-—-1
there exisin; € N(T) N Z(;) such that] = m; n;m;

Part 111

In this part,X is an irreducible singular nodal rational curve with exactly one sin-
gular pointg € X. Let 7: P! — X be the normalization ok and letgo, g1 €

P! be the preimages af € X under the morphismr. We study Zariski locally
trivial principal G-bundles ovetX. The next proposition says that any principal
G-bundle Q on X is obtained from a principati-bundle P on P! by gluing the
fibers over the pointgy andg;.

ProposITION 3.1. LetZ = SpecC). Let jo: Z — P! be the morphism that fac-
torizes through the poinjo, and letj;: Z — P! be the morphism that factorizes
through the poiny;. Let D be the category of pairéP, A), whereP is a prin-
cipal G-bundle overP! and A: jiP — j;P is a morphism ofG-bundles onz.

A morphism inD from (P, A) to (P’, A’) is given by a morphismp: P — P’ of
principal G-bundles ove! such thatA’ o ji¢ = ji¢ o A. There is an equiva-
lence of category of principal-bundles orX and the category of pair®. Under
this equivalence, the princip&-bundleQ over X corresponds to a paitP, A),
where the bundle® over P! is the pull-back oQ.

Proof. Let Q be a principalG-bundle overX. Let P = n*Q be the pull-baclG-
bundle onP!. Sincer o jo = 7 o ji, there is a canonical isomorphistn JjoP —
Ji P of principal G-bundles over;. We define a functos from the category of
principal G-bundles onX to the categoryD, which on objects associates to a
principal G-bundle Q the pair(P, A). We prove thatS defines an equivalence of
categories by constructing an inverse funcfofrom the categoryD to the cat-
egory of principalG-bundles onX. If (P, A) is an object ofD, we construct a
principal G-bundleT (P, A) on X asin [2].

Let p € X be a point differentfromthe singular poipt X. LetU = X—{p}and
U=P'—nYp)andletr: U — U be the restriction of the normalization mor-
phismz. We may assumé& = SpecR), whereR = C[s]. ThenU = SpedR),
whereR = {f € R | f(go0) = f(q1)}. Since any principal;-bundle overC is triv-
ial, we have a trivializatiorP|; = U x G of P overU. Using this trivialization,
the isomorphism is equivalent to an automorphism@f the mappingy: G —

G given by multiplication on the left with an element 6f If G = SpecsS),
then¢: G — G corresponds to &-algebra isomorphism*: § — S. Let B be
the finitely generated-algebra given byB = {s € S ®¢c R = S[t] | s(x) =
o*(s(y))} C S[t]. We consider:: Spe¢B) — SpecR), which will be the re-
striction of T(P, A) on X — { p}. There is a natural right action @¢f = SpecsS)
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on Spe¢B) induced from the right action off on Spe¢S[t]). The morphism
h: Spec€B) — SpecR) is G-invariant and Zariski locally trivial. Local trivial-
ity follows after a pull-back under the étale morphism Sgee> SpecR, where
R1={(f.g) eC[r]®C[] | f(x) = g(y)}. Note thatB®r R1 = B;, whereB; =
{(r,s) € S[t] ® S[t] | r(x) = s(y)}. Since Spe€B1) — SpecR;) is Zariski lo-
cally trivial, by faithful flatness we obtain that Spe¢B) — SpeqR) is Zariski
locally trivial.

This construction depends on the trivializationRobverU. For another trivial-
ization, the isomorphism defines an automorphis#i: G — G and hence an-
other R-algebraB’ and a morphisnt’: Spe¢B’) — Spe¢R). We can prove
that there is aR-algebra isomorphisnB — B’ compatible with the actions
of G on Spe¢B) and Spe¢B’). Thus we have a-equivariant isomorphism
f: Spe¢B’) — SpedB) such thath o f = h'. There is a canonical mor-
phismB ®& R — R ®¢ S, which is an isomorphism that is compatible with the
actions of G. That the morphism is an isomorphism can be seen by tensoring
with the faithfully flat morphismR — R;. This means that the base change
of h: SpedB) — SpecR) using the base morphism: Spe¢R) — SpedR) is
the projection Spa®) x G — SpedR).

Let p1 € X be another point oX different from p and ¢. As before, let
Ur = X — {p1} and Uy =P*— 7 ~(p1) and letr: U1 — Uy be the restric-
tion of . If Uy = SpedR,) where Ry = C[n], thenU; = SpecRy) where
Ri={f €R1| f(x) = f(y)}. We choose a trivialization oP over U; and let
¢1: G — G be the morphism corresponding . As before, we construct
hi: SpegBi) — SpecRy), where B; is a R;-algebra defined byB; = {s €
S ®c R = S[t] | s(x) = ¢5(s(»)} C S[r1]. We think of h1: SpecB;) —
SpecR;) as the restriction of'(P, A) on X — { p1}.

