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Acylindrical Surfaces and Branched Surfaces I

Yukihiro Tsutsumi

1. Introduction

In this paper we give a finiteness property of some embedded surfaces in a 3-
manifoldM. These embedded surfaces will be called “acylindrical” or “pseudo-
acylindrical” in Section 2. Acylindrical surfaces are important for hyperbolic 3-
manifolds; for example, ifM is a hyperbolic 3-manifold and ifS is an embedded
totally geodesic surface, thenS is acylindrical. Furthermore, ifS is acylindrical
or pseudo-acylindrical, thenS is a quasi-Fuchsian surface; that is, the limit set of
the imageπ1(S)→ π1(M)→ Isom+H3 is a simple closed curve inS2∞ ([10]).

In Section 3, we prove the following finiteness result.

Theorem 1.1. There exist only finitely many pseudo-acylindrical surfaces, up to
isotopy, in a compact orientable 3-manifold.

A result similar to Theorem1.1was obtained by Hass [3] and Sela [9]. Since Gabai
suggested that [3, Thm. 10] can be obtained using techniques of branched surface
theory, we give a proof of Theorem 1.1 using some results about branched surfaces
obtained by Floyd and Oertel [1].

In Section 2, we give definitions for acylindrical and pseudo-acylindrical sur-
faces and for branched surfaces.

In Section 4, we consider the finite cyclic covering spaces of a 3-manifold. In
fact, for a Haken 3-manifoldM with positive Betti number, some finite cyclic cov-
ering spaceM ′ contains pseudo-acylindrical surfaces, orM ′ is a surface bundle
over the circle or constructed by books ofI -bundles.

In Section 5, we will give some examples of 3-manifolds that are related to
our results. As an application of Theorem1.1, one canconstruct infinitely simple
3-manifolds (cf. Proposition 5.1).

2. Preliminaries

Unless stated otherwise, we letM be a compact orientable 3-manifold, and we
let F be a 2-manifold that (a) is not homeomorphic toS2 or P 2 and (b) is prop-
erly embedded inM. We denote a regular neighborhood of a subsetX ⊂ M by
N(X;M) and denote its interior bẙX. For a topological spaceX, we denote the
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number of components by|X|. For a setS, we denote the cardinality ofS by ]S.
By asurfacewe mean a compact 2-manifold. For a surfaceF properly embedded
in a 3-manifoldM, the frontier ofN(F ;M) is denoted by∂N(F ;M).

A surfaceF properly embedded in a 3-manifoldM is said to beinjective(π1-
injective) in M if the mapi∗ : π1(F ) → π1(M) is injective. Acompressing disk
for a surfaceF embedded in a 3-manifoldM is an embedded 2-diskD such that
F ∩ D = ∂D and∂D does not bound a disk inF. A surfaceF embedded in a
3-manifoldM is incompressibleinM if there exists no compressing disk forF. A
surfaceF is ∂-incompressibleif, for each diskD ⊂ M with ∂D = α ∪ β (where
D ∩ F = α is a properly embedded arc inF and∂M ∩ D = β), there is a disk
D ′ ⊂ F with ∂D ′ = α ∪ β ′ andβ ′ = D ′ ∩ ∂F.

An embedded surfaceF is two-sidedinM if N(F ) is homeomorphic toF × I ;
otherwise,F is said to beone-sided. It is known that an injective surface is
incompressible and that a two-sided incompressible surface is injective (see [4,
Chap. 6]). A 3-manifoldM is said to beirreducible if each embedded 2-sphere
bounds a 3-ball inM, andM isP 2-irreducibleif M is irreducible and contains no
two-sided projective planeP 2. A manifoldM is said to be:sufficiently largeif
M contains some two-sided incompressible surface;Hakenif M is compact,P 2-
irreducible, and sufficiently large; and∂-irreducible if each component of∂M is
incompressible inM. A surfaceF properly embedded inM is said to be∂-parallel
if there exists an embeddingf : F × [0,1]→ M such thatf(F × {0}) = F and
f(∂F × [0,1]∪F × {1}) ⊂ ∂M. If M contains no incompressible torus that is not
∂-parallel, thenM is said to beatoroidal. An annulusA properly embedded in
a 3-manifoldM is said to beessential/if A is incompressible and not∂-parallel
in M. A 3-manifoldM is said to beanannularif M contains no properly embed-
ded essential annuli. A 3-manifold that is irreducible,∂-irreducible, atoroidal, and
anannular is called asimple3-manifold.

A closed two-sided incompressible surfaceF inM is said to bepseudo-acylin-
drical if, for somei = 0,1, each essential annulus inM − N̊(F ) has boundaries
in F × {i}, whereN(F ) is identified with the productF × [0,1]. An incompress-
ible closed surfaceF in a 3-manifoldM is acylindrical if each component of
M − N̊(F ) contains no essential annuli with boundaries contained in∂N(F ).

