Acylindrical Surfaces and Branched Surfaces I

Υυκιμικό Τσυτσυμι

1. Introduction

In this paper we give a finiteness property of some embedded surfaces in a 3manifold *M*. These embedded surfaces will be called "acylindrical" or "pseudoacylindrical" in Section 2. Acylindrical surfaces are important for hyperbolic 3manifolds; for example, if *M* is a hyperbolic 3-manifold and if *S* is an embedded totally geodesic surface, then *S* is acylindrical. Furthermore, if *S* is acylindrical or pseudo-acylindrical, then *S* is a quasi-Fuchsian surface; that is, the limit set of the image $\pi_1(S) \to \pi_1(M) \to \text{Isom}^+ \mathbb{H}^3$ is a simple closed curve in S^2_{∞} ([10]).

In Section 3, we prove the following finiteness result.

THEOREM 1.1. There exist only finitely many pseudo-acylindrical surfaces, up to isotopy, in a compact orientable 3-manifold.

A result similar to Theorem 1.1 was obtained by Hass [3] and Sela [9]. Since Gabai suggested that [3, Thm. 10] can be obtained using techniques of branched surface theory, we give a proof of Theorem 1.1 using some results about branched surfaces obtained by Floyd and Oertel [1].

In Section 2, we give definitions for acylindrical and pseudo-acylindrical surfaces and for branched surfaces.

In Section 4, we consider the finite cyclic covering spaces of a 3-manifold. In fact, for a Haken 3-manifold M with positive Betti number, some finite cyclic covering space M' contains pseudo-acylindrical surfaces, or M' is a surface bundle over the circle or constructed by books of *I*-bundles.

In Section 5, we will give some examples of 3-manifolds that are related to our results. As an application of Theorem 1.1, one can construct infinitely simple 3-manifolds (cf. Proposition 5.1).

2. Preliminaries

Unless stated otherwise, we let M be a compact orientable 3-manifold, and we let F be a 2-manifold that (a) is not homeomorphic to S^2 or P^2 and (b) is properly embedded in M. We denote a regular neighborhood of a subset $X \subset M$ by N(X; M) and denote its interior by \mathring{X} . For a topological space X, we denote the

Received February 1, 2001. Revision received July 1, 2001.

number of components by |X|. For a set *S*, we denote the cardinality of *S* by $\sharp S$. By a *surface* we mean a compact 2-manifold. For a surface *F* properly embedded in a 3-manifold *M*, the frontier of N(F; M) is denoted by $\partial N(F; M)$.

A surface *F* properly embedded in a 3-manifold *M* is said to be *injective* (π_1 -*injective*) in *M* if the map $i_*: \pi_1(F) \to \pi_1(M)$ is injective. A *compressing disk* for a surface *F* embedded in a 3-manifold *M* is an embedded 2-disk *D* such that $F \cap D = \partial D$ and ∂D does not bound a disk in *F*. A surface *F* embedded in a 3-manifold *M* is *incompressible* in *M* if there exists no compressing disk for *F*. A surface *F* is ∂ -*incompressible* if, for each disk $D \subset M$ with $\partial D = \alpha \cup \beta$ (where $D \cap F = \alpha$ is a properly embedded arc in *F* and $\partial M \cap D = \beta$), there is a disk $D' \subset F$ with $\partial D' = \alpha \cup \beta'$ and $\beta' = D' \cap \partial F$.

An embedded surface F is *two-sided* in M if N(F) is homeomorphic to $F \times I$; otherwise, F is said to be *one-sided*. It is known that an injective surface is incompressible and that a two-sided incompressible surface is injective (see [4, Chap. 6]). A 3-manifold *M* is said to be *irreducible* if each embedded 2-sphere bounds a 3-ball in M, and M is P^2 -irreducible if M is irreducible and contains no two-sided projective plane P^2 . A manifold M is said to be: sufficiently large if M contains some two-sided incompressible surface; Haken if M is compact, P^2 irreducible, and sufficiently large; and ∂ -irreducible if each component of ∂M is incompressible in M. A surface F properly embedded in M is said to be ∂ -parallel if there exists an embedding $f: F \times [0, 1] \to M$ such that $f(F \times \{0\}) = F$ and $f(\partial F \times [0, 1] \cup F \times \{1\}) \subset \partial M$. If M contains no incompressible torus that is not ∂ -parallel, then M is said to be *atoroidal*. An annulus A properly embedded in a 3-manifold M is said to be *essential*/ if A is incompressible and not ∂ -parallel in M. A 3-manifold M is said to be anannular if M contains no properly embedded essential annuli. A 3-manifold that is irreducible, ∂-irreducible, atoroidal, and anannular is called a *simple* 3-manifold.

A closed two-sided incompressible surface *F* in *M* is said to be *pseudo-acylindrical* if, for some i = 0, 1, each essential annulus in $M - \mathring{N}(F)$ has boundaries in $F \times \{i\}$, where N(F) is identified with the product $F \times [0, 1]$. An incompressible closed surface *F* in a 3-manifold *M* is *acylindrical* if each component of $M - \mathring{N}(F)$ contains no essential annuli with boundaries contained in $\partial N(F)$.

A compact 2-polyhedron $B \subset M$ is called a *branched surface* if the local structure is modeled on the space in Figure 1(A) (see [1] for details). The *branch locus* of *B* is the set of points in *B* each of which has no neighborhood homeomorphic to \mathbb{R}^2 . A neighborhood *N* of *B* in the 3-manifold *M* is naturally constructed as indicated in Figure 1(B). Such a neighborhood is called a *fibered neighborhood*. Observe that ∂N is the union of three compact subsurfaces $(\partial_h N, \partial_v N, \text{ and } N \cap \partial M)$ that meet only in their common boundary points. A fiber of *N* meets $\partial_h N$ transversely at its endpoints, while a fiber of *N* intersects $\partial_v N$ in a closed interval in the interior of the fiber. A surface *F* is *carried by B* if *F* can be isotoped into \mathring{N} so that *F* intersects the fibers transversely. A surface *F* is carried by *B with positive weights* if *F* can be isotoped into \mathring{N} so that *F* intersects all fibers transversely.

