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Principal Bundles over Chains
or Cycles of Rational Curves

Titus Teodorescu

The objects of study in this paper are Zariski locally trivial principal bundles over
chains or cycles of rational curves. A chain of rational curves is eitherP1 or a
connected reduced complex curveX = X1∪· · ·∪Xk with k ≥ 2 irreducible com-
ponentsXi (1≤ i ≤ k), all of them smooth rational curves, such thatXi intersects
Xi+1 in a nodal singular pointqi for all i = 1, . . . , k−1. A cycle of rational curves
is either an irreducible reduced rational nodal complex curve with exactly one sin-
gularity or a connected reduced complex curveX = X1 ∪ · · · ∪ Xk with k ≥ 2
irreducible componentsXi (1≤ i ≤ k), all of them smooth rational curves, such
that (a)Xi intersectsXi+1 in a nodal singular pointqi for i = 1, . . . , k − 1 and
(b) Xk intersectsX1 in a nodal singular pointqk. We are interested in classify-
ing Zariski locally trivial principalG-bundles over chains and cycles whenG is a
connected reductive complex algebraic group. The motivation is to generalize the
classification (see [1]) of vector bundles over a chain or a cycle of rational curves.
As shown there, one can hope to get a complete classification of all the vector bun-
dles over a connected nodal curve only when the curve is either a chain or a cycle
of rational curves. In the terminology of [1], the classification problem for vec-
tor bundles is of finite type for a chain of rational curves and of tame type for a
cycle of rational curves. For all the other nodal curves, the classification problem
is of wild type, meaning that the problem is at least as hard as the classification
of the representations of finitely generated complex algebras. We will see that the
problem for principal bundles seems to have the same trichotomy. For a chain,
the classification of principal bundles is determined by discrete parameters. In the
case of a cycle, the classification seems to depend on a finite-dimensional space
of parameters.

This paper is divided into four parts. In the first part, we take the case of a smooth
rational curveX. We recall (Theorem1.1) theclassification (see [3]) of principal
G-bundles overX, which says that the structure of any principalG-bundle can be
reduced to a maximal torusT ofG. This result can be reformulated by saying that
any principalG-bundle can be obtained from the principalC∗-bundleC2−{0} →
P1 by extending the structure group using a homomorphismλ : C∗ → T . Let
X∗(T ) be the abelian group of homomorphisms fromC∗ to T, and letPλ be the
principalG-bundle overX obtained as before fromλ∈X∗(T ).

In the second part, we consider the case of a chain of rational curves. We prove
(Theorem 2.2) that the structure group of any principalG-bundle on a chain of
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rational curves can be reduced toT . The classification of all principalG-bundles
is obtained in Theorem 2.11. The classification data is discrete and consists of a
k-tuple (λ1, . . . , λk) of homomorphisms fromC∗ to T, representing the restric-
tions of the principal bundleP to the componentsXi. The starting point of the
proof of these results is Proposition 2.1, which states that any principal bundle on
X is obtained from principal bundles on the components plus some gluing data at
each of the singular points ofX.

In the third part, we consider the case of an irreducible nodal singular curveX

with exactly one singularityq ∈X. If λ∈X∗(T ) is dominant and ifg ∈G, then we
construct a principalG-bundle onX from theG-bundlePλ overP1 by identifying
the fibers over two points ofP1 using the isomorphism ofG given by the left mul-
tiplication with g. Two pairs(λ1, g1), (λ2, g2) will define isomorphicG-bundles
overX if and only if λ1 = λ2 andg2 = (a1b2)

−1g1(a1b1), wherea1∈ Z(λ1) and
b1, b2 ∈ U(λ1). HereZ(λ) ⊂ G denotes the centralizer of the dominant element
λ ∈X∗(T ), andU(λ) denotes the unipotent radical of the parabolicP(λ) associ-
ated toλ. Thus the classification of principalG-bundles onX is equivalent to the
classification of all equivalence classes of the equivalence relation∼= onG given
by g1

∼= g2 if and only if g2 = (a1b2)
−1g1(a1b1) for somea1∈Z(λ1) andb1, b2 ∈

U(λ1).

In the fourth part, we consider the case of a cycle of rational curves with at least
two irreducible components. The classification data for principalG-bundles over
a cycle of rational curves consists ofλ1, . . . , λk ∈X∗(T ) dominant cocharacters
(which represent the restrictions of the principal bundle to the componentsXi),glu-
ing datan1, . . . , nk−1∈N(T ) for the pointsqi (1≤ i ≤ k−1), and an equivalence
classĝ of some equivalence relation onG, which represents the gluing data atqk.

I would like to thank Robert Friedman for his encouragement and helpful
comments.

Part I

In this part, we are interested in principal bundles overX = P1, the complex pro-
jective space of dimension 1. The following theorem gives the classification of the
principalG-bundles overX.

Theorems 1.1 [3]. LetG be a complex connected reductive algebraic group,
T ⊂ G a maximal torus, andW the Weyl group. We denote byX∗(T ) the abelian
group of homomorphisms fromC∗ to T, called the group of cocharacters ofT .

(1) The structure group of any principalG-bundle overX = P1 can by reduced to
the maximal torusT ⊂ G. Moreover,H1(X, T (OX))/W = H1(X,G(OX)).

(2) LetPλ be theG-bundle obtained from the principalC∗-bundleC2 − {0} →
P1 extending the structure group using the homomorphismλ ∈ X∗(T ). Any
principalG-bundle overX = P1 is isomorphic withPλ for someλ ∈X∗(T ).
Two principalG-bundlesPλ, Pλ′ are isomorphic if and only ifλ, λ′ belong to
the same orbit under the Weyl group, that is, iff there is aw ∈ W such that
λ = w · λ′.
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Observations 1.2. (1) Because, under the action of the Weyl group, any orbit
in X∗(T ) contains a unique dominant element, any principalG-bundle overP1 is
isomorphic withPλ for some (unique) dominant cocharacterλ∈X∗(T ).