We now glue togethdrandh; into a principalG-bundle onX. The gluing is done
overX—{p, p1} = Spe¢W), whereW = {f € W = Ops(P —{z, z1}) | f(q0) =
f(q1)} andz, z1 € P! are the points ovep and p1, respectively. Note that the re-
striction of the normalization morphismss. SpedW) — SpecW). The restric-
tionofh: SpedB) — SpegR) to Spe¢W) can be identified witth : Spe¢C) —
SpecdW), whereC = {s € W Q¢ S | s(g0) = ¢*(s(q1))} C W ®c¢ S. This iden-
tification is induced from the naturd¥ -algebra morphisn® @ W — C, which
is an isomorphism. Similarly, the restriction bf: Spe¢B1) — SpecR;) to
SpecW) can be identified withh1: SpedCy) — SpedW), whereCy = {s €
W ®cS | s(qo) = ¢i(s(q)}- The cocycle ofP with respect to the trivializa-
tions overU andU; is a morphisni.: U N Uy = Spec(W) — G. The cocycler
defines an automorphisimof W ®¢ § corresponding to the action on the right
with A. Sincegio A(x) = A(y) o ¢, the automorphlsm factorizes through & -
algebra isomorphist betweerC andC;. We gluei : Spe¢C) — Spe¢W ) and
h1: SpecCy) — SpecW) by using the automorphism: SpecC) — SpecC).
The result is a Zariski locally trivial principa¥-bundle onX, which we will de-
note byT' (P, A). This construction extends on morphisms. Thus we have a functor
T from D to the category of principalr-bundles onX. If Q = T(P, A), then
there is a natural isomorphistn P — 7*Q such that the canonical isomorphism
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J§0 — j;0 isidentified withA: j§iP — j;P. These observations show tHat
is a two-sided inverse df. O

If » € X, (T) is dominant and € G, we define a principal;-bundle P(i, g) on

X as follows. Consider the bund, overP! constructed in Observation 1.2(3),
and recall thatP, has trivializations oveP! — {go} andP* — {41} such that the
transition function ove®! — {gq, g1} is A. We considerA: joP, — jiPyasa
morphism ofG-bundles orZ, which in the given trivializations of; is given by
the left multiplication byg € G. The pair(P;, A) is an object of the categof®.
Let P(A, g) be the principalG-bundle onX corresponding, as in Proposition 3.1,
to the object P, A).

THEOREM 3.2. Any principalG-bundle onX is isomorphic withP(i, g) as de-
fined previously, wherg € X, (T) is dominant andz € G. If A, X € X,(T) are
dominant and ifg, g’ € G, then the principalG-bundlesP(x, g) and P(}, g’)
are isomorphic if and only i’ = 1 andg’ = (ab’)_lg(ab), wherea € Z(1) and
b,b'eUD).

Proof. Let Q be a principalG-bundle onX. Using Proposition 3.1, we can think of
the principalG-bundleQ as being obtained from a princip@kbundleP onP?! by
gluing the fibers oveyg andq, using a morphismd : jiP — j;{P of G-bundles
on Z. From Observation 1.2(2), the bundiehas trivializations oveP! — {go}
andP! — {g1} such that the transition function ovB! — {40, ¢1} is a dominant
elements € X, (T). In these trivializations of, the morphismd is given by the
left multiplication with an elemeng € G. It follows from all this that the bundle
Q is isomorphic withP (%, g) as defined previously. This ends the proof of the
first part of the theorem.

As in the proof of Theorem 2.2, an automorphigra Aut(P) replaces the glu-
ing datag € G with ¢, - g - ¢>;01, where¢,, € G represents the automorphism
of the fiberP(g;) overg; induced byg in the corresponding trivializations df.
By Theorem 1.4, there existe Z(1) andb, b’ € U(A) such thaip,, = ab’ and
¢qo = ab. It follows that the automorphisrp replaces the gluing data with
(ab’)g(ab)~t. Sincex is uniquely determined fron®, we have proved the claim
of the theorem. O

Motivated by the preceding theorem, we define an equivalence rekxtion G
by g = g’ ifand only if g’ = (ab’)g(ab)~ for somea € Z(}) andb, b’ € U(L).
The data for the construction of princip@tbundles onX is a pair(x, g), where

A is adominant element &, (T) andg is an equivalence class of the equivalence
relation= on G. For a complete description of the princigaibundles onX, one
needs a description of all the equivalence classes of the reEtanG.