A branched surface B properly embedded in a Haken 3-manifold M is said to be *incompressible* if the following conditions are satisfied (see Figure 2).

- (I.1) There exists no disk $D \subset N$ such that D is transverse to the fibers of Nand $\partial D \subset \mathring{\partial}_v N$ (such a disk is called a *disk of contact*); and there is no disk $D \subset N$ such that D is transverse to the fibers of N with $\partial D = \alpha \cup \beta$, where $\mathring{\alpha} \subset \mathring{\partial}_v N$ and $\beta \subset \partial M$ are arcs and $\alpha \cap \beta = \partial \alpha = \partial \beta$.
- (I.2) Each component of $\partial_h N$ is incompressible and ∂ -incompressible in $M \mathring{N}$.
- (I.3) There exists no disk $D \subset M \mathring{N}$ with $\partial D = D \cap N = \alpha \cup \beta$, where $\alpha \subset \partial_v N$ is a fiber and $\beta \subset \partial_h N$ (such a disk is called a *monogon*).

3. Proofs

Throughout this section, we let *B* be a branched surface that carries some connected surface with positive weights in an orientable irreducible 3-manifold *M*. We assume that each surface *F* carried by *B* with positive weights is isotoped into a fibered neighborhood N' of *B* so that *F* intersects all fibers transversely. Since $S = \partial N(F)$ intersects each fiber of N' at least twice, we may assume that N(F) is isotoped so that $\partial_h N' \subset S$ and $S \cap \partial N' = \partial_h N'$ (see Figure 3). If we let *L'* be the closure of N' - N(F), then each component of *L'* is an *I*-bundle over a surface. Unless stated otherwise, the base spaces of all *I*-bundles are homeomorphic to neither S^2 nor P^2 .

Figure 3

If some component A of $\partial_v N'$ is compressible in $M - \mathring{N}'$ then, by condition (I.2), both components of ∂A bound disks D_0 and D_1 in $\partial_h N'$. By the irreducibility of M, the sphere $D_0 \cup A \cup D_1$ bounds a 3-ball C on the side containing the compressing disk D for A. The 3-ball C can be identified with the product $D \times I$ so that $D \times \{0\} = D_0$ and $D \times \{1\} = D_1$. Hence, the *I*-bundle L' is naturally extended to the *I*-bundle $L = L' \cup_A C$, and we put $N = N' \cup C$. It can be seen that conditions (I.1)–(I.3) hold for N, by an argument similar to [1, Thm. 2]. We call the 3-manifold N constructed as described here an *extended fibered neighborhood of B*. Note that the extended neighborhood N may not be a regular neighborhood of a branched surface. In fact, the manifold N could be the whole manifold M, or some of the induced fibers of N may be S^1 or noncompact if B has "Reeb components".

A branched surface *B* is said to be *reduced* if *B* is an incompressible branched surface such that no component of $\partial_h N$ is a closed surface. The following theorem is a consequence of the main result of Floyd and Oertel in [1].

THEOREM 3.1. Let M be a Haken 3-manifold. There exist a finite number of reduced branched surfaces and incompressible surfaces B_1, \ldots, B_n such that each two-sided closed incompressible surface in M is carried with positive weights by some B_i .

Proof. If *M* is ∂ -reducible, then we let D_1, \ldots, D_m be disks properly embedded in *M* such that each component of $M - \mathring{N}(\bigcup_{i=1}^m D_i)$ is irreducible and ∂ -irreducible (see [5, Lemma III.21]). We put $M_0 = M - \mathring{N}(\bigcup_{i=1}^m D_i)$. If *M* is ∂ -irreducible then we put $M_0 = M$. Let B_1, \ldots, B_n be branched surfaces for M_0 given in [1, Thm. 1] without boundaries. Then each two-sided closed incompressible surface in M_0 is carried with positive weights by some B_i . By the construction in [1], these branched surfaces are incompressible in M_0 . If some component *S* of $\partial_h N_i$ is closed, where N_i is an extended fibered neighborhood of B_i , then each connected two-sided surface carried by B_i with positive weights is isotopic to *S*. If some B_i is a one-sided surface, then we replace B_i by $\partial N(B_i)$. Now it follows that each branched surface B_i is either a reduced branched surface in *M* is isotopic to an incompressible surface in M_0 . Furthermore, each B_i is also incompressible in *M*. Therefore, each closed incompressible surface in *M* is carried by some B_i with positive weights.

We call the branched surfaces B_1, \ldots, B_n given in Theorem 3.1 basic branched surfaces for M.

LEMMA 3.2. Let M be an orientable Haken 3-manifold. For each closed connected incompressible surface F carried by a reduced branched surface B with positive weights, each component of $\partial_v N$ is an essential annulus in $M - \mathring{N}(F)$, where N is an extended fibered neighborhood of B.

Proof. Let *A* be a component of $\partial_v N$. Since *M* is orientable, *A* is an annulus. First, we show that *A* is incompressible in $M - \mathring{N}(F)$. If it is not, then—for a compressing disk *D* for *A* with the number $|D \cap \partial_v N|$ minimal among all compressing disks—we let D_0 be an innermost disk *D* with respect to $D \cap \partial_v N$. We claim that D_0 is isotopic to a disk of contact for *N*. Notice that D_0 is properly embedded in *N* because each component of $\partial_v N$ is incompressible in $M - \mathring{N}$. Since *D* is contained in $M - \mathring{N}(F)$, it follows that D_0 is contained in L, where *L* is the closure of N - N(F), which is an *I*-bundle. Since ∂D_0 is contained in $\partial_v N$, the component of *L* containing D_0 is homeomorphic to a product $D_0 \times I$. Thus, there exists a disk of contact that is isotopic to D_0 . This contradicts condition (I.1).