(2) If q0, q1 are two different points ofX, we considerX = V0 ∪ V1 the open
affine covering ofXwith two copies(V0 = X−{q1} andV1= X−{q0}) ofC. The
principalC∗-bundleC2 − {0} → P1 has trivializations overV0 andV1 such that
the cocycle with respect to these trivializations is a group isomorphismV0∩V1=
C∗ → C∗. It follows from Theorem1.1(2) that any principal bundle overX has
trivializations overV0 andV1 such that the cocycle with respect to these trivializa-
tions is a dominant group homomorphismλ : V0 ∩ V1 = C∗ → T ⊂ G. Such a
cocharacterλ∈X∗(T ) is determined uniquely.

(3) If λ∈X∗(T ) then we can define theG-bundlePλ in the following way. Let
q0, q1 be two different points ofX = P1. Let V1= X − {q0} andV0 = X − {q1}.
The two sets define an open affine covering ofX. We define a principalG-bundle
Pλ overX by gluing the trivializedG-bundlesπ0 : V0×G→ V0 andπ1: V1×G→
V1 overV0 ∩ V1. We define the gluingπ−1

0 (V0 ∩ V1)→ π−1
1 (V0 ∩ V1) by the rule

(x, g)→ (x, λ(x)g), whereλ : C∗ = V0 ∩ V1→ T ⊂ G.
(4) In a similar way, we can define a principalT -bundleTλ overX by gluing

overV0 ∩ V1 the trivializedT -bundlesπ0 : V0 × T → V0 andπ1: V1× T → V1.

We define the gluing as a morphismπ−1
0 (V0∩V1)→ π−1

1 (V0∩V1) defined by the
rule (x, t)→ (x, λ(x)t). Clearly, the principalG-bundlePλ is obtained from the
principalT -bundleTλ by extending the group structure using the inclusion homo-
morphismT → G.

For future use we recall the following result about the automorphism group of a
principalG-bundle over the projective line. Letλ∈X∗(T ) be dominant. We fix a
maximal torusT and a Borel subgroupT ⊂ B ⊂ G of the algebraic groupG. Let
N(T ) be the normalizer ofT inG and letW = N(T )/T be the Weyl group ofG.
Let P(λ) be the parabolic associated toλ generated byT and by the root groups
Uα with (λ, α) ≥ 0. The centralizerZ(λ) of the subgroup ofT determined byλ is
a connected reductive group andP(λ) = Z(λ)U(λ), whereU(λ) is the unipotent
radical ofP(λ). For the Lie algebras we havez(λ) = t⊕∑(λ,α)=0 uα andu(λ) =∑

(λ,α)>0 uα.

Theorem 1.3 [4]. Let λ ∈X∗(T ) be a dominant cocharacter andPλ the corre-
sponding principalG-bundle on the projective line. Then the group of automor-
phisms ofPλ (acting trivially on the base) is isomorphic to

Aut(Pλ) = Z(λ)×
∏

(λ,α)>0

H0(P1, Tλ(uα)),

whereTλ is the principalT -bundle induced fromλ andTλ(uα) := Tλ×T uα is the
associated line bundle.

SinceTλ(uα) is a line bundle onP1 of degree(λ, α), we have the following
corollary.
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Corollary 1.4. Letλ∈X∗(T ) be a dominant cocharacter and letq0, q1 be two
different points ofX. LetPλ be the principalG-bundle onP1 associated toλ, as
in Observation 1.2(3).

(1) Let g ∈ Z(λ) anda, b ∈ U(λ). Then there is an automorphismφ ∈Aut(Pλ)
such thatφq0 = ga andφq1 = gb in the corresponding trivializations.

(2) Letb ∈B. Then there is an automorphismφ ∈Aut(Pλ) such thatφq0 = b in
the corresponding trivialization aroundq0.

Observation 1.5. If λ ∈ X∗(T ) andn ∈ N(T ), let λ′ = nλn−1 ∈ X∗(T ). The
elementλ′ depends only on the class ofn inW = N(T )/T . SincePλ′ = Pλ×ρ G,
whereρ : G→ G is the inner conjugation inG with n ∈N(T ), we have an iso-
morphismφn : Pλ → Pλ′ of principalG-bundles. Ifq0, q1 are different points of
X and ifPλ, Pλ′ are defined as in Observation 1.2(3), then the isomorphismφn is
represented by the multiplication on the left withn in the trivializations used to
definePλ andPλ′ .

Part II

In this part we study Zariski locally trivial principalG-bundles over a reducible
chain of rational curves. Such a chain is a connected reduced complex curveX =
X1 ∪ · · · ∪ Xk with k ≥ 2 irreducible componentsXi (1 ≤ i ≤ k), all of them
smooth rational curves, such thatXi intersectsXi+1 in a nodal singular pointqi
for all 1≤ i ≤ k − 1. We chooseq0 ∈X1 different fromq1 andqk ∈Xk different
from qk−1. The base curveX can be viewed as coming fromk copiesX1, . . . , Xk
of a smooth rational curve by gluingXi − {qi−1} toXi+1− {qi+1} at the pointqi
for 1 ≤ i ≤ k − 1. The gluing can be thought of in this way:Xi − {qi−1} is an
affine space Spec(A), and the pointqi ∈Xi − {qi−1} corresponds to a homomor-
phismf : A → C; similarly, Xi+1− {qi+1} is an affine space Spec(B), and the
point qi ∈Xi+1− {qi+1} corresponds to a homomorphismg : B → C. The result
of gluingXi − {qi−1} to Xi+1− {qi+1} at qi is Spec(C), whereC is the algebra
C = {(a, b)∈A⊕ B | f(a) = g(b)}.

Let G be a connected reductive complex algebraic group. The starting point
of the study of principal bundles overX is Proposition 2.1, which claims that any
principalG-bundle overX is obtained from principalG-bundlesPi overXi by
gluing the fibers over the common pointsqi, 1≤ i ≤ k −1.