A compact 2-polyhedronB ⊂ M is called abranched surfaceif the local struc-
ture is modeled on the space in Figure 1(A) (see [1] for details). Thebranch locus
ofB is the set of points inB each of which has no neighborhood homeomorphic to
R2. A neighborhoodN of B in the 3-manifoldM is naturally constructed as indi-
cated in Figure 1(B). Such a neighborhood is called afibered neighborhood.Ob-
serve that∂N is the union of three compact subsurfaces(∂hN, ∂vN, andN ∩ ∂M)
that meet only in their common boundary points. A fiber ofN meets∂hN trans-
versely at its endpoints, while a fiber ofN intersects∂vN in a closed interval in
the interior of the fiber. A surfaceF is carried byB if F can be isotoped into̊N so
thatF intersects the fibers transversely. A surfaceF is carried byB with positive
weightsif F can be isotoped into̊N so thatF intersects all fibers transversely.

A branched surfaceB properly embedded in a Haken 3-manifoldM is said to
be incompressibleif the following conditions are satisfied (see Figure 2).
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Figure 1

Figure 2

(I.1) There exists no diskD ⊂ N such thatD is transverse to the fibers ofN
and∂D ⊂ ∂̊vN (such a disk is called adisk of contact); and there is no disk
D ⊂ N such thatD is transverse to the fibers ofN with ∂D = α ∪β, where
α̊ ⊂ ∂̊vN andβ ⊂ ∂M are arcs andα ∩ β = ∂α = ∂β.

(I.2) Each component of∂hN is incompressible and∂-incompressible inM − N̊.
(I.3) There exists no diskD ⊂ M − N̊ with ∂D = D ∩ N = α ∪ β, whereα ⊂

∂vN is a fiber andβ ⊂ ∂hN (such a disk is called amonogon).

3. Proofs

Throughout this section, we letB be a branched surface that carries some con-
nected surface with positive weights in an orientable irreducible 3-manifoldM.

We assume that each surfaceF carried byB with positive weights is isotoped into
a fibered neighborhoodN ′ of B so thatF intersects all fibers transversely. Since
S = ∂N(F ) intersects each fiber ofN ′ at least twice, we may assume thatN(F )

is isotoped so that∂hN ′ ⊂ S andS ∩ ∂N ′ = ∂hN ′ (see Figure 3). If we letL′ be
the closure ofN ′ − N(F ), then each component ofL′ is anI -bundle over a sur-
face. Unless stated otherwise, the base spaces of allI -bundles are homeomorphic
to neitherS2 norP 2.
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Figure 3

If some componentA of ∂vN ′ is compressible inM − N̊ ′ then, by condition
(I.2), both components of∂A bound disksD0 andD1 in ∂hN ′. By the irreducibil-
ity of M, the sphereD0 ∪ A ∪ D1 bounds a 3-ballC on the side containing the
compressing diskD for A. The 3-ballC can be identified with the productD× I
so thatD × {0} = D0 andD × {1} = D1. Hence, theI -bundleL′ is naturally ex-
tended to theI -bundleL = L′ ∪A C, and we putN = N ′ ∪C. It can be seen that
conditions (I.1)–(I.3) hold forN, by an argument similar to [1, Thm. 2]. We call
the 3-manifoldN constructed as described here anextended fibered neighborhood
ofB. Note that the extended neighborhoodN may not be a regular neighborhood
of a branched surface. In fact, the manifoldN could be the whole manifoldM,
or some of the induced fibers ofN may beS1 or noncompact ifB has “Reeb
components”.

A branched surfaceB is said to bereducedif B is an incompressible branched
surface such that no component of∂hN is a closed surface. The following theorem
is a consequence of the main result of Floyd and Oertel in [1].

Theorem 3.1. LetM be a Haken3-manifold. There exist a finite number of re-
duced branched surfaces and incompressible surfacesB1, . . . , Bn such that each
two-sided closed incompressible surface inM is carried with positive weights by
someBi.

Proof. If M is ∂-reducible, then we letD1, . . . , Dm be disks properly embedded in
M such that each component ofM − N̊(⋃m

i=1Di

)
is irreducible and∂-irreducible

(see [5, LemmaIII.21]). We putM0 = M − N̊
(⋃m

i=1Di

)
. If M is ∂-irreducible

then we putM0 = M. Let B1, . . . , Bn be branched surfaces forM0 given in [1,
Thm. 1] without boundaries. Then each two-sided closed incompressible surface
in M0 is carried with positive weights by someBi. By the construction in [1],
these branched surfaces are incompressible inM0. If some componentS of ∂hNi
is closed, whereNi is an extended fibered neighborhood ofBi, then each con-
nected two-sided surface carried byBi with positive weights is isotopic toS. If
someBi is a one-sided surface, then we replaceBi by ∂N(Bi). Now it follows that
each branched surfaceBi is either a reduced branched surface or a two-sided sur-
face. SinceM is irreducible, each closed incompressible surface inM is isotopic
to an incompressible surface inM0. Furthermore, eachBi is also incompressible
in M. Therefore, each closed incompressible surface inM is carried by someBi
with positive weights.
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We call the branched surfacesB1, . . . , Bn given in Theorem 3.1basic branched
surfaces forM.

Lemma 3.2. LetM be an orientable Haken3-manifold. For each closed con-
nected incompressible surfaceF carried by a reduced branched surfaceB with
positive weights, each component of∂vN is an essential annulus inM − N̊(F ),
whereN is an extended fibered neighborhood ofB.