Next, we show that *A* is ∂ -incompressible in $M - \mathring{N}(F)$. Let *D* be a ∂ compressing disk for *A* in $M - \mathring{N}(F)$. By the incompressibility of $\partial_v N$, we may
assume that $D \cap \partial_v N$ consists of properly embedded arcs in *D*. Let D_0 be an outermost disk of *D* with $\partial D_0 = \alpha \cup \beta$, where $\partial D_0 \cap \partial_v N = \alpha$. We let A_0 be the
component of $\partial_v N$ such that $\alpha \subset A_0$. By the minimality of $|D \cap \partial_v N|$, it follows
that the two points $\partial \alpha$ are contained in mutually distinct component of ∂A_0 . Since *L* is an *I*-bundle, it follows that *D* is contained in $M - \mathring{N}$. This contradicts condition (I.3).

LEMMA 3.3. Let M, F, and B be as in Lemma 3.2. Then F is not pseudoacylindrical in M.

Proof. Let *N* be an extended fibered neighborhood of *B*. If ∂N is empty, then each component of $M - \mathring{N}(F)$ is an *I*-bundle. Hence *F* is not pseudo-acylindrical in *M*.

We assume that ∂N is not empty and that F is pseudo-acylindrical in M. By Lemma 3.2, for each component A of $\partial_v N$ it follows that $\partial A \subset F \times \{0\}$, since Fis pseudo-acylindrical; here, N(F) is identified with the product $F \times \{0, 1\}$. Since $\partial_h N$ has no closed component, $F \times \{1\}$ is contained in \mathring{N} . Hence, some component L_1 of L with $\partial L_1 \cap F \times \{1\} \neq \emptyset$ is an I-bundle over a closed surface. By the hypothesis that $\partial_v N$ is not empty, L_1 must be a twisted I-bundle over a closed surface. This shows that there exists an essential annulus $A' \subset L_1$ with $\partial A' \subset$ $F \times \{1\}$. Hence F is not pseudo-acylindrical.

Now let us prove Theorem 1.1. First, we prove the following lemma about reducible 3-manifolds.

LEMMA 3.4. Let *M* be a reducible 3-manifold. Then *M* does not contain acylindrical surfaces. *Proof.* Let *F* be any two-sided closed incompressible surface embedded in *M*. Our plan is to show that *F* cannot be pseudo-acylindrical. Let *l* be a nontrivial simple closed curve in *F* and let *E* be an essential sphere embedded in *M*. By the incompressibility of *F*, we can choose the sphere *E* such that *E* does not meet *F*. We join points $x \in l$ and $y \in E$ with an arc α such that $\alpha \cap F = x$ and $\alpha \cap E = y$, and we put $A' = \partial N(l \cup \alpha \cup E; M)$. Clearly, A' consists of three components: one of the three is a sphere parallel to *E*, and the other two are annuli. For an annular component *A* of A' - F "surrounding $\alpha \cup E$ ", we see that $A \cap (M - \mathring{N}(F))$ is incompressible and not ∂ -parallel in the $M - \mathring{N}(F)$. Therefore, *A* is essential in $M - \mathring{N}(F)$ and hence *F* is not acylindrical.

Proof of Theorem 1.1. First, we prove the theorem for irreducible 3-manifolds. By Theorem 3.1, each closed two-sided incompressible surface is carried with positive weights by some basic branched surface B that is a reduced branched surface or has no branch loci. By Lemma 3.3, F is pseudo-acylindrical if and only if B has no branch loci and the surface B is pseudo-acylindrical. Hence, each pseudo-acylindrical surface in M is isotopic to one of the basic surfaces that are pseudo-acylindrical surfaces. Since the number of basic branched surfaces B_1, \ldots, B_n is finite, the conclusion follows.

Next, we consider the case where M is reducible. By the same argument as Lemma 3.4, if M is reducible and S is a pseudo-acylindrical surface in M, then S is isotoped off the reducing spheres and S is a separating surface in M. Let M_0 be the cutting result of M along the a union of reducing spheres of M, and let \hat{M}_0 be the manifold obtained from M_0 by capping off spherical boundary components with 3-balls C. Then \hat{M}_0 is an irreducible 3-manifold. Suppose M contains infinitely many pseudo-acylindrical surfaces S_1, S_2, \ldots , up to isotopy. Then each S_i is separating and does not meet the reducing spheres, and S_i is contained in \hat{M}_0 . Since \hat{M}_0 is irreducible, some S_i and S_j is isotopic to S_j in M, then (a) S_i can be isotoped to S'_i in M so that $S'_i \cap S_j = \emptyset$ and (b) in $\hat{M}_0, S'_i \cup S_j$ bounds a product $W = S_i \times I$ such that C is contained in W. Hence, the number of isotopy classes of pseudo-acylindrical surfaces in M is at most twice of that of \hat{M}_0 . The proof is complete.

In [9], Sela obtained a stronger result than Theorem 1.1 and [3, Thm. 10], a result concerning a "*k*-acylindrical surface" for simple 3-manifolds (see [9] for the definition of *k*-acylindrical surface). In [12], the author gave a proof of a "*k*-acylindrical finiteness property" for irreducible 3-manifolds using branched surfaces. Furthermore, it was shown in [12] that, if M is hyperbolic and if each component of $M - \mathring{N}(F)$ is not an *I*-bundle, then the incompressible surface F is *k*-acylindrical for some k.

4. Finite Covering Spaces and Books of *I*-Bundles

In this section, we will search for pseudo-acylindrical surfaces in finite-fold cyclic covering spaces of an atoroidal 3-manifold. In fact, if we fail to find pseudo-acylindrical surfaces, then the 3-manifold would be finitely covered by some 3-manifold that can be decomposed into "books of *I*-bundles".

Let *M* be a 3-manifold. We say a surface *S* in ∂M is ∂ -*incompressible* if there exists no properly embedded disk *D* in *M* such that $D \cap S$ is a single essential arc in *S*. A 3-manifold pair (M, R) is called an *incompressible pseudo-sutured manifold pair* if each component of *R* is an incompressible torus or an incompressible, ∂ -incompressible annulus in ∂M . An essential loop in a component of *R* is called a *suture*. Notice that, if *B* is an incompressible branched surface in *M*, then (by Lemma 3.2) the pair $(M - \mathring{N}, \partial_v N)$ is a pseudo-sutured manifold pair, where *N* is the extended neighborhood of *B*.