Proposition 2.1. Let Y = Y1 ∪ · · · ∪ Yk be a reduced curve withk ≥ 2 irre-
ducible componentsYi such that(a)Yi intersectsYi+1 in a pointqi for 1≤ i ≤ k−1
and (b) the structure sheafOY is given by(f1, . . . , fk) ∈OY1 ⊕ · · · ⊕ OYk , with
fi(qi) = fi+1(qi) for 1≤ i ≤ k − 1. Let ji be the inclusion ofqi in Yi and letj ′i
be the inclusion ofqi in Yi+1. LetCk be the category of tuples(P1, A1, P2, A2, . . . ,

Ak−1, Pk),wherePi is a principalG-bundle overYi andAi : j ∗i Pi → j ′ ∗i Pi+1 is a
morphism ofG-bundles overqi. A morphism inCk between(P1, A1, P2, A2, . . . ,

Ak−1, Pk) and (Q1, B1,Q2, B2, . . . , Bk−1,Qk) is given by a tuple(φ1, . . . , φk),

whereφi : Pi → Qi is aG-morphism overYi (1≤ i ≤ k) such thatBi B j ∗i φi =
j ′ ∗i φi+1 B Ai. There is an equivalence of categories between the category of
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principalG-bundles onY and the categoryCk. Under this equivalence, the bun-
dlesP1, . . . , Pk are the pull-backs of the bundleP.

Proof. We prove the proposition fork = 2; the general case is similar. LetP be
a principalG-bundle overY. Let li : Yi → Y be the inclusion morphism and let
Pi = l∗i P be the pull-backG-bundle onYi. Sincel1B j1= l2 B j ′1, there is a canon-
ical isomorphismA1: j ∗1P1→ j ′ ∗1 P2 of principalG-bundles overq1. We define a
functorS from the category of principalG-bundles onY to the categoryC2,which
on objects associates to a principalG-bundleP the triple(P1, A1, P2). We prove
thatS defines an equivalence of categories by constructing an inverse functorT

from the categoryC2 to the category of principalG-bundles onY. If (P1, A1, P2)

is an object ofC2, then we define a principalG-bundleT(P1, A1, P2) onY as fol-
lows. We choose trivializations ofP1 over an open coveringU 1= {U1

α | α ∈ I } of
Y1 such that there is exactly one open setU1

α0
∈U 1 that containsq1. We denote the

cocycle ofP1 with respect toU 1 by g1
α,α ′ . Similarly, we choose trivializations of

P2 over an open coveringU 2 = {U2
β | β ∈ J } of Y2 such that there is exactly one

open setU2
β0
∈U 2 that containsq1. The trivialization ofP1 onU1

α0
induces a trivi-

alization ofj ∗1P1 onq1, and the trivialization ofP2 onU2
β0

induces a trivialization
of j ′ ∗1 P2 on q1. In these trivializations, the morphismA1 is the multiplication on
the left with an element ofG. We can choose a trivialization ofP2 onU2

β0
such

that the morphismA1, in the given trivialization atq1, is the identity. We denote
the cocycle ofP2 with respect toU 2 by g2

β,β ′ . LetU = U1
α0
∪ U2

β0
. We construct

aG-bundleT(P1, A1, P2) on Y from trivial G-bundles overU1
α (α 6= α0), U

2
β

(β 6= β0), andU by gluing according to the cocyclesg1
α,α ′ andg2

β,β ′ . A choice of
other trivializations will, as before, define an isomorphicG-bundle onY. We can
extend this construction on morphisms. Thus we have a functorT from C2 to the
category of principalG-bundles onY. If Q = T(P1, A1, P2) then there are natu-
ral isomorphismsh1: P1→ l∗1Q andh2 : P2→ l∗2Q. If C : j ∗1 l∗1Q→ j ′ ∗1 l

∗
2Q is

the canonical isomorphism, we haveC B j ∗1h1 = A1 B j ′ ∗1 h2. These observations
show thatT is an inverse, in both orders, ofS.

The next theorem shows that the classification of principalG-bundles over a chain
of rational curves is similar to the classification of principal bundles over a smooth
rational curve. See also Theorem 2.11 for a description of the classification data.

Theorem 2.2. LetG be a complex connected reductive group. The structure of
a principalG-bundle over a chain of rational curves can be reduced to a maximal
torus.

Corollary 2.3. A vector bundle over a chain of rational curves is a direct sum
of line bundles.

We now fix some notation and we recall some results about connected reductive
complex algebraic groups. LetG be a complex reductive algebraic group, and let
T be a maximal torus. LetW be the Weyl group ofG. Let T ⊂ B be a Borel
subgroup, and letX∗(T ) be the abelian group of homomorphisms fromC× to T .
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If r = rank(G) is the rank ofG, thenT ∼= (C×)r and we have a group isomor-
phismX∗(T ) ∼= Zr that associates to(a1, . . . , ar) ∈ Zr the homomorphismz →
(za1, . . . , zar ) fromC× toT . (Note:X∗(T ) is the standard notation in the literature,
and there is no connection with the base curveX.) Let λ ∈X∗(T ) be a dominant
element; that is, let(λ, α) ≥ 0 for all positive rootsα ofG, where positivity is de-
fined with respect to a fixed Borel subgroup. LetP(λ) be the parabolic associated
to λ generated byT and by the root groupsUα with (λ, α) ≥ 0. (Here we are us-
ing the standard notationP(λ) from the literature for the parabolic subgroups; the
parabolic subgroupP(λ) should not be confused with the principalG-bundlePλ
defined in the previous part.) The centralizer inG of the subgroup im(C× λ−→ T )

of T is denoted byZ(λ). The centralizerZ(λ) is a connected reductive group gen-
erated byT and the root groupsUα for whichα satisfies(λ, α) = 0. The unipotent
radical ofZ(λ) is denotedU(λ). The groupU(λ) is generated by the root groups
Uα with (λ, α) > 0. We haveP(λ) = Z(λ)U(λ). If uα is the Lie algebra of the
root groupUα and if t is the Lie algebra ofT, thenz(λ) = t ⊕∑(λ,α)=0 uα and
u(λ) =∑ (λ,α)>0 uα.

We recall the Bruhat decomposition.

Theorem 2.4. There is a bijective correspondence between the setB\G/B and
the elements of theWeyl groupW.More precisely, for anyg ∈G, there are elements
b1, b2 ∈B andn∈N(T ) such thatg = b2nb

−1
1 . The elementn is unique up to the

multiplication by an element ofT . That is, ifn, n′ ∈N(T ) andb1, b2, b
′
1, b
′
2 ∈ B

are such thatb2nb
−1
1 = b ′2n′b ′−1

1 , then there is an elementt ∈ T such thatn′ = nt.
The next result is an immediate corollary of the Bruhat decomposition.

