Acylindrical Surfaces and Branched Surfaces I

Yukihiro Tsutsumi

1. Introduction

In this paper we give a finiteness property of some embedded surfaces in a 3manifold M. These embedded surfaces will be called "acylindrical" or "pseudoacylindrical" in Section 2. Acylindrical surfaces are important for hyperbolic 3manifolds; for example, if M is a hyperbolic 3-manifold and if S is an embedded totally geodesic surface, then S is acylindrical. Furthermore, if S is acylindrical or pseudo-acylindrical, then S is a quasi-Fuchsian surface; that is, the limit set of the image $\pi_{1}(S) \rightarrow \pi_{1}(M) \rightarrow$ Isom ${ }^{+} \mathbb{H}^{3}$ is a simple closed curve in $S_{\infty}^{2}([10])$.

In Section 3, we prove the following finiteness result.
Theorem 1.1. There exist only finitely many pseudo-acylindrical surfaces, up to isotopy, in a compact orientable 3-manifold.

A result similar to Theorem 1.1 was obtained by Hass [3] and Sela [9]. Since Gabai suggested that [3, Thm. 10] can be obtained using techniques of branched surface theory, we give a proof of Theorem 1.1 using some results about branched surfaces obtained by Floyd and Oertel [1].

In Section 2, we give definitions for acylindrical and pseudo-acylindrical surfaces and for branched surfaces.

In Section 4, we consider the finite cyclic covering spaces of a 3-manifold. In fact, for a Haken 3-manifold M with positive Betti number, some finite cyclic covering space M^{\prime} contains pseudo-acylindrical surfaces, or M^{\prime} is a surface bundle over the circle or constructed by books of I-bundles.

In Section 5, we will give some examples of 3-manifolds that are related to our results. As an application of Theorem 1.1, one can construct infinitely simple 3-manifolds (cf. Proposition 5.1).

2. Preliminaries

Unless stated otherwise, we let M be a compact orientable 3-manifold, and we let F be a 2-manifold that (a) is not homeomorphic to S^{2} or P^{2} and (b) is properly embedded in M. We denote a regular neighborhood of a subset $X \subset M$ by $N(X ; M)$ and denote its interior by X. For a topological space X, we denote the
number of components by $|X|$. For a set S, we denote the cardinality of S by $\sharp S$. By a surface we mean a compact 2-manifold. For a surface F properly embedded in a 3-manifold M, the frontier of $N(F ; M)$ is denoted by $\partial N(F ; M)$.

A surface F properly embedded in a 3-manifold M is said to be injective ($\pi_{1-}-$ injective) in M if the map $i_{*}: \pi_{1}(F) \rightarrow \pi_{1}(M)$ is injective. A compressing disk for a surface F embedded in a 3-manifold M is an embedded 2-disk D such that $F \cap D=\partial D$ and ∂D does not bound a disk in F. A surface F embedded in a 3-manifold M is incompressible in M if there exists no compressing disk for F. A surface F is ∂-incompressible if, for each disk $D \subset M$ with $\partial D=\alpha \cup \beta$ (where $D \cap F=\alpha$ is a properly embedded arc in F and $\partial M \cap D=\beta$), there is a disk $D^{\prime} \subset F$ with $\partial D^{\prime}=\alpha \cup \beta^{\prime}$ and $\beta^{\prime}=D^{\prime} \cap \partial F$.

An embedded surface F is two-sided in M if $N(F)$ is homeomorphic to $F \times I$; otherwise, F is said to be one-sided. It is known that an injective surface is incompressible and that a two-sided incompressible surface is injective (see [4, Chap. 6]). A 3-manifold M is said to be irreducible if each embedded 2-sphere bounds a 3-ball in M, and M is P^{2}-irreducible if M is irreducible and contains no two-sided projective plane P^{2}. A manifold M is said to be: sufficiently large if M contains some two-sided incompressible surface; Haken if M is compact, P^{2} irreducible, and sufficiently large; and ∂-irreducible if each component of ∂M is incompressible in M. A surface F properly embedded in M is said to be ∂-parallel if there exists an embedding $f: F \times[0,1] \rightarrow M$ such that $f(F \times\{0\})=F$ and $f(\partial F \times[0,1] \cup F \times\{1\}) \subset \partial M$. If M contains no incompressible torus that is not ∂-parallel, then M is said to be atoroidal. An annulus A properly embedded in a 3-manifold M is said to be essential/ if A is incompressible and not ∂-parallel in M. A 3-manifold M is said to be anannular if M contains no properly embedded essential annuli. A 3-manifold that is irreducible, ∂-irreducible, atoroidal, and anannular is called a simple 3-manifold.

A closed two-sided incompressible surface F in M is said to be pseudo-acylindrical if, for some $i=0$, 1, each essential annulus in $M-\stackrel{\circ}{N}(F)$ has boundaries in $F \times\{i\}$, where $N(F)$ is identified with the product $F \times[0,1]$. An incompressible closed surface F in a 3-manifold M is acylindrical if each component of $M-\stackrel{\circ}{N}(F)$ contains no essential annuli with boundaries contained in $\partial N(F)$.