Let $(V_1, R_1), \ldots, (V_m, R_m)$ be incompressible pseudo-sutured solid torus pairs with $|R_i| \ge 2$. Each R_i is a union of mutually parallel disjoint annuli in ∂V_i with nonmeridional slopes. Let F_1, \ldots, F_n be compact surfaces with boundaries. If we glue $\bigcup_{i=1}^n (F_i \times I)$ to $\bigcup_{i=1}^m V_i$ with a homeomorphism $\bigcup_{i=1}^n (\partial F_i \times I) \to \bigcup_{i=1}^m R_i$, then we obtain a compact 3-manifold. Such a 3-manifold is called a *book of 1bundles*; cores of the V_i (or the solid tori V_i) are called *binders* and the F_i are called *pages*.

Let \mathcal{BI} be the set of 3-manifolds M in which there exists a finite union of two-sided incompressible surfaces S_1, \ldots, S_m such that each component of $M - \mathring{N}(\bigcup_{i=1}^m S_i)$ is a book of *I*-bundles.

We describe some properties of books of *I*-bundles. Hereafter, we shall use the following notation for books of *I*-bundles: (V_i, R_i) denotes a binder pseudosutured solid torus pair; F_i denotes a page; and we put $V = \bigcup V_i$, $R = \bigcup R_i$, and $F = \bigcup F_i$.

LEMMA 4.1. Let M be a book of I-bundles. If each page F_i has negative Euler characteristic, then M is irreducible, ∂ -irreducible, and atoroidal.

Proof. By the hypothesis that $\chi(F_i) < 0$, each annulus R_i is incompressible and ∂ -incompressible in M. Thus, if M is reducible then there exists an essential sphere in some V_i or $F_i \times I$, which is impossible because there are handlebodies. Hence we can conclude M is irreducible. If M is ∂ -reducible then we let D be a compressing disk for ∂M . By the incompressibility and ∂ -incompressibility of R_i , we may assume that $D \cap R = \emptyset$, since R_i is incompressible and ∂ -incompressible. The disk D is therefore contained in V or $F \times I$. If D is contained in V then, by the incompressibility of R, ∂D must bound a disk in $\partial V - R_i$. If ∂D is contained in $F \times \{0\}$ then, since $F \times \{0\}$ is incompressible in the product $F \times I$, it follows that ∂D bounds a disk in $F \times \{0\}$. These statements contradict the assumption that D is a compressing disk for ∂M . Hence, M is irreducible and ∂ -irreducible. Let T be an incompressible torus in M. By the incompressibility of R, we may assume that the closure of each component of T - R is an essential annulus in V or $F \times I$ and that $V \cap T \neq \emptyset$ and $T \cap (F \times I) \neq \emptyset$. However, since $\chi(F_i) < 0$, each component of $T \cap (F \times I)$ cannot be essential in $F \times I$. The proof is complete.

LEMMA 4.2. Let *M* be a book of *I*-bundles with each page F_i of negative Euler characteristic. Let $\partial_0 M$ be a component of ∂M . Suppose that (1) $\partial_0 M$ contains at most one component of $F_i \times \{0, 1\}$ for any *i*, (2) each component R_i of *R* has integral slope on ∂V_i , and (3) $\partial_0 M$ contains at most one component of $\partial V_i - R_i$ for any *i*. Then $\partial_0 M$ is acylindrical in *M*.

Proof. Let *A* be an essential annulus in *M* with $\partial A \subset \partial_0 M$. Let *F'* be the maximal union of components of *F* such that $(F' \times I) \cap \partial_0 M = \emptyset$. Since each component of *F* has negative Euler characteristic, we may assume that $A \cap (\partial F' \times I) = \emptyset$. Because the slope of each suture is integral on the boundary of the binder solid torus, we may assume (by a suitable choice of a union *A'* of essential annuli in *M* with $A' \cap (\partial_0 M \cup A) = \emptyset$) that the component M_0 of $M - \mathring{N}(A')$ that contains $\partial_0 M$ is homeomorphic to the product $\partial_0 M \times I$. Thus, the annulus *A* is ∂ -parallel to $\partial_0 M$. This is a contradiction to the essentiality of *A*.

The main result in this section is the following theorem. A surface *S* in a 3-manifold *M* is said to be *taut* if $\sum_{i} (|\chi(S_i)|)$ is minimal among surfaces in the homology class of *S*, where the sum is over components S_i of *S* with $\chi(S_i) \le 0$.

THEOREM 4.3. Let M be a closed atoroidal 3-manifold with $\beta_1(M) \ge 1$. Then, for any primitive element $e \in H_2(M; \mathbb{Z})$, M has a finite-fold cyclic cover $p: M' \to M$ that is dual to e with at least one of the following properties:

(a) $M' \in \mathcal{BI}$;

(b) *M'* contains a pseudo-acylindrical surface.

In order to prove Theorem 4.3, we need some lemmas. Let *S* be a two-sided surface in *M*; namely, *N*(*S*) is identified with the product $S \times [0, 1]$. An essential annulus (or a Seifert pair) *A* properly embedded in $M - \mathring{N}(S)$ is said to be of *type* \mathcal{A}_0 (\mathcal{A}_1 , \mathcal{A}_{01} , resp.) if $\partial A \subset S \times \{0\}$ ($\partial A \subset S \times \{1\}$, one component of ∂A is contained in $S \times \{0\}$ and the other in $S \times \{1\}$, resp.).

LEMMA 4.4. Let M be an atoroidal closed 3-manifold and let S be a two-sided nonseparating incompressible surface embedded in M such that $M - \mathring{N}(S)$ is not an I-bundle. Then there exists a finite-fold cyclic cover $p: M' \to M$ such that, for some lift S' of S, the manifold $M' - \mathring{N}(S')$ contains no essential annulus of type \mathcal{A}_{01} . Furthermore, if S is taut in M, then $p: M' \to M$ can be chosen so that S' is taut in M'.