Corollary 2.5. If n ∈ N(T ), let B ′ = nBn−1. There is a bijective correspon-
dence between the setB\G/B ′ and the elements of the Weyl groupW. More pre-
cisely, for anyg ∈G, there are elementsb1∈B ′, b2 ∈B, andn∈N(T ) such that
n = b2gb

−1
1 . The elementn is unique up to the multiplication by an element ofT .

That is, ifn, ñ∈N(T ), b1, b̃1∈B ′, andb2, b̃2 ∈B are such thatn = b2gb
−1
1 and

ñ = b̃2gb̃
−1
1 , then there is an elementt ∈ T such thatñ = nt.

We will need the next propositions in the proof of Theorem 2.2.

Proposition 2.6. LetG be a connected reductive algebraic group,T ⊂ G a
maximal torus, andB a Borel subgroup ofG containingT . Let λ ∈ X∗(T ) be
dominant and letn∈N(T ). Then there is an elementm∈N(T ) such that

mBm−1 ⊂ (Z(λ) ∩ nBn−1)U(λ).

Proof. We first claim that(Z(λ) ∩ nBn−1)
0 is a Borel subgroup ofZ(λ), where

(Z(λ) ∩ nBn−1)
0 is the connected component of the identity ofZ(λ) ∩ nBn−1.

The group(Z(λ) ∩ nBn−1)
0 is a connected closed solvable subgroup ofZ(λ). It

is also maximal with these properties because its Lie algebra is

t⊕
∑

α>0,wα>0,(λ,α)=0

uα ⊕
∑

α<0,wα>0,(λ,α)=0

uα,
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wherew ∈ W = N(T )/T is the element defined byn ∈ N(T ). Using the pre-
vious claim,(Z(λ) ∩ nBn−1)0 and(Z(λ) ∩ B)0 are two Borel subgroups in the
reductive groupZ(λ). Since any two Borel subgroups in a connected reductive
group are conjugated, there is an elementm∈Z(λ) such that(Z(λ)∩ nBn−1)0 =
m(Z(λ) ∩ B)0m−1. Because the two Borel subgroups(Z(λ) ∩ nBn−1)0 and
(Z(λ) ∩ B)0 containT, the elementm must normalizeT, that is,m ∈ N(T ).
Sincem∈Z(λ) normalizesU(λ) and since(Z(λ)∩B)0U(λ) = B, we obtain the
result of the proposition.

Proposition 2.7. Let ν ∈X∗(T ) be another dominant cocharacter. Then there
is an elementm∈N(T ) such that

mBm−1 ⊂ (Z(λ) ∩ nP(ν)n−1)U(λ).

Proof. SinceB ⊂ P(ν), the result follows from Proposition 2.6.

Proposition 2.8. Let λ1, . . . , λi ∈ X∗(T ) be dominant and letn1, . . . , ni−1 ∈
N(T ). DefineA1= P(λ1) andAj+1 = (Z(λj+1)∩ njAj n−1

j )U(λj+1) for 1≤ j ≤
i − 1. Then there is an elementm∈N(T ) such thatmBm−1 ⊂ Ai.
Proof. This follows from Proposition 2.7 by induction oni.

Corollary 2.9. Let λ1, . . . , λi ∈X∗(T ) be dominant. Letn1, . . . , ni−1∈ N(T )
and letm be as in Proposition 2.8. Leta ∈ mBm−1. Then there existaj ∈ Z(λj )
andcj ∈ U(λj ) for 1 ≤ j ≤ i such that(aj+1)nj (aj cj )

−1 = nj (1 ≤ j ≤ i − 1)
anda = aici .
We are now ready for the proof of the Theorem 2.2.

Proof of Theorem 2.2.Let P be a principalG-bundle overX. Using Proposition
2.1,P is constructed from principalG-bundles over the components ofX by gluing
the fibers over the common pointsqi. LetPi be the pull-back ofP toXi. Applying
Observation 1.2(2) to the bundlePi overXi and to the pointsqi−1, qi ∈Xi, we ob-
tain a dominant cocharacterλi ∈X∗(T ) such thatPi = Pλi .We can viewPi = Pλi
as the principalG-bundle obtained from the trivial bundlesπ : Xi−{qi−1}×G→
Xi−{qi−1} andπ ′ : Xi−{qi}×G→ Xi−{qi} by gluingπ−1(Xi−{qi−1, qi})→
π ′−1(Xi − {qi−1, qi}) via the formula(x, g) → (x, λi(x)g), where we consider
λi as a morphismλi : Xi − {qi−1, qi} = C∗ → T . Using Proposition 2.1, the
principalG-bundle corresponds to the object(Pλ1, A1, Pλ2, . . . , Ak−1, Pλk ) of Ck.
Using the trivialization ofPλi overXi − {qi−1} and the trivialization ofPλi+1 over
Xi+1−{qi+1}, Ai can be considered as an elementgi ofG. We fix these trivializa-
tions ofPi overXi −{qi−1} andXi+1−{qi+1} because we will refer to them in the
proof. In this way, the gluing data is equivalent to a tuple(g1, . . . , gk−1)∈Gk−1.