Proof. Let A be a component of∂vN. SinceM is orientable,A is an annulus.
First, we show thatA is incompressible inM − N̊(F ). If it is not, then—for a
compressing diskD for A with the number|D ∩ ∂vN | minimal among all com-
pressing disks—we letD0 be an innermost diskD with respect toD ∩ ∂vN. We
claim thatD0 is isotopic to a disk of contact forN. Notice thatD0 is properly em-
bedded inN because each component of∂vN is incompressible inM − N̊. Since
D is contained inM − N̊(F ), it follows thatD0 is contained inL, whereL is the
closure ofN − N(F ), which is anI -bundle. Since∂D0 is contained in∂vN, the
component ofL containingD0 is homeomorphic to a productD0× I. Thus, there
exists a disk of contact that is isotopic toD0. This contradicts condition (I.1).

Next, we show thatA is ∂-incompressible inM − N̊(F ). Let D be a ∂-
compressing disk forA in M − N̊(F ). By the incompressibility of∂vN, we may
assume thatD ∩ ∂vN consists of properly embedded arcs inD. LetD0 be an out-
ermost disk ofD with ∂D0 = α ∪ β, where∂D0 ∩ ∂vN = α. We letA0 be the
component of∂vN such thatα ⊂ A0. By the minimality of|D ∩ ∂vN |, it follows
that the two points∂α are contained in mutually distinct component of∂A0. Since
L is anI -bundle, it follows thatD is contained inM − N̊. This contradicts con-
dition (I.3).

Lemma 3.3. Let M, F, and B be as in Lemma 3.2. ThenF is not pseudo-
acylindrical inM.

Proof. LetN be an extended fibered neighborhood ofB. If ∂N is empty, then each
component ofM − N̊(F ) is anI -bundle. HenceF is not pseudo-acylindrical inM.

We assume that∂N is not empty and thatF is pseudo-acylindrical inM. By
Lemma 3.2, for each componentA of ∂vN it follows that∂A ⊂ F × {0}, sinceF
is pseudo-acylindrical; here,N(F ) is identified with the productF × [0,1]. Since
∂hN has no closed component,F × {1} is contained inN̊. Hence, some compo-
nentL1 of L with ∂L1 ∩ F × {1} 6= ∅ is anI -bundle over a closed surface. By
the hypothesis that∂vN is not empty,L1 must be a twistedI -bundle over a closed
surface. This shows that there exists an essential annulusA′ ⊂ L1 with ∂A′ ⊂
F × {1}. HenceF is not pseudo-acylindrical.

Now let us prove Theorem1.1. First, we prove the following lemma about re-
ducible 3-manifolds.

Lemma 3.4. LetM be a reducible3-manifold. ThenM does not contain acylin-
drical surfaces.
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Proof. Let F be any two-sided closed incompressible surface embedded inM.

Our plan is to show thatF cannot be pseudo-acylindrical. Letl be a nontrivial
simple closed curve inF and letE be an essential sphere embedded inM. By the
incompressibility ofF, we can choose the sphereE such thatE does not meetF.
We join pointsx ∈ l andy ∈ E with an arcα such thatα ∩ F = x andα ∩ E =
y, and we putA′ = ∂N(l ∪ α ∪E;M). Clearly,A′ consists of three components:
one of the three is a sphere parallel toE, and the other two are annuli. For an an-
nular componentA ofA′−F “surroundingα∪E ”, we see thatA ∩ (M − N̊(F ))
is incompressible and not∂-parallel in theM − N̊(F ). Therefore,A is essential
in M − N̊(F ) and henceF is not acylindrical.

Proof of Theorem1.1. First, we prove the theorem for irreducible 3-manifolds.
By Theorem 3.1, each closed two-sided incompressible surface is carried with
positive weights by some basic branched surfaceB that is a reduced branched
surface or has no branch loci. By Lemma 3.3,F is pseudo-acylindrical if and
only if B has no branch loci and the surfaceB is pseudo-acylindrical. Hence,
each pseudo-acylindrical surface inM is isotopic to one of the basic surfaces that
are pseudo-acylindrical surfaces. Since the number of basic branched surfaces
B1, . . . , Bn is finite, the conclusion follows.

Next, we consider the case whereM is reducible. By the same argument as
Lemma 3.4, ifM is reducible andS is a pseudo-acylindrical surface inM, thenS
is isotoped off the reducing spheres andS is a separating surface inM. LetM0 be
the cutting result ofM along the a union of reducing spheres ofM,and letM̂0 be the
manifold obtained fromM0 by capping off spherical boundary components with
3-ballsC. ThenM̂0 is an irreducible 3-manifold. SupposeM contains infinitely
many pseudo-acylindrical surfacesS1, S2, . . . , up to isotopy. Then eachSi is sep-
arating and does not meet the reducing spheres, andSi is contained inM̂0. Since
M̂0 is irreducible, someSi andSj is isotopic inM̂0. The isotopy can be chosen so
thatC is preserved. Thus, ifSi is not isotopic toSj inM, then (a)Si can be isotoped
toS ′i inM so thatS ′i∩Sj = ∅ and (b) inM̂0, S

′
i ∪Sj bounds a productW = Si× I

such thatC is contained inW. Hence, the number of isotopy classes of pseudo-
acylindrical surfaces inM is at most twice of that of̂M0. The proof is complete.