Proof. Let (Σ, Φ) be the characteristic Seifert submanifold Σ of M. Suppose that some \mathcal{A}_{01} -type component of Σ is not an S^1 -pair. Let $q: \tilde{M} \to M$ be the infinite cyclic cover of M that is dual to S, and let $\tau: \tilde{M} \to \tilde{M}$ be a generator of the covering translation. Let M_1 be a fundamental domain in \tilde{M} such that the pair $(M_1, \partial M_1)$ is homeomorphic to the pair $(M - \mathring{N}(S), \partial N(S))$, so that: $q|_{\tilde{M}_1}$ is a homeomorphism; ∂M_1 is a union of two copies of S; and $q|_{\partial M_1}$ is a 2-fold cover of S. We put $M_j = \bigcup_{i=1}^j \tau^{i-1}(M_1)$. Then each M_j has the common boundary component $\partial_0 M_j = \partial_0 M_1$. We put $\partial_1 M_j = \partial M_j - \partial_0 M_j$. Let (Σ_j, Φ_j) be the characteristic Seifert pair of $(M_j, \partial M_j)$, and let Σ_j^{01} be the subset that consists of components of Σ_j of type \mathcal{A}_{01} . We put $\Phi_j^0 = \Sigma_j^{01} \cap \partial_0 M_j$ and $\Phi_j^1 = \Sigma_j^{01} \cap \partial_1 M_j$.

We claim that $\Sigma_m^{01} = \emptyset$ for some positive integer *m*. By a suitable isotopy, each component of $\Sigma_{i+1} \cap M_i$ that meets $\partial_0 M_i$ is contained in Σ_i^{01} ; this follows because, after eliminating trivial circle components of $\partial \Sigma_{i+1} \cap \partial_1 M_i$ via their incompressibility, the intersection $\Sigma_{i+1} \cap M_i$ forms an essential Seifert pair of M_i .

So, the equation $\chi(\Phi_{i+1}^0) = \chi(\Phi_i^0) - \chi(\Phi_i^0 - \Phi_{i+1}^0)$ holds. Put $a(i) = -\chi(\Phi_i^0)$ and $b(i) = -|\partial \Phi_i^0|$. Set c(i) = (a(i), b(i)), a complexity that is ordered lexicographically. As we have seen before, $a(i+1) = a(i) + \chi(\Phi_i^0 - \Phi_{i+1}^0)$. Thus, we have $a(i+1) \le a(i)$.

CLAIM 4.5. c(i) > c(2i).

Proof. We may assume that each component of $\Sigma_{2i}^{01} \cap \partial_1 M_i$ is incompressible and ∂ -incompressible or parallel to Φ_{2i}^1 in Σ_{2i}^{01} . Let Σ' be the union of the closures of components of $\Sigma_{2i}^{01} - \partial_1 M_i$ each of which meets $\partial_1 M_{2i}$. If $\Sigma' = \emptyset$, we are done. It follows that $\tau^{-i}(\Sigma')$ can be isotoped into Σ_i^{01} . If c(i) = c(2i) then, for each component l of $\partial(\Sigma' \cap \partial_1 M_i)$, the loop $\tau^{-1}(l)$ is parallel to a component of $\partial \Phi_i^0$ in $\partial_0 M_i$. Furthermore, Σ_i^{01} is isotopic to $\tau^{-i}(\Sigma')$. Hence we can find an incompressible torus (possibly immersed) in \tilde{M}/τ^i . Now the torus theorem [5] yields a contradiction to the condition that M is atoroidal and contains a nonseparating surface such that the exterior is not an I-bundle.

It is true (see [11]) that the number of mutually nonparallel disjoint essential annuli properly embedded in an atoroidal 3-manifold M is bounded by a number that is dependent only on $\chi(\partial M)$. As a result, the inequality |b(i)| < n holds for some n, and thus we have $\sum_{m=1}^{01} = \emptyset$ for some m.

Now we let M' be an *m*-fold cyclic cover of M that is dual to S. Let S' be a lift of S. If there exists an essential annulus in $M' - \mathring{N}(S')$ of type \mathcal{A}_{01} , then some component of the characteristic Seifert submanifold Σ' of $M' - \mathring{N}(S')$ is an S^1 -pair. Let k be the number of S^1 -pairs in Σ' . By the atoroidality of M, for the (k + 1)-fold cyclic cover M'' of M' dual to S', the exterior $M'' - \mathring{N}(S'')$ contains no essential annuli of type \mathcal{A}_{01} , where S'' is a lift of S'. So, by taking a finite cyclic cover of M, we can eliminate the essential annulus of type \mathcal{A}_{01} .

Now we prove the latter part of this lemma. Let $p: M' \to M$ be the resulting cyclic cover. Suppose *S* is taut in *M* and there is an incompressible surface *F'* that is homologous to *S'* in *M'* with $\chi(F') > \chi(S')$. By an argument similar to [2, Lemma 3.6], we can find a surface *F''* that is homologous to *S'* in *M'* with $\chi(F'') > \chi(S')$ such that $F'' \cap p^{-1}(S) = \emptyset$. Since *F''* and *S'* are homologous in *M'*, there exists a compact 3-manifold *B'* embedded in *M'* with $\partial B' = F'' \cup S'$ and $B' \cap p^{-1}(S) = S'$. Hence, p(F'') is an embedded surface homologous to *S* in *M*, since $p|_{B'}$ is an embedding. This contradicts the assumption that *S* is taut in *M*.

Proof of Theorem 4.3. Let *S* be a taut, incompressible, nonseparating surface such that $[S] = e \in H_2(M; \mathbb{Z})$. Let Σ be the characteristic submanifold of $M - \mathring{N}(S)$. If $\Sigma = M - \mathring{N}(S)$, then *M* is a surface bundle over S^1 with a fiber *S* (property (a)). If $\Sigma = \emptyset$, then *S* is acylindrical (property (b)). By Lemma 4.4, we may assume that $M - \mathring{N}(S)$ contains no essential annuli of type A_{01} . Furthermore, since the cyclic covering space dual to *S* is unique up to homology class of *S*, by taking a cyclic cover of *M* we may assume that, for each incompressible surface *F* that is homologous to *S* in *M* with $\chi(F) = \chi(S)$, the manifold $M - \mathring{N}(F)$ contains no

essential annulus of type A_{01} , since there exists only finitely many incompressible surfaces in *M* (up to isotopy) with any fixed Euler characteristic [6, Cor. 2.3].