Lemma 1. We claim that, by using automorphisms ofP,we can replace the tuple
(g1, . . . , gk−1)∈Gk−1 with a tuple(n1, . . . , nk−1)∈N(T )k−1 of elements ofN(T ),
the normalizer ofT in G.
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Let’s see first how an automorphism ofP will affect the gluing data. Ifφi ∈
Aut(Pi), 1 ≤ i ≤ k, are automorphisms ofPi, then the tuple(φ1, . . . , φk) is an
automorphism of the object(Pλ1, A1, Pλ2, . . . , Ak−1, Pλk ) of Ck, which by Propo-
sition 2.1 corresponds to an automorphism ofP. The automorphism(φ1, . . . , φk)

affects the gluing data(A1, . . . , Ak−1) by replacing it with(
φ2(q1) B A1 B φ1(q1)

−1, φ3(q2) B A2 B φ2(q2)
−1,

. . . , φk(qk−1) B Ak−1 B φk−1(qk−1)
−1),

whereφi(q) denotes the automorphism of the pull-back ofPi overq induced by the
automorphismφi of Pi. By identifying the gluing data(A1, . . . , Ak−1)with a tuple
(g1, . . . , gk−1)∈Gk−1 and by using the fixed trivializations ofPi overXi − {qi−1}
andXi+1− {qi+1}, we can use the automorphism(φ1, . . . , φk) to replace the tuple
(g1, . . . , gk−1) with the tuple

(φ2,q1 · g1 · φ−1
1,q1
, φ3,q2 · g2 · φ−1

2,q2
, . . . , φk,qk−1 · gk−1 · φ−1

k−1,qk−1
),

whereφi,qi , φi+1,qi ∈G represents the automorphismsφi(qi) andφi+1(qi) in the
fixed trivializations ofPi andPi+1 overXi − {qi−1} andXi+1− {qi+1}, respec-
tively. Lemma 1 states that, by using automorphisms of type(φ1, . . . , φk), we can
replace the tuple(g1, . . . , gk−1) ∈Gk−1 with a tuple(n1, . . . , nk−1) ∈ N(T )k−1 of
elements ofN(T ). We prove Lemma 1 by induction. In the initial step (Lemma
2), we show that we can replace the tuple(g1, . . . , gk−1)with an equivalent tuple in
which the first component is an element ofN(T ). The inductive step is presented
in Lemma 3. We prove there that, if(g1, . . . , gi, gi+1, . . . , gk−1) is a tuple such that
gj ∈N(T ) for 1≤ j ≤ i, then by using an automorphism(φ1, . . . , φk) we can re-
place the tuple(g1, . . . , gk) with a tuple(g1, . . . , gi, g

′
i+1, . . . , g

′
n−1), whereg ′i+1∈

N(T ). This will finish the proof of Lemma 1.

Lemma 2. We can replace the tuple(g1, . . . , gk−1) with an equivalent tuple in
which the first component is an element ofN(T ).

This follows from the Bruhat decomposition (Theorem 2.4) as follows. There exist
b1, b2 ∈ B andn ∈N(T ) such thatb2nb

−1
1 = g1. Let φ1∈Aut(Pλ1) as in Corol-

lary 1.4(2) be such that, in the trivialization ofPλ1 aroundq1, we haveφ1,q1 =
b1. Let φ2 ∈Aut(Pλ2) as in Corollary 1.4(2) be such that, in the trivialization of
Pλ2 aroundq2, we haveφ2,q1 = b2. Let Idi ∈Aut(Pλi ) denote the identity auto-
morphism ofPλi . Then the automorphism(φ1, φ2, Id3, . . . , Idk) replaces the tuple
(g1, g2, . . . , gk−1)with the tuple(n, g ′2, . . . , g ′k−1). This ends the proof of Lemma 2
and also the first step of the induction.

Lemma 3. If (g1, . . . , gi, gi+1, . . . , gk−1) is a tuple such thatgj ∈N(T ) for 1≤
j ≤ i, then using an automorphism(φ1, . . . , φk) allows us to replace the tuple
(g1, . . . , gk) with a tuple(g1, . . . , gi, g

′
i+1, . . . , g

′
k−1), whereg ′i+1∈N(T ).

We apply Proposition 2.8 toλ1, . . . , λi ∈X∗(T ) andn1, . . . , ni−1∈N(T ). Letm∈
N(T ) be as in that proposition. Using Corollary 2.5 form ∈N(T ) andgi+1∈G,
we can find elementsb1∈mBm−1 andb2 ∈ B such thatb2gi+1b

−1
1 = n ∈N(T ).

Applying Corollary 2.9 tob1 ∈ mBm−1, there existaj ∈ Z(λj ) andcj ∈ U(λj )
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for 1 ≤ j ≤ i such that(aj+1)nj (aj cj )
−1 = nj (1 ≤ j ≤ i − 1) andb1 = aici .

Let φ1∈Aut(Pλ1) as in Corollary 1.4(2) be such that, in the trivialization ofPλ1

aroundq1, we haveφ1,q1 = a1c1. Let φj ∈ Aut(Pλj ) (2 ≤ j ≤ i) as in Corol-
lary 1.4(1) be such that we haveφj,qj−1 = aj in the trivialization ofPλj around
qj−1 andφj,qj = aj cj in the trivialization ofPλj aroundqj . Let φi+1∈Aut(Pλi+1)

as in Corollary 1.4(2) be such that, in the trivialization ofPλi+1 aroundqi, we
haveφi+1,qi = b2. The automorphism(φ1, . . . , φi, φi+1, Id i+2, . . . , Idk) replaces
the tuple(g1, . . . , gk) with (g1, . . . , gi, n, g

′
i+2, . . . , g

′
k−1). This ends the proof of

Lemma 3 and hence of Lemma 1.

We have thus proved thatP is isomorphic to a principalG-bundleP ′ onX ob-
tained by gluing the fibers overqi of the principalG-bundlesPλi with gluing data,
which in some fixed trivializations is a tuple(n1, . . . , nk−1) of elements ofN(T ).
To finish the proof of the Theorem 2.2, it suffices to prove that the structure group
of theP ′ can be reduced toT . Let li+1 = nini−1 · · · n1∈N(T ) for 1≤ i ≤ k − 1
and letl1= e ∈N(T ),wheree denotes the identity element ofG. Letλ′i = l−1

i λi li
for 1 ≤ i ≤ k. Let φi = φl−1

i
: Pλi → Pλ′i (1 ≤ i ≤ k) be the isomorphism de-

fined in Observation 1.5. Then(φ1, φ2, . . . , φk) is an isomorphism inCk between
the principalG-bundleP ′ given by(Pλ1, n1, Pλ2, . . . , nk−1, Pλk ) and another prin-
cipalG-bundleP ′′ given by(Pλ′1, e, Pλ′2, . . . , e, Pλ′k ). The structure group ofP ′′
can be reduced toT because the principalG-bundleP ′′ is obtained from the prin-
cipal T -bundle(Tλ′1, e, Tλ′2, . . . , e, Tλ′k ) by extending the group structure via the
group inclusionT → G. This ends the proof of the Theorem 2.2.