Part IV

In this part we study Zariski locally trivial principa-bundles over a cycle of ra-
tional curves. A cycle of rational curves is a connected reduced complex curve
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X = X1U---UX; with k > 2 irreducible components; (1 <i < k), all of them
smooth rational curves, such that () intersectsX;; in a nodal singular point
g foralll <i <k —1and (b)X; intersectsX; in a nodal singular poirg;. We
identify X; with X, andg; with ¢;,,. The curveX is obtained fromk copies
X1, ..., X, of a smooth rational curve by gluinG; — {g;_1} t0 X;+1 — {g;+1} at
the pointg; for 1 < i < k, as in Part Il. The starting point of the study of prin-
cipal bundles ovek is Proposition 4.1, which states that any princigabundle
over X is obtained from principal;-bundlesP; over X; by gluing the fibers over
the common pointg;, 1 < i < k. The proof is similar to the proof of the Propo-
sition 2.1.

ProposITION 4.1. LetY = Y, U ... U Y; be a reduced curve with > 2 irre-
ducible componentg; such that(a) ¥; intersectsY;,; in a pointg; for 1 <i <

k and (b) the structure sheafDy is given by(fi, ..., fx) € Oy, ® --- & Oy,
with fi(¢;) = fi+1(g;) for 1 < i < k. Here we identifyY; with Y;,; andg;
with ¢; . Let j; be the inclusion of; in ¥; and letj/ be the inclusion of; in

Y; ;1. Let D, be the category of tuplesPy, Ay, Py, Ag, ..., Ar_1, Py, Ay), where

P; is a principal G-bundle overy; and A; : j'P; — j/*Pi;1is a morphism ot-
bundles oveg;. A morphism inD,; between( Py, Ay, P2, Ao, ..., Ax_1, Py, Ay)
and (Q1, By, Q2, Ba, ..., Bi_1, O, By) is given by a tupl€ey, ..., ¢r), where
¢i: P; — Q; is a G-morphism overl; (1 < i < k) such thatB; o j*¢; =
Jj*¢iy10 A;. There is an equivalence of categories between the category of princi-
pal G-bundles ort and the categor,. Under this correspondence, the bundles
Ps, ..., Py are the pull-backs of the bundle.

The classification of the principab-bundles overX is presented in Theorem
4.2. We describe first the parameters of the classification. The data for the con-
struction of a principalG-bundle onX is a tripled = (A, N, g), whereA =

(A1, ..., Ap) is a tuple of dominant elements &f,(T), N = (ny, ..., n;_1) is

a tuple of elements oN(T), and g is an equivalence class of an equivalence
relation ~ described momentarily. I8 € Z(1;1), define the setsS; 1(a) =
Z(hit1) NniSi(a)n; *U(hiy1) A < i < k —1) and Si(a) = aU(r1). We de-
fine anequivalence relatioron G by g ~ (ab)g(ac)™, whereb € U(L1), ¢ €
U(ri), a € Z(A1), anda € Si(a); hereg is an equivalence class with respect to
the equivalence relatiory. If d is as just described, lg?(d) be the principal
G-bundle associated (@;,, n1, Py, ..., ni—1, P>, &), considered as an object in
Dy. Hereg € G is a representative of the equivalence ciasany other represen-
tative will define an isomorphic principat-bundle.

THEOREM 4.2. Any principalG-bundle onX is isomorphic withP(d), for some
datad as described previously.

Proof. The proof is similar to that for Theorem 2.2. We start with a princigal
bundle onX. Using Proposition 4.1, we can think of the princigalbundleP as
being obtained from principaF-bundles over the components by gluing the fibers
overg;,1<i < k. Let P; be the pull-back of to the componenk;, 1 <i < k.
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From Observation 1.2(2), the bundR has trivializations oveX; — {g;-1} and
overX; — {¢;} such that the transition function ov&f — {¢;_1,¢;} = C*isA;, a
dominant element oX,.(T"). We fix the two trivializations ofP,,. Using Propo-
sition 4.1, the principaiG-bundle P is obtained from the principa¥-bundlesp;,
over X; by gluing data(Ay, ..., Ax_1, Ax), whereA;: jiP,, — j/*P;,, is an
isomorphism of principatz-bundles oveg;. Using the fixed trivializations of;
and P; 1 overg;, the morphismA; corresponds to an elemegite G and so the
gluing data is the tuplégs, ..., gx). We consider automorphisnigs, ..., ¢;) of

P, where¢; € Aut(P;,), and we consider how such an automorphism affects a
gluing tuple(gs, ..., gr)- As in the proof of Theorem 2.2, we can construct auto-
morphisms ofP such that the tuplégs, ..., gi) is replaced with(ny, ..., nx_1, g),
whereny, ..., n;_1€ N(T) andg € G. A similar argument shows that an automor-
phism of P replaces the tuplén,, ..., ny_1, g) with the tuple(na, ..., ni_1, g’) if

and only ifg’ ~ g, where~ is the equivalence relation previously defined. This
completes the proof. 0
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