In [9], Sela obtained a stronger result than Theorem 1.1 and [3, Thm. 10], a result
concerning a “k-acylindrical surface” for simple 3-manifolds (see [9] for the defini-
tion ofk-acylindrical surface). In [12], the author gave a proof of a “k-acylindrical
finiteness property” for irreducible 3-manifolds using branched surfaces. Further-
more, it was shown in [12] that, ifM is hyperbolic and if each component of
M − N̊(F ) is not anI -bundle, then the incompressible surfaceF is k-acylindrical
for somek.

4. Finite Covering Spaces and Books ofI -Bundles

In this section, we will search for pseudo-acylindrical surfaces in finite-fold cyclic
covering spaces of an atoroidal 3-manifold. In fact, if we fail to find pseudo-
acylindrical surfaces, then the 3-manifold would be finitely covered by some 3-
manifold that can be decomposed into “books ofI -bundles”.



Acylindrical Surfaces and Branched Surfaces I 163

LetM be a 3-manifold. We say a surfaceS in ∂M is ∂-incompressibleif there
exists no properly embedded diskD inM such thatD ∩ S is a single essential arc
in S. A 3-manifold pair(M,R) is called anincompressible pseudo-sutured mani-
fold pair if each component ofR is an incompressible torus or an incompressible,
∂-incompressible annulus in∂M. An essential loop in a component ofR is called
a suture.Notice that, ifB is an incompressible branched surface inM, then (by
Lemma 3.2) the pair(M − N̊, ∂vN ) is a pseudo-sutured manifold pair, whereN
is the extended neighborhood ofB.

Let (V1, R1), . . . , (Vm,Rm) be incompressible pseudo-sutured solid torus pairs
with |Ri | ≥ 2. EachRi is a union of mutually parallel disjoint annuli in∂Vi with
nonmeridional slopes. LetF1, . . . , Fn be compact surfaces with boundaries. If we
glue

⋃n
i=1(Fi×I ) to

⋃m
i=1Vi with a homeomorphism

⋃n
i=1(∂Fi×I )→

⋃m
i=1Ri,

then we obtain a compact 3-manifold. Such a 3-manifold is called abook ofI-
bundles; cores of theVi (or the solid toriVi) are calledbindersand theFi are
calledpages.

Let BI be the set of 3-manifoldsM in which there exists a finite union of
two-sided incompressible surfacesS1, . . . , Sm such that each component of
M − N̊(⋃m

i=1Si
)

is a book ofI -bundles.
We describe some properties of books ofI -bundles. Hereafter, we shall use

the following notation for books ofI -bundles:(Vi, Ri) denotes a binder pseudo-
sutured solid torus pair;Fi denotes a page; and we putV = ⋃

Vi, R = ⋃
Ri,

andF =⋃Fi.

Lemma 4.1. LetM be a book ofI -bundles. If each pageFi has negative Euler
characteristic, thenM is irreducible,∂-irreducible, and atoroidal.

Proof. By the hypothesis thatχ(Fi) < 0, each annulusRi is incompressible and
∂-incompressible inM. Thus, ifM is reducible then there exists an essential sphere
in someVi orFi × I, which is impossible because there are handlebodies. Hence
we can concludeM is irreducible. IfM is ∂-reducible then we letD be a com-
pressing disk for∂M. By the incompressibility and∂-incompressibility ofRi, we
may assume thatD ∩ R = ∅, sinceRi is incompressible and∂-incompressible.
The diskD is therefore contained inV or F × I. If D is contained inV then, by
the incompressibility ofR, ∂D must bound a disk in∂V −Ri. If ∂D is contained
in F × {0} then, sinceF × {0} is incompressible in the productF × I, it follows
that∂D bounds a disk inF ×{0}. These statements contradict the assumption that
D is a compressing disk for∂M. Hence,M is irreducible and∂-irreducible. LetT
be an incompressible torus inM. By the incompressibility ofR, we may assume
that the closure of each component ofT −R is an essential annulus inV orF × I
and thatV ∩ T 6= ∅ andT ∩ (F × I ) 6= ∅. However, sinceχ(Fi) < 0, each com-
ponent ofT ∩ (F × I ) cannot be essential inF × I. The proof is complete.

Lemma 4.2. LetM be a book ofI -bundles with each pageFi of negative Euler
characteristic. Let∂0M be a component of∂M. Suppose that(1) ∂0M contains
at most one component ofFi × {0,1} for any i, (2) each componentRi of R has
integral slope on∂Vi, and (3) ∂0M contains at most one component of∂Vi − Ri
for anyi. Then∂0M is acylindrical inM.
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Proof. LetA be an essential annulus inM with ∂A ⊂ ∂0M. LetF ′ be the maximal
union of components ofF such that(F ′ × I ) ∩ ∂0M = ∅. Since each compo-
nent ofF has negative Euler characteristic, we may assume thatA∩ (∂F ′ × I ) =
∅. Because the slope of each suture is integral on the boundary of the binder solid
torus, we may assume (by a suitable choice of a unionA′ of essential annuli inM
with A′ ∩ (∂0M ∪ A) = ∅) that the componentM0 of M − N̊(A′) that contains
∂0M is homeomorphic to the product∂0M × I. Thus, the annulusA is ∂-parallel
to ∂0M. This is a contradiction to the essentiality ofA.