Observation 2.10. The proof can be briefly explained like this. A reduction of
the group structureG of the principal bundleP to the subgroupT ⊂ G is equiva-
lent to a section of the fiber bundleP/T . The proof constructs such a section over
X from sections over the componentsXi. (Sections over the components exist by
Theorem1.1.)

The data for classification of principalG-bundles overX is a tuple(λ1, . . . , λk)∈
X∗(T )k. For any such tuple, we define a principalG-bundleQ(λ1, . . . , λk) onX
as follows. Applying Observation 1.2(3) toλi ∈X∗(T ) and to the pointsqi−1, qi ∈
Xi, we obtain a principalG-bundlePλi onXi. As in the proof of Theorem 2.2,
using the trivialization ofPλi onXi − {qi−1} andXi − {qi} enables us to identify
the gluing data with a(k−1)-tuple of elements ofG. We consider the gluing data
(A1, . . . , Ak−1) that correspond to the tuple(e, . . . , e)∈Gk−1, wheree is the iden-
tity element ofG. Using Proposition 2.1, we defineQ(λ1, . . . , λk) as the principal
G-bundle onX that corresponds to(Pλ1, A1, . . . , Ak−1, Pλk ). The next theorem,
which follows from the proof of Theorem 2.2, gives the classification of principal
G-bundles onX.

Theorem 2.11.

(1) Any principalG-bundle onX is isomorphic withQ(λ1, . . . , λk) for some tuple
(λ1, . . . , λk)∈X∗(T )k.

(2) If λ′i = w · λi for somew ∈ W, thenQ(λ1, . . . , λk) andQ(λ′1, . . . , λ′k) are
isomorphic.
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The converse of the second part of Theorem 2.11 is equivalent to the following
conjecture.

Conjecture 2.12. LetG be a complex reductive algebraic group. Letλ1, . . . ,

λk ∈X∗(T ). Let n′i , ni ∈ N(T ) for 1 ≤ i ≤ k − 1. If n′i = (ai+1ci+1)ni(aibi)
−1

(1≤ i ≤ k−1) for someai ∈Z(λi) andbi, ci ∈U(λi), then for all1≤ i ≤ k−1
there existmi ∈N(T ) ∩ Z(λi) such thatn′i = mi+1nim

−1
i .

Part III

In this part,X is an irreducible singular nodal rational curve with exactly one sin-
gular pointq ∈ X. Let π : P1 → X be the normalization ofX and letq0, q1 ∈
P1 be the preimages ofq ∈ X under the morphismπ. We study Zariski locally
trivial principalG-bundles overX. The next proposition says that any principal
G-bundleQ onX is obtained from a principalG-bundleP on P1 by gluing the
fibers over the pointsq0 andq1.

Proposition 3.1. LetZ = Spec(C). Letj0 : Z→ P1 be the morphism that fac-
torizes through the pointq0, and letj1: Z→ P1 be the morphism that factorizes
through the pointq1. Let D be the category of pairs(P,A), whereP is a prin-
cipalG-bundle overP1 andA : j ∗0P → j ∗1P is a morphism ofG-bundles onZ.
A morphism inD from (P,A) to (P ′, A′) is given by a morphismφ : P → P ′ of
principalG-bundles overP1 such thatA′ B j ∗0φ = j ∗1φ B A. There is an equiva-
lence of category of principalG-bundles onX and the category of pairsD. Under
this equivalence, the principalG-bundleQ overX corresponds to a pair(P,A),
where the bundleP overP1 is the pull-back ofQ.

Proof. LetQ be a principalG-bundle overX. LetP = π∗Q be the pull-backG-
bundle onP1. Sinceπ B j0 = π B j1, there is a canonical isomorphismA : j ∗0P →
j ∗1P of principalG-bundles overq1. We define a functorS from the category of
principalG-bundles onX to the categoryD, which on objects associates to a
principalG-bundleQ the pair(P,A). We prove thatS defines an equivalence of
categories by constructing an inverse functorT from the categoryD to the cat-
egory of principalG-bundles onX. If (P,A) is an object ofD, we construct a
principalG-bundleT(P,A) onX as in [2].

Letp ∈X be a point different from the singular pointq ∈X. LetU = X−{p}and
Ũ = P1−π−1(p) and letπ : Ũ → U be the restriction of the normalization mor-
phismπ. We may assumẽU ∼= Spec(R̃), whereR̃ = C[t ]. ThenU = Spec(R),
whereR = {f ∈ R̃ | f(q0) = f(q1)}. Since any principalG-bundle overC is triv-
ial, we have a trivializationP |Ũ ∼= Ũ ×G of P overŨ. Using this trivialization,
the isomorphismA is equivalent to an automorphism ofG, the mappingφ : G→
G given by multiplication on the left with an element ofG. If G = Spec(S),
thenφ : G→ G corresponds to aC-algebra isomorphismφ∗ : S → S. Let B be
the finitely generatedR-algebra given byB = {s ∈ S ⊗C R̃ = S [t ] | s(x) =
φ∗(s(y))} ⊂ S [t ]. We considerh : Spec(B) → Spec(R), which will be the re-
striction ofT(P,A) onX − {p}. There is a natural right action ofG = Spec(S)
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on Spec(B) induced from the right action ofG on Spec(S [t ]). The morphism
h : Spec(B) → Spec(R) isG-invariant and Zariski locally trivial. Local trivial-
ity follows after a pull-back under the étale morphism SpecR1→ SpecR, where
R1= {(f, g)∈C[t ]⊕C[t ] | f(x) = g(y)}. Note thatB⊗R R1

∼= B1,whereB1=
{(r, s) ∈ S [t ] ⊕ S [t ] | r(x) = s(y)}. Since Spec(B1)→ Spec(R1) is Zariski lo-
cally trivial, by faithful flatness we obtain thath : Spec(B)→ Spec(R) is Zariski
locally trivial.