Let $q: \tilde{M} \to M$ be an infinite cyclic covering space of M that is dual to S. Let \tilde{S}_0 be a lifting of S into \tilde{M} , and let A_0 be an annulus in \tilde{M} such that $A_0 \cap \tilde{S}_0 = \partial A_0$ and $(\tilde{M} - \mathring{N}(\tilde{S}_0)) \cap A_0$ is an essential annulus of type A_1 .

We construct surfaces $\{\tilde{S}_i\}$ in \tilde{M} successively as follows. We are given an incompressible surface \tilde{S}_i in \tilde{M} such that $S_i = q(\tilde{S}_i)$ is an embedded incompressible surface in M, so that $M - \mathring{N}(S_i)$ contains no essential annulus of type \mathcal{A}_{01} . We identify the regular neighborhood $N(\tilde{S}_i)$ with the product $\tilde{S}_i \times [0, 1]$, so that $\tilde{S}_i \times \{1/2\} = \tilde{S}_i$ and $\tilde{S}_i \times \{1\}$ is contained in the *front-side* of $\tilde{M} - \tilde{S}_i$, that is, the component of $\tilde{M} - \tilde{S}_i$ that contains $\tau(\tilde{S}_i)$, where $\tau : \tilde{M} \to \tilde{M}$ is a generator of the covering translation group. See Figure 4.

Figure 4

If there exists an annulus A_i in \tilde{M} such that $A_i \cap \tilde{S}_i = \partial A_i$ and $(\tilde{M} - \mathring{N}(\tilde{S}_i)) \cap A_i$ is an essential annulus of type A_1 , then we set $\tilde{S}_{i+1} = \partial_+ N(\tilde{S}_i \cup A_i)$, where $\partial N(\tilde{S}_i \cup A_i) = \partial_- N(\tilde{S}_i \cup A_i) \cup \partial N_+ (\tilde{S}_i \cup A_i)$ and $\partial_- N(\tilde{S}_i \cup A_i)$ is parallel to \tilde{S}_i . Notice that the manifold B_i cobounded by $\tilde{S}_i \cup \tilde{S}_{i+1}$ is a book of *I*-bundles and that $\chi(\tilde{S}_{i+1}) = \chi(\tilde{S}_i)$. Furthermore, $S_{i+1} = q(\tilde{S}_{i+1})$ is embedded in *M*; otherwise, for the annulus A_i we would have $q(\mathring{A}_i) \cap q(\widetilde{S}_i) \neq \emptyset$. In this case, some component of $q(A_i) \cap (M - \mathring{N}(q(\tilde{S}_i)))$ is an essential annulus of type \mathcal{A}_{01} , which contradicts the absence of essential annuli of types A_{01} for all surfaces in M of Euler characteristic equal to $\chi(S)$. Furthermore, since $(\tilde{S}_i \cup \tau(\tilde{S}_i)) \cap \tilde{S}_{i+1} \neq \emptyset$, the surface S_{i+1} is embedded in $M - \mathring{N}(S_i)$. Thus, the book of *I*-bundles $q(B_i)$ is embedded in M and hence the surface S_i is homologous to S_{i+1} in M. Here we can prove that the surface \tilde{S}_{i+1} is incompressible in \tilde{M} directly as follows. For otherwise, let \tilde{D} be a compressing disk for \tilde{S}_{i+1} . Recall that $S_{i+1} = q(\tilde{S}_{i+1})$ is embedded in $M - \mathring{N}(S_i)$. Since \tilde{S}_i is incompressible, we may assume that $\tilde{D} \cap \bigcup_{i=-\infty}^{\infty} \tau^{j}(\tilde{S}_{i}) = \emptyset$. Therefore, $D = q(\tilde{D})$ is a compressing disk for S_{i+1} . This contradicts the assumption that $S = S_0$ is taut in M and so proves our claim.

If there exists no such annulus in \tilde{M} then \tilde{S}_i is pseudo-acylindrical in \tilde{M} , and $q(\tilde{S}_i)$ is also pseudo-acylindrical in M (property (b)).

Because $\chi(\tilde{S}_i) = \chi(S)$, the manifold *M* contains only finitely many incompressible surfaces $q(\tilde{S}_i)$, up to isotopy [6, Cor. 2.3]. As a result, the surface $S_i = q(\tilde{S}_i)$ is isotopic to some $S_j = q(\tilde{S}_j)$ for some i > j. The isotopy between S_i and S_j is lifted to an isotopy between \tilde{S}_i and $\tau^n(\tilde{S}_j)$ for some n. Hence there exists a map $g: \tilde{S}_i \times [0, 1] \to \tilde{M}$ such that $g(\tilde{S}_i \times \{0\}) = \tilde{S}_i$ and $g(\tilde{S}_i \times \{1\}) = \tau^n(\tilde{S}_j)$. Since $\tilde{S}_i \times [0, 1]$ is compact, we may assume that $g(\tilde{S}_i \times [0, 1]) \cap \tilde{S}_j = \emptyset$. By an argument similar to [13, Cor. 5.5], we can construct an isotopy $f_t: \tilde{M} \to \tilde{M}$ such that f_0 is the identity, each $f_t|_{\tilde{S}_j}$ is the identity, and $f_1(\tilde{S}_i) = \tau^n(\tilde{S}_j)$. The compact submanifold M'' of \tilde{M} cobounded by $\tilde{S}_j \cup \tau^n(\tilde{S}_j)$ is thus homeomorphic to the union of books of *I*-bundles $B'' = B_j \cup \cdots \cup B_{i-1}$, and so the manifold *M* is finitely covered by a union of books of *I*-bundles M''/τ^n (property (b)).