The main result in this section is the following theorem. A surfaceS in a 3-manifold
M is said to betaut if

∑
i(|χ(Si)|) is minimal among surfaces in the homology

class ofS, where the sum is over componentsSi of S with χ(Si) ≤ 0.

Theorem 4.3. LetM be a closed atoroidal3-manifold withβ1(M) ≥ 1. Then,
for any primitive elemente ∈H2(M;Z),M has a finite-fold cyclic coverp : M ′ →
M that is dual toe with at least one of the following properties:

(a) M ′ ∈BI;
(b) M ′ contains a pseudo-acylindrical surface.

In order to prove Theorem 4.3, we need some lemmas. LetS be a two-sided sur-
face inM; namely,N(S) is identified with the productS × [0,1]. An essential
annulus (or a Seifert pair)A properly embedded inM − N̊(S) is said to be oftype
A 0 (A1, A 01, resp.) if∂A ⊂ S × {0} (∂A ⊂ S × {1}, one component of∂A is
contained inS × {0} and the other inS × {1}, resp.).

Lemma 4.4. LetM be an atoroidal closed3-manifold and letS be a two-sided
nonseparating incompressible surface embedded inM such thatM − N̊(S) is not
an I -bundle. Then there exists a finite-fold cyclic coverp : M ′ → M such that,
for some liftS ′ of S, the manifoldM ′ − N̊(S ′) contains no essential annulus of
typeA 01. Furthermore, ifS is taut inM, thenp : M ′ → M can be chosen so that
S ′ is taut inM ′.

Proof. Let (6,8) be the characteristic Seifert submanifold6 ofM. Suppose that
someA 01-type component of6 is not anS1-pair. Letq : M̃ → M be the infinite
cyclic cover ofM that is dual toS, and letτ : M̃ → M̃ be a generator of the cover-
ing translation. LetM1 be a fundamental domain iñM such that the pair(M1, ∂M1)

is homeomorphic to the pair(M − N̊(S), ∂N(S)), so that:q|M̊1
is a homeomor-

phism;∂M1 is a union of two copies ofS; andq|∂M1 is a 2-fold cover ofS. We
putMj =⋃j

i=1τ
i−1(M1). Then eachMj has the common boundary component

∂0Mj = ∂0M1. We put∂1Mj = ∂Mj − ∂0Mj. Let (6j,8j ) be the characteristic
Seifert pair of(Mj, ∂Mj), and let601

j be the subset that consists of components of
6j of typeA 01. We put80

j = 601
j ∩ ∂0Mj and81

j = 601
j ∩ ∂1Mj.

We claim that601
m = ∅ for some positive integerm. By a suitable isotopy,

each component of6i+1∩Mi that meets∂0Mi is contained in601
i ; this follows

because, after eliminating trivial circle components of∂6i+1∩ ∂1Mi via their in-
compressibility, the intersection6i+1∩Mi forms an essential Seifert pair ofMi.
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So, the equationχ(80
i+1) = χ(80

i ) − χ(80
i − 80

i+1) holds. Puta(i) = −χ(80
i )

andb(i) = −|∂80
i |. Setc(i) = (a(i), b(i)), a complexity that is ordered lexico-

graphically. As we have seen before,a(i + 1) = a(i)+ χ(80
i −80

i+1). Thus, we
havea(i +1) ≤ a(i).
Claim 4.5. c(i) > c(2i).

Proof. We may assume that each component of601
2i ∩ ∂1Mi is incompressible and

∂-incompressible or parallel to81
2i in 601

2i. Let6′ be the union of the closures of
components of601

2i − ∂1Mi each of which meets∂1M2i . If 6′ = ∅, we are done.
It follows that τ−i(6′) can be isotoped into601

i . If c(i) = c(2i) then, for each
componentl of ∂(6′ ∩ ∂1Mi), the loopτ−1(l ) is parallel to a component of∂80

i

in ∂0Mi. Furthermore,601
i is isotopic toτ−i(6′). Hence we can find an incom-

pressible torus (possibly immersed) iñM/τ i. Now the torus theorem [5] yields
a contradiction to the condition thatM is atoroidal and contains a nonseparating
surface such that the exterior is not anI -bundle.

It is true (see [11]) that the number of mutually nonparallel disjoint essential annuli
properly embedded in an atoroidal 3-manifoldM is bounded by a number that is
dependent only onχ(∂M). As a result, the inequality|b(i)| < n holds for some
n, and thus we have601

m = ∅ for somem.
Now we letM ′ be anm-fold cyclic cover ofM that is dual toS. Let S ′ be

a lift of S. If there exists an essential annulus inM ′ − N̊(S ′) of typeA 01, then
some component of the characteristic Seifert submanifold6′ ofM ′ − N̊(S ′) is an
S1-pair. Letk be the number ofS1-pairs in6′. By the atoroidality ofM, for the
(k +1)-fold cyclic coverM ′′ ofM ′ dual toS ′, the exteriorM ′′ − N̊(S ′′) contains
no essential annuli of typeA 01,whereS ′′ is a lift of S ′. So, by taking a finite cyclic
cover ofM, we can eliminate the essential annulus of typeA 01.