This construction depends on the trivialization ofP overŨ. For another trivial-
ization, the isomorphismA defines an automorphismφ ′ : G→ G and hence an-
otherR-algebraB ′ and a morphismh′ : Spec(B ′) → Spec(R). We can prove
that there is aR-algebra isomorphismB → B ′ compatible with the actions
of G on Spec(B) and Spec(B ′). Thus we have aG-equivariant isomorphism
f : Spec(B ′) → Spec(B) such thath B f = h′. There is a canonical mor-
phismB ⊗R R̃→ R̃ ⊗C S, which is an isomorphism that is compatible with the
actions ofG. That the morphism is an isomorphism can be seen by tensoring
with the faithfully flat morphismR → R1. This means that the base change
of h : Spec(B)→ Spec(R) using the base morphismπ : Spec(R̃)→ Spec(R) is
the projection Spec(R̃)×G→ Spec(R̃).

Let p1 ∈ X be another point ofX different from p and q. As before, let
U1 = X − {p1} and Ũ1= P1− π−1(p1) and letπ : Ũ1→ U1 be the restric-
tion of π. If Ũ1= Spec(R̃1) where R̃1= C[t1], thenU1 = Spec(R1) where
R1= {f ∈ R̃1 | f(x) = f(y)}. We choose a trivialization ofP over Ũ1 and let
φ1: G → G be the morphism corresponding toA. As before, we construct
h1: Spec(B1) → Spec(R1), whereB1 is a R1-algebra defined byB1 = {s ∈
S ⊗C R̃1 = S [t1] | s(x) = φ∗1(s(y))} ⊂ S [t1]. We think of h1: Spec(B1) →
Spec(R1) as the restriction ofT(P,A) onX − {p1}.

We now glue togetherhandh1 into a principalG-bundle onX. The gluing is done
overX−{p, p1} = Spec(W ),whereW = {f ∈ W̃ = OP1(P1−{z, z1}) | f(q0) =
f(q1)} andz, z1∈ P1 are the points overp andp1, respectively. Note that the re-
striction of the normalization morphism isπ : Spec(W̃ )→ Spec(W ). The restric-
tion ofh : Spec(B)→ Spec(R) to Spec(W ) can be identified with̄h : Spec(C)→
Spec(W ), whereC = {s ∈ W̃ ⊗C S | s(q0) = φ∗(s(q1))} ⊂ W̃ ⊗C S. This iden-
tification is induced from the naturalW -algebra morphismB ⊗R W → C, which
is an isomorphism. Similarly, the restriction ofh1: Spec(B1) → Spec(R1) to
Spec(W ) can be identified with̄h1: Spec(C1)→ Spec(W ), whereC1 = {s ∈
W̃ ⊗C S | s(q0) = φ∗1(s(q1))}. The cocycle ofP with respect to the trivializa-
tions overŨ andŨ1 is a morphismλ : Ũ ∩ Ũ1= Spec(W̃ )→ G. The cocycleλ
defines an automorphism̃λ of W̃ ⊗C S corresponding to the action on the right
with λ. Sinceφ1 B λ(x) = λ(y) B φ, the automorphism̃λ factorizes through aW -
algebra isomorphism̄λ betweenC andC1. We glueh̄ : Spec(C)→ Spec(W ) and
h̄1: Spec(C1)→ Spec(W ) by using the automorphism̄λ : Spec(C)→ Spec(C).
The result is a Zariski locally trivial principalG-bundle onX, which we will de-
note byT(P,A). This construction extends on morphisms. Thus we have a functor
T from D to the category of principalG-bundles onX. If Q = T(P,A), then
there is a natural isomorphismh : P → π∗Q such that the canonical isomorphism
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j ∗0Q→ j ∗1Q is identified withA : j ∗0P → j ∗1P. These observations show thatT
is a two-sided inverse ofS.

If λ ∈X∗(T ) is dominant andg ∈G, we define a principalG-bundleP(λ, g) on
X as follows. Consider the bundlePλ overP1 constructed in Observation 1.2(3),
and recall thatPλ has trivializations overP1− {q0} andP1− {q1} such that the
transition function overP1− {q0, q1} is λ. We considerA : j ∗0Pλ → j ∗1Pλ as a
morphism ofG-bundles onZ, which in the given trivializations ofPλ is given by
the left multiplication byg ∈G. The pair(Pλ,A) is an object of the categoryD.
Let P(λ, g) be the principalG-bundle onX corresponding, as in Proposition 3.1,
to the object(Pλ,A).

Theorem 3.2. Any principalG-bundle onX is isomorphic withP(λ, g) as de-
fined previously, whereλ ∈X∗(T ) is dominant andg ∈ G. If λ, λ′ ∈X∗(T ) are
dominant and ifg, g ′ ∈ G, then the principalG-bundlesP(λ, g) andP(λ′, g ′)
are isomorphic if and only ifλ′ = λ andg ′ = (ab ′)−1

g(ab), wherea ∈Z(λ) and
b, b ′ ∈U(λ).
Proof. LetQ be a principalG-bundle onX. Using Proposition 3.1, we can think of
the principalG-bundleQ as being obtained from a principalG-bundleP onP1 by
gluing the fibers overq0 andq1 using a morphismA : j ∗0P → j ∗1P of G-bundles
onZ. From Observation 1.2(2), the bundleP has trivializations overP1− {q0}
andP1− {q1} such that the transition function overP1− {q0, q1} is a dominant
elementλ ∈X∗(T ). In these trivializations ofP, the morphismA is given by the
left multiplication with an elementg ∈G. It follows from all this that the bundle
Q is isomorphic withP(λ, g) as defined previously. This ends the proof of the
first part of the theorem.

As in the proof of Theorem 2.2, an automorphismφ ∈Aut(P ) replaces the glu-
ing datag ∈ G with φq1 · g · φ−1

q0
, whereφqi ∈ G represents the automorphism

of the fiberP(qi) overqi induced byφ in the corresponding trivializations ofP.
By Theorem 1.4, there exista ∈ Z(λ) andb, b ′ ∈ U(λ) such thatφq1 = ab ′ and
φq0 = ab. It follows that the automorphismφ replaces the gluing datag with
(ab ′)g(ab)−1. Sinceλ is uniquely determined fromQ, we have proved the claim
of the theorem.