5. Examples

As an application of Theorem 1.1, we give a method to show the existence of infinitely many certain Haken 3-manifolds, up to homeomorphism.

To state our result, we use the following notation. Recall that \mathcal{BI} is defined to be the set of 3-manifolds (up to homeomorphism) such that, for each M in \mathcal{BI} , there exists a union of two-sided incompressible surfaces S_1, \ldots, S_m such that each component of $M - \mathring{N}(\bigcup_{i=1}^m S_i)$ is a book of I-bundles. Let $\vec{n} = (n_1, \ldots, n_k)$ be a ktuple of positive integers n_i (possibly $n_i = n_j$ for $i \neq j$). Put $\mathcal{ABI}_{\phi} = \{M \in \mathcal{BI} \mid M \text{ is closed orientable, irreducible and atoroidal}. Let <math>\mathcal{ABI}_{\vec{n}}$ be the set of compact, orientable, irreducible, ∂ -irreducible, atoroidal and anannular 3-manifolds in \mathcal{BI} such that ∂M consists of k components $\partial_1 M, \ldots, \partial_k M$ with genus($\partial_i M$) = n_i for $\vec{n} = (n_1, \ldots, n_k)$.

It is easy to prove the following proposition using a result of Myers [7].

PROPOSITION 5.1 [11]. $\sharp ABI_{\vec{n}} = \infty$ for any \vec{n} (possibly $\vec{n} = \emptyset$).

The proposition is applied when one constructs 3-manifolds that contain acylindrical surfaces arbitrarily; a proof based on the finiteness result on acylindrical surfaces is given in [11].

Here we give a sketch proof for the "infinitely many" part.

Proof. If $\mathcal{ABI}_{\vec{n}}$ is a finite set then there exists a number *g* such that, for any 3manifold $M \in \mathcal{ABI}_{\vec{n}}$, *M* does not contain acylindrical surface of genus greater than *g*, since each manifold in $\mathcal{ABI}_{\vec{n}}$ contains only finitely many acylindrical surfaces (up to isotopy) by Theorem 1.1. However, this contradicts the following argument. Let W_{g+1} be a 3-manifold in $\mathcal{ABI}_{\vec{n}'}$, where $\vec{n'} = (n_1, \ldots, n_k, g+1)$. If we identify ∂M_{g+1} with the component $\partial_+ W_{g+1}$ of ∂W_{g+1} whose genus is g+1, then the result is in $\mathcal{ABI}_{\vec{n}}$ and contains the acylindrical surface $\partial M_{g+1} = \partial_+ W_{g+1}$ with genus g+1. Hence, $\sharp \mathcal{ABI}_{\vec{n}}$ is infinite.

Recall that an annulus properly embedded in M is defined to be *essential* if it is incompressible and not ∂ -parallel in M. An annulus properly embedded in M is said to be *strictly essential* if it is incompressible and ∂ -incompressible in M. Notice that, if M is irreducible and ∂ -irreducible, then these definitions are equivalent. However, for a reducible 3-manifold we can prove the following proposition. Here we say that a surface S embedded in M is *weakly acylindrical* if $M - \mathring{N}(S)$ does not contain properly embedded strictly essential annuli.

PROPOSITION 5.2. There exists a reducible closed 3-manifold M such that M contains infinitely many weakly acylindrical surfaces, up to isotopy.

Proof. Let M_0 be a closed irreducible 3-manifold that contains a nonseparating acylindrical surface S_0 . Let V be a solid torus in M that meets S_0 with a single meridian disk of V. Let x_1 be a point in $\mathring{V} - S$ and let x_2 be a point in $M_0 - (V \cup S_0)$. We attach the product $S^2 \times [0, 1]$ to $M_0 - \mathring{N}(x_1 \cup x_2)$ and obtain a reducible 3-manifold M with the nonseparating sphere $E = S^2 \times \{1/2\}$, where we take $N(x_1 \cup x_2)$ sufficiently small so that it does not meet ∂V . Then there exists an embedding $g: [-1, 1] \times S^1 \times S^1 \to M$ such that $g(\{0\} \times S^1 \times S^1) = \partial V$, $g([-1, 1] \times \{0\} \times S^1) \subset S_0$, and x_1, x_2 are not contained in the image of g, where $S^1 = \mathbb{R}/(\text{mod } 2)$. Thus, the map g can be thought to be local coordinates of $N(\partial V; M) = \text{Im}(g)$.

There exists a homeomorphism $f: M \to M$ that agrees with the identity on $M - \mathring{N}(\partial V; M)$ and such that the map $f \circ g: [-1, 1] \times S^1 \times S^1 \to M$ is given with $f \circ g(t, \theta_1, \theta_2) = g(t, \theta_1 + t + 1, \theta_2)$. Such a homeomorphism f is sometimes called a *Dehn-twist along* ∂V . Put $S_i = f^i(S_0)$. It is easy to see that each S_i is incompressible in *M*. We show that S_i is weakly acylindrical in *M*. Since each S_i can be identified with S_0 by the homeomorphism $f: M \to M$, it suffices to show that S_0 is weakly acylindrical in M. Suppose S_0 is weakly acylindrical in M; then $M - \mathring{N}(S_0)$ contains a strictly essential annulus A. By the incompressibility of A, we may assume that $A \cap E = \emptyset$. Therefore, A is a properly embedded annulus in $M_0 - \mathring{N}(S_0)$. Since S_0 is acylindrical in M_0 , the annulus A is compressible or ∂ -compressible in $M_0 - \mathring{N}(S_0)$. However, if D is a compressing or a ∂ -compressing disk for A in $M_0 - \mathring{N}(S_0)$, then D is still a compressing or a ∂ -compressing disk for A in $M - \mathring{N}(S_0)$. Hence, A is not strictly essential in $M - \mathring{N}(S_0)$, so S_0 is weakly acylindrical in M. Because there exists a loop l dual to E such that l intersects S_i with the algebraic intersection number i, it follows that the weakly acylindrical surfaces S_0, \ldots are mutually nonisotopic in M. \square

It is not true that incompressible surfaces in a reducible 3-manifold M are isotoped off the reducing spheres; if we choose a separating incompressible surface F in a 3-manifold and remove one point on each side of F, then the surface F is still incompressible and cannot be isotoped to be disjoint from a sphere bounding a twice-punctured ball. It is true that, for the 3-manifold constructed in Proposition 5.2, any incompressible surfaces can be isotoped off the essential sphere; however, it contains infinitely many weakly acylindrical surfaces up to isotopy. Therefore, some result on irreducible 3-manifolds is not inherited by reducible 3-manifolds. Before Lemma 3.4, the condition that M be irreducible is necessary for the result of Floyd and Oertel [1] and for constructing an extended fibered neighborhood N of the incompressible branched surface B in Section 3.