Now we prove the latter part of this lemma. Letp : M ′ → M be the result-
ing cyclic cover. SupposeS is taut inM and there is an incompressible surface
F ′ that is homologous toS ′ in M ′ with χ(F ′) > χ(S ′). By an argument similar
to [2, Lemma 3.6], we can find a surfaceF ′′ that is homologous toS ′ in M ′ with
χ(F ′′) > χ(S ′) such thatF ′′ ∩ p−1(S) = ∅. SinceF ′′ andS ′ are homologous in
M ′, there exists a compact 3-manifoldB ′ embedded inM ′ with ∂B ′ = F ′′ ∪ S ′
andB ′ ∩ p−1(S) = S ′. Hence,p(F ′′) is an embedded surface homologous toS
in M, sincep|B ′ is an embedding. This contradicts the assumption thatS is taut
in M.

Proof of Theorem 4.3.LetS be a taut, incompressible, nonseparating surface such
that [S ] = e ∈H2(M;Z). Let6 be the characteristic submanifold ofM − N̊(S).
If 6 = M − N̊(S), thenM is a surface bundle overS1 with a fiberS (property
(a)). If 6 = ∅, thenS is acylindrical (property (b)). By Lemma 4.4, we may as-
sume thatM − N̊(S) contains no essential annuli of typeA 01. Furthermore, since
the cyclic covering space dual toS is unique up to homology class ofS, by taking
a cyclic cover ofM we may assume that, for each incompressible surfaceF that is
homologous toS in M with χ(F ) = χ(S), the manifoldM − N̊(F ) contains no
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essential annulus of typeA 01, since there exists only finitely many incompressible
surfaces inM (up to isotopy) with any fixed Euler characteristic [6, Cor. 2.3].

Let q : M̃ → M be an infinite cyclic covering space ofM that is dual toS. Let
S̃0 be a lifting ofS intoM̃, and letA0 be an annulus iñM such thatA0 ∩ S̃0 = ∂A0

and(M̃ − N̊(S̃0)) ∩ A0 is an essential annulus of typeA1.

We construct surfaces{S̃i} in M̃ successively as follows. We are given an in-
compressible surfacẽSi in M̃ such thatSi = q(S̃i) is an embedded incompress-
ible surface inM, so thatM − N̊(Si) contains no essential annulus of typeA 01.

We identify the regular neighborhoodN(S̃i) with the productS̃i × [0,1], so that
S̃i × {1/2} = S̃i andS̃i × {1} is contained in thefront-sideof M̃ − S̃i , that is, the
component ofM̃ − S̃i that containsτ(S̃i),whereτ : M̃ → M̃ is a generator of the
covering translation group. See Figure 4.

Figure 4

If there exists an annulusAi in M̃ such thatAi∩S̃i = ∂Ai and(M̃ − N̊(S̃i)) ∩ Ai
is an essential annulus of typeA1, then we setS̃i+1 = ∂+N(S̃i ∪ Ai), where
∂N(S̃i ∪ Ai) = ∂−N(S̃i ∪ Ai) ∪ ∂N+(S̃i ∪ Ai) and∂−N(S̃i ∪ Ai) is parallel to
S̃i . Notice that the manifoldBi cobounded bỹSi ∪ S̃i+1 is a book ofI -bundles
and thatχ(S̃i+1) = χ(S̃i). Furthermore,Si+1= q(S̃i+1) is embedded inM; other-
wise, for the annulusAi we would haveq(Åi) ∩ q(S̃i) 6= ∅. In this case, some
component ofq(Ai) ∩ (M − N̊(q(S̃i))) is an essential annulus of typeA 01,which
contradicts the absence of essential annuli of typesA 01 for all surfaces inM of
Euler characteristic equal toχ(S). Furthermore, since(S̃i ∪ τ(S̃i)) ∩ S̃i+1 6= ∅,
the surfaceSi+1 is embedded inM − N̊(Si). Thus, the book ofI -bundlesq(Bi)
is embedded inM and hence the surfaceSi is homologous toSi+1 in M. Here
we can prove that the surfacẽSi+1 is incompressible inM̃ directly as follows.
For otherwise, letD̃ be a compressing disk for̃Si+1. Recall thatSi+1 = q(S̃i+1)

is embedded inM − N̊(Si). Since S̃i is incompressible, we may assume that
D̃ ∩⋃∞j=−∞ τ j(S̃i) = ∅. Therefore,D = q(D̃) is a compressing disk forSi+1.