Motivated by the preceding theorem, we define an equivalence relation∼= onG
by g ∼= g ′ if and only if g ′ = (ab ′)g(ab)−1 for somea ∈ Z(λ) andb, b ′ ∈ U(λ).
The data for the construction of principalG-bundles onX is a pair(λ, ĝ), where
λ is a dominant element ofX∗(T ) andĝ is an equivalence class of the equivalence
relation∼= onG. For a complete description of the principalG-bundles onX, one
needs a description of all the equivalence classes of the relation∼= onG.

Part IV

In this part we study Zariski locally trivial principalG-bundles over a cycle of ra-
tional curves. A cycle of rational curves is a connected reduced complex curve
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X = X1∪ · · ·∪Xk with k ≥ 2 irreducible componentsXi (1≤ i ≤ k), all of them
smooth rational curves, such that (a)Xi intersectsXi+1 in a nodal singular point
qi for all 1≤ i ≤ k − 1 and (b)Xk intersectsX1 in a nodal singular pointqk. We
identify Xi with Xi+k andqi with qi+k. The curveX is obtained fromk copies
X1, . . . , Xk of a smooth rational curve by gluingXi − {qi−1} to Xi+1− {qi+1} at
the pointqi for 1 ≤ i ≤ k, as in Part II. The starting point of the study of prin-
cipal bundles overX is Proposition 4.1, which states that any principalG-bundle
overX is obtained from principalG-bundlesPi overXi by gluing the fibers over
the common pointsqi, 1≤ i ≤ k. The proof is similar to the proof of the Propo-
sition 2.1.

Proposition 4.1. Let Y = Y1 ∪ · · · ∪ Yk be a reduced curve withk ≥ 2 irre-
ducible componentsYi such that(a) Yi intersectsYi+1 in a pointqi for 1 ≤ i ≤
k and (b) the structure sheafOY is given by(f1, . . . , fk) ∈ OY1 ⊕ · · · ⊕ OYk
with fi(qi) = fi+1(qi) for 1 ≤ i ≤ k. Here we identifyYi with Yi+k and qi
with qi+k. Let ji be the inclusion ofqi in Yi and letj ′i be the inclusion ofqi in
Yi+1. LetDk be the category of tuples(P1, A1, P2, A2, . . . , Ak−1, Pk, Ak), where
Pi is a principalG-bundle overYi andAi : j ∗i Pi → j ′ ∗i Pi+1 is a morphism ofG-
bundles overqi. A morphism inDk between(P1, A1, P2, A2, . . . , Ak−1, Pk, Ak)

and (Q1, B1,Q2, B2, . . . , Bk−1,Qk, Bk) is given by a tuple(φ1, . . . , φk), where
φi : Pi → Qi is a G-morphism overYi (1 ≤ i ≤ k) such thatBi B j ∗i φi =
j ′ ∗i φi+1BAi. There is an equivalence of categories between the category of princi-
palG-bundles onY and the categoryDk. Under this correspondence, the bundles
P1, . . . , Pk are the pull-backs of the bundleP.

The classification of the principalG-bundles overX is presented in Theorem
4.2. We describe first the parameters of the classification. The data for the con-
struction of a principalG-bundle onX is a tripled = (3,N, ĝ), where3 =
(λ1, . . . , λk) is a tuple of dominant elements ofX∗(T ), N = (n1, . . . , nk−1) is
a tuple of elements ofN(T ), and ĝ is an equivalence class of an equivalence
relation∼ described momentarily. Ifa ∈ Z(λ1), define the setsSi+1(a) =
Z(λi+1) ∩ niSi(a)ni−1U(λi+1) (1 ≤ i ≤ k − 1) andS1(a) = aU(λ1). We de-
fine anequivalence relationon G by g ∼ (ab)g(ãc)−1, whereb ∈ U(λ1), c ∈
U(λk), a ∈ Z(λ1), andã ∈ Sk(a); hereĝ is an equivalence class with respect to
the equivalence relation∼. If d is as just described, letP(d) be the principal
G-bundle associated to(Pλ1, n1, Pλ2, . . . , nk−1, Pλk , g), considered as an object in
Dk. Hereg ∈G is a representative of the equivalence classĝ. Any other represen-
tative will define an isomorphic principalG-bundle.

Theorem 4.2. Any principalG-bundle onX is isomorphic withP(d), for some
datad as described previously.

Proof. The proof is similar to that for Theorem 2.2. We start with a principalG-
bundle onX. Using Proposition 4.1, we can think of the principalG-bundleP as
being obtained from principalG-bundles over the components by gluing the fibers
overqi, 1≤ i ≤ k. LetPi be the pull-back ofP to the componentXi, 1≤ i ≤ k.
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From Observation 1.2(2), the bundlePi has trivializations overXi − {qi−1} and
overXi − {qi} such that the transition function overXi − {qi−1, qi} = C∗ is λi, a
dominant element ofX∗(T ). We fix the two trivializations ofPλi . Using Propo-
sition 4.1, the principalG-bundleP is obtained from the principalG-bundlesPλi
overXi by gluing data(A1, . . . , Ak−1, Ak), whereAi : j ∗i Pλi → j ′ ∗i Pλi+1 is an
isomorphism of principalG-bundles overqi. Using the fixed trivializations ofPi
andPi+1 overqi, the morphismAi corresponds to an elementgi ∈G and so the
gluing data is the tuple(g1, . . . , gk). We consider automorphisms(φ1, . . . , φk) of
P, whereφi ∈ Aut(Pλi ), and we consider how such an automorphism affects a
gluing tuple(g1, . . . , gk). As in the proof of Theorem 2.2, we can construct auto-
morphisms ofP such that the tuple(g1, . . . , gk) is replaced with(n1, . . . , nk−1, g),

wheren1, . . . , nk−1∈N(T ) andg ∈G. A similar argument shows that an automor-
phism ofP replaces the tuple(n1, . . . , nk−1, g) with the tuple(n1, . . . , nk−1, g

′) if
and only ifg ′ ∼ g, where∼ is the equivalence relation previously defined. This
completes the proof.
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