PROPOSITION 5.3. Each pseudo-acylindrical surface in a Seifert manifold is ∂ -parallel.

Proof. It is known that any closed incompressible surface in a Seifert manifold is isotopic, either vertical to the dual-Seifert fibration or horizontal [5, Thm. VI.34]. Let *F* be a closed incompressible surface in a Seifert manifold. If *F* is horizontal then, by [5, Thm. VI.34], each component of $M - \mathring{N}(F)$ is an *I*-bundle. If *F* is vertical, then *F* is ∂ -parallel or each component of $M - \mathring{N}(F)$ contains vertical essential annuli.

By Proposition 5.3, our interest in studying acylindrical surfaces is directed to atoroidal 3-manifolds.

PROPOSITION 5.4. There exists an atoroidal 3-manifold M containing infinitely many two-sided surfaces F, up to isotopy, with one of the following properties:

- (A) each essential annulus A in $M \mathring{N}(F)$ is type \mathcal{A}_{01} ; or
- (B) each essential annulus A in $M \mathring{N}(F)$ is type \mathcal{A}_0 or \mathcal{A}_1 .

Proof. (A) For example, let *M* be a surface bundle over S^1 that is atoroidal and let $\beta_1(M) \ge 2$. Neumann [8] showed that such a 3-manifold contains a nonseparating fiber surface of arbitrarily high genus. If *F* is a nonseparating fiber surface in *M*, we have $M - \mathring{N}(F) = F \times I$. Consequently, there exists an essential annulus of type \mathcal{A}_{01} and there does not exist an essential annulus of type \mathcal{A}_{0} and \mathcal{A}_{1} . Hence the conclusion follows.

(B) Let τ be the train-track indicated on the left-hand side in Figure 5, and let B_0 be the 2-complex $\tau \times S^1$. The 2-complex B_0 is naturally embedded in S^3 and forms a branched surface with the branch loci union of four circles and six sectors, each of which is an annulus. Let *B* be a branched surface obtained from B_0 by attaching a handle to each sector of B_0 . The branched surface *B* is still embedded in S^3 and has six sectors, each of which is a torus with two disks removed. Let *N* be a fibered neighborhood of *B* in S^3 . Notice that *N* is a book of *I*-bundles, since *B* has no "triple points". We cap off *N* with a 3-manifold in $\mathcal{ABI}_{(3,3,5,5)}$ so that the resulting manifold *M* is orientable.

Figure 5

	\mathcal{A}_1	${\cal A}_0$	\mathcal{A}_{01}	finiteness	
pseudo-acylindrical	Ø		Ø	Yes	Theorem 1.1
		Ø	Ø	Yes	
	Ø	Ø		No	Proposition 5.4(A)
			Ø	No	Proposition 5.4(B)

Table 1

For the book of *I*-bundles *N*, each page has negative Euler characteristic. Thus, by Lemma 4.1, *N* is irreducible, ∂ -irreducible, and atoroidal. Hence *M* is irreducible and atoroidal. It can be seen that condition (I.1) follows because *N* is irreducible and ∂ -irreducible by Lemma 4.1. Furthermore conditions (I.2) and (I.3) hold for *N* in *M* because $M - \mathring{N}$ is irreducible, ∂ -irreducible, atoroidal, and anannular. Therefore, *B* is an incompressible branched surface in *M*. Let *F_n* be a surface carried by *B* with the positive weights indicated in Figure 5; an abstract diagram for n = 5 is shown on the right-hand side of the figure. Notice that *F_n* is a connected two-sided surface with genus(*F_n*) = 4n + 7. By [1, Thm. 2], *F_n* is incompressible in *M*. Furthermore, there exists no essential annulus of type A_{01} , since $M - \mathring{N}$ is anannular and has essential annuli of type A_0 and A_1 in the fibered neighborhood *N*.

We have Table 1 as our conclusion.

ACKNOWLEDGMENT. The author would like to thank Professor Ippei Ishii, Professor Kimihiko Motegi, and Professor Chuichiro Hayashi for their useful comments and helpful discussions.

References

- W. Floyd and U. Oertel, *Incompressible surfaces via branched surfaces*, Topology 23 (1984), 117–125.
- [2] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445–503.
- [3] J. Hass, Acylindrical surfaces in 3-manifolds, Michigan Math. J. 42 (1995), 357–365.
- [4] J. Hempel, 3-manifolds, Ann. of Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976.
- [5] W. Jaco, *Lectures on three-manifold topology*, CBMS Regional Conf. Ser. in Math., 43, Amer. Math. Soc., Providence, RI, 1980.
- [6] W. Jaco and U. Oertel, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984), 195–209.
- [7] R. Myers, Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), 115–127.

- [8] D. A. Neumann, 3-Manifolds fibering over S¹, Proc. Amer. Math. Soc. 58 (1976), 353–356.
- [9] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), 527–565.
- [10] W. P. Thurston, *The geometry and topology of 3-manifolds*, Lecture notes, Princeton Univ., 1978.
- [11] Y. Tsutsumi, *Embedded incompressible surfaces in 3-manifolds*, Masters thesis, Keio Univ., 2001.
- [12] —, Acylindrical surfaces and branched surfaces, II, preprint.
- [13] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88.

Department of Mathematics Keio University 3-14-1, Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan

yukihiro@math.keio.ac.jp