This contradicts the assumption thatS = S0 is taut inM and so proves our claim.
If there exists no such annulus iñM thenS̃i is pseudo-acylindrical inM̃, and

q(S̃i) is also pseudo-acylindrical inM (property (b)).
Becauseχ(S̃i) = χ(S), the manifoldM contains only finitely many incompress-

ible surfacesq(S̃i), up to isotopy [6, Cor. 2.3]. As a result, the surfaceSi = q(S̃i)



Acylindrical Surfaces and Branched Surfaces I 167

is isotopic to someSj = q(S̃j ) for somei > j. The isotopy betweenSi andSj is
lifted to an isotopy betweeñSi andτ n(S̃j ) for somen. Hence there exists a map
g : S̃i × [0,1]→ M̃ such thatg(S̃i × {0}) = S̃i andg(S̃i × {1}) = τ n(S̃j ). Since
S̃i × [0,1] is compact, we may assume thatg(S̃i × [0,1]) ∩ S̃j = ∅. By an ar-
gument similar to [13, Cor. 5.5], we can construct an isotopyft : M̃ → M̃ such
thatf0 is the identity, eachft |S̃j is the identity, andf1(S̃i) = τ n(S̃j ). The com-
pact submanifoldM ′′ of M̃ cobounded bỹSj ∪ τ n(S̃j ) is thus homeomorphic to
the union of books ofI -bundlesB ′′ = Bj ∪ · · · ∪ Bi−1, and so the manifoldM is
finitely covered by a union of books ofI -bundlesM ′′/τ n (property (b)).

5. Examples

As an application of Theorem1.1, we give amethod to show the existence of in-
finitely many certain Haken 3-manifolds, up to homeomorphism.

To state our result, we use the following notation. Recall thatBI is defined to be
the set of 3-manifolds (up to homeomorphism) such that, for eachM in BI, there
exists a union of two-sided incompressible surfacesS1, . . . , Sm such that each com-
ponent ofM − N̊(⋃m

i=1Si
)

is a book ofI -bundles. LetEn = (n1, . . . , nk) be ak-
tuple of positive integersni (possiblyni = nj for i 6= j). PutABIφ = {M ∈BI |
M is closed orientable, irreducible and atoroidal}. Let ABI En be the set of com-
pact, orientable, irreducible,∂-irreducible, atoroidal and anannular 3-manifolds
in BI such that∂M consists ofk components∂1M, . . . , ∂kM with genus(∂iM) =
ni for En = (n1, . . . , nk).

It is easy to prove the following proposition using a result of Myers [7].

Proposition 5.1 [11]. ]ABI En = ∞ for any En ( possiblyEn = ∅).
The proposition is applied when one constructs 3-manifolds that contain acylin-
drical surfaces arbitrarily; a proof based on the finiteness result on acylindrical
surfaces is given in [11].

Here we give a sketch proof for the “infinitely many” part.

Proof. If ABI En is a finite set then there exists a numberg such that, for any 3-
manifoldM ∈ ABI En, M does not contain acylindrical surface of genus greater
thang, since each manifold inABI En contains only finitely many acylindrical
surfaces (up to isotopy) by Theorem1.1. However,this contradicts the following
argument. LetWg+1 be a 3-manifold inABI En′ , where En′ = (n1, . . . , nk, g + 1).
If we identify ∂Mg+1 with the component∂+Wg+1 of ∂Wg+1 whose genus isg +1,
then the result is inABI En and contains the acylindrical surface∂Mg+1= ∂+Wg+1

with genusg +1. Hence,]ABI En is infinite.

Recall that an annulus properly embedded inM is defined to beessentialif it is in-
compressible and not∂-parallel inM. An annulus properly embedded inM is said
to bestrictly essentialif it is incompressible and∂-incompressible inM. Notice
that, ifM is irreducible and∂-irreducible, then these definitions are equivalent.
However, for a reducible 3-manifold we can prove the following proposition. Here
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we say that a surfaceS embedded inM is weakly acylindricalif M − N̊(S) does
not contain properly embedded strictly essential annuli.

Proposition 5.2. There exists a reducible closed3-manifoldM such thatM
contains infinitely many weakly acylindrical surfaces, up to isotopy.

Proof. Let M0 be a closed irreducible 3-manifold that contains a nonseparat-
ing acylindrical surfaceS0. Let V be a solid torus inM that meetsS0 with a
single meridian disk ofV. Let x1 be a point inV̊ − S and letx2 be a point in
M0 − (V ∪ S0). We attach the productS2 × [0,1] toM0 − N̊(x1∪ x2) and ob-
tain a reducible 3-manifoldM with the nonseparating sphereE = S2 × {1/2},
where we takeN(x1∪x2) sufficiently small so that it does not meet∂V. Then there
exists an embeddingg : [−1,1] × S1 × S1 → M such thatg({0} × S1 × S1) =
∂V, g([−1,1] × {0} × S1) ⊂ S0, andx1, x2 are not contained in the image ofg,
whereS1 = R/(mod 2). Thus, the mapg can be thought to be local coordinates
of N(∂V ;M) = Im(g).

There exists a homeomorphismf : M → M that agrees with the identity on
M − N̊(∂V ;M) and such that the mapf B g : [−1,1] × S1 × S1 → M is given
with f B g(t, θ1, θ2) = g(t, θ1+ t +1, θ2). Such a homeomorphismf is some-
times called aDehn-twist along∂V. PutSi = f i(S0). It is easy to see that each
Si is incompressible inM. We show thatSi is weakly acylindrical inM. Since
eachSi can be identified withS0 by the homeomorphismf : M → M, it suffices
to show thatS0 is weakly acylindrical inM. SupposeS0 is weakly acylindrical
in M; thenM − N̊(S0) contains a strictly essential annulusA. By the incom-
pressibility ofA, we may assume thatA ∩ E = ∅. Therefore,A is a properly
embedded annulus inM0 − N̊(S0). SinceS0 is acylindrical inM0, the annulusA
is compressible or∂-compressible inM0 − N̊(S0). However, ifD is a compress-
ing or a∂-compressing disk forA in M0 − N̊(S0), thenD is still a compressing
or a∂-compressing disk forA inM − N̊(S0). Hence,A is not strictly essential in
M − N̊(S0), soS0 is weakly acylindrical inM. Because there exists a loopl dual
to E such thatl intersectsSi with the algebraic intersection numberi, it follows
that the weakly acylindrical surfacesS0, . . . are mutually nonisotopic inM.

It is not true that incompressible surfaces in a reducible 3-manifoldM are iso-
toped off the reducing spheres; if we choose a separating incompressible surface
F in a 3-manifold and remove one point on each side ofF, then the surfaceF is
still incompressible and cannot be isotoped to be disjoint from a sphere bounding
a twice-punctured ball. It is true that, for the 3-manifold constructed in Propo-
sition 5.2, any incompressible surfaces can be isotoped off the essential sphere;
however, it contains infinitely many weakly acylindrical surfaces up to isotopy.
Therefore, some result on irreducible 3-manifolds is not inherited by reducible
3-manifolds. Before Lemma 3.4, the condition thatM be irreducible is neces-
sary for the result of Floyd and Oertel [1] and for constructing an extended fibered
neighborhoodN of the incompressible branched surfaceB in Section 3.
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Proposition 5.3. Each pseudo-acylindrical surface in a Seifert manifold is∂-
parallel.

Proof. It is known that any closed incompressible surface in a Seifert manifold is
isotopic, either vertical to the dual-Seifert fibration or horizontal [5, Thm. VI.34].
Let F be a closed incompressible surface in a Seifert manifold. IfF is horizon-
tal then, by [5, Thm. VI.34], each component ofM − N̊(F ) is anI -bundle. IfF
is vertical, thenF is ∂-parallel or each component ofM − N̊(F ) contains verti-
cal essential annuli.

By Proposition 5.3, our interest in studying acylindrical surfaces is directed to
atoroidal 3-manifolds.

Proposition 5.4. There exists an atoroidal3-manifoldM containing infinitely
many two-sided surfacesF, up to isotopy, with one of the following properties:

(A) each essential annulusA in M − N̊(F ) is typeA 01; or
(B) each essential annulusA in M − N̊(F ) is typeA 0 or A1.

Proof. (A) For example, letM be a surface bundle overS1 that is atoroidal and
let β1(M) ≥ 2. Neumann [8] showed that such a 3-manifold contains a nonsepa-
rating fiber surface of arbitrarily high genus. IfF is a nonseparating fiber surface
in M, we haveM − N̊(F ) = F × I. Consequently, there exists an essential an-
nulus of typeA 01 and there does not exist an essential annulus of typeA 0 andA1.

Hence the conclusion follows.
(B) Let τ be the train-track indicated on the left-hand side in Figure 5, and let

B0 be the 2-complexτ × S1. The 2-complexB0 is naturally embedded inS3 and
forms a branched surface with the branch loci union of four circles and six sectors,
each of which is an annulus. LetB be a branched surface obtained fromB0 by at-
taching a handle to each sector ofB0. The branched surfaceB is still embedded
in S3 and has six sectors, each of which is a torus with two disks removed. LetN

be a fibered neighborhood ofB in S3. Notice thatN is a book ofI -bundles, since
B has no “triple points”. We cap offN with a 3-manifold inABI(3,3,5,5) so that
the resulting manifoldM is orientable.

Figure 5
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Table 1

A1 A 0 A 01 finiteness

pseudo-acylindrical ∅ ∅ Yes Theorem 1.1
∅ ∅ Yes

∅ ∅ No Proposition 5.4(A)

∅ No Proposition 5.4(B)

For the book ofI -bundlesN, each page has negative Euler characteristic. Thus,
by Lemma 4.1,N is irreducible,∂-irreducible, and atoroidal. HenceM is irre-
ducible and atoroidal. It can be seen that condition (I.1) follows becauseN is
irreducible and∂-irreducible by Lemma 4.1. Furthermore conditions (I.2) and
(I.3) hold forN inM becauseM − N̊ is irreducible,∂-irreducible, atoroidal, and
anannular. Therefore,B is an incompressible branched surface inM. LetFn be a
surface carried byB with the positive weights indicated in Figure 5; an abstract
diagram forn = 5 is shown on the right-hand side of the figure. Notice thatFn is
a connected two-sided surface with genus(Fn) = 4n + 7. By [1, Thm. 2],Fn is
incompressible inM. Furthermore, there exists no essential annulus of typeA 01,

sinceM − N̊ is anannular and has essential annuli of typeA 0 andA1 in the fibered
neighborhoodN.

We have Table 1 as our conclusion.
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