A compact 2-polyhedron $B \subset M$ is called a branched surface if the local structure is modeled on the space in Figure 1(A) (see [1] for details). The branch locus of B is the set of points in B each of which has no neighborhood homeomorphic to \mathbb{R}^{2}. A neighborhood N of B in the 3-manifold M is naturally constructed as indicated in Figure 1(B). Such a neighborhood is called a fibered neighborhood. Observe that ∂N is the union of three compact subsurfaces ($\partial_{h} N, \partial_{v} N$, and $N \cap \partial M$) that meet only in their common boundary points. A fiber of N meets $\partial_{h} N$ transversely at its endpoints, while a fiber of N intersects $\partial_{v} N$ in a closed interval in the interior of the fiber. A surface F is carried by B if F can be isotoped into $\stackrel{\circ}{N}$ so that F intersects the fibers transversely. A surface F is carried by B with positive weights if F can be isotoped into $\stackrel{\circ}{ }$ so that F intersects all fibers transversely.

A branched surface B properly embedded in a Haken 3-manifold M is said to be incompressible if the following conditions are satisfied (see Figure 2).

Figure 1

Figure 2
(I.1) There exists no disk $D \subset N$ such that D is transverse to the fibers of N and $\partial D \subset \stackrel{\circ}{\partial}_{v} N$ (such a disk is called a disk of contact); and there is no disk $D \subset N$ such that D is transverse to the fibers of N with $\partial D=\alpha \cup \beta$, where $\dot{\alpha} \subset \grave{\partial}_{v} N$ and $\beta \subset \partial M$ are arcs and $\alpha \cap \beta=\partial \alpha=\partial \beta$.
(I.2) Each component of $\partial_{h} N$ is incompressible and ∂-incompressible in $M-\stackrel{\circ}{N}$.
(I.3) There exists no disk $D \subset M-\stackrel{\circ}{N}$ with $\partial D=D \cap N=\alpha \cup \beta$, where $\alpha \subset$ $\partial_{v} N$ is a fiber and $\beta \subset \partial_{h} N$ (such a disk is called a monogon).

3. Proofs

Throughout this section, we let B be a branched surface that carries some connected surface with positive weights in an orientable irreducible 3-manifold M. We assume that each surface F carried by B with positive weights is isotoped into a fibered neighborhood N^{\prime} of B so that F intersects all fibers transversely. Since $S=\partial N(F)$ intersects each fiber of N^{\prime} at least twice, we may assume that $N(F)$ is isotoped so that $\partial_{h} N^{\prime} \subset S$ and $S \cap \partial N^{\prime}=\partial_{h} N^{\prime}$ (see Figure 3). If we let L^{\prime} be the closure of $N^{\prime}-N(F)$, then each component of L^{\prime} is an I-bundle over a surface. Unless stated otherwise, the base spaces of all I-bundles are homeomorphic to neither S^{2} nor P^{2}.

Figure 3
If some component A of $\partial_{v} N^{\prime}$ is compressible in $M-\grave{N}^{\prime}$ then, by condition (I.2), both components of ∂A bound disks D_{0} and D_{1} in $\partial_{h} N^{\prime}$. By the irreducibility of M, the sphere $D_{0} \cup A \cup D_{1}$ bounds a 3-ball C on the side containing the compressing disk D for A. The 3-ball C can be identified with the product $D \times I$ so that $D \times\{0\}=D_{0}$ and $D \times\{1\}=D_{1}$. Hence, the I-bundle L^{\prime} is naturally extended to the I-bundle $L=L^{\prime} \cup_{A} C$, and we put $N=N^{\prime} \cup C$. It can be seen that conditions (I.1)-(I.3) hold for N, by an argument similar to [1, Thm. 2]. We call the 3-manifold N constructed as described here an extended fibered neighborhood of B. Note that the extended neighborhood N may not be a regular neighborhood of a branched surface. In fact, the manifold N could be the whole manifold M, or some of the induced fibers of N may be S^{1} or noncompact if B has "Reeb components".

A branched surface B is said to be reduced if B is an incompressible branched surface such that no component of $\partial_{h} N$ is a closed surface. The following theorem is a consequence of the main result of Floyd and Oertel in [1].

Theorem 3.1. Let M be a Haken 3-manifold. There exist a finite number of reduced branched surfaces and incompressible surfaces B_{1}, \ldots, B_{n} such that each two-sided closed incompressible surface in M is carried with positive weights by some B_{i}.

Proof. If M is ∂-reducible, then we let D_{1}, \ldots, D_{m} be disks properly embedded in M such that each component of $M-\stackrel{\circ}{N}\left(\bigcup_{i=1}^{m} D_{i}\right)$ is irreducible and ∂-irreducible (see [5, Lemma III.21]). We put $M_{0}=M-\stackrel{\circ}{N}\left(\bigcup_{i=1}^{m} D_{i}\right)$. If M is ∂-irreducible then we put $M_{0}=M$. Let B_{1}, \ldots, B_{n} be branched surfaces for M_{0} given in [1, Thm. 1] without boundaries. Then each two-sided closed incompressible surface in M_{0} is carried with positive weights by some B_{i}. By the construction in [1], these branched surfaces are incompressible in M_{0}. If some component S of $\partial_{h} N_{i}$ is closed, where N_{i} is an extended fibered neighborhood of B_{i}, then each connected two-sided surface carried by B_{i} with positive weights is isotopic to S. If some B_{i} is a one-sided surface, then we replace B_{i} by $\partial N\left(B_{i}\right)$. Now it follows that each branched surface B_{i} is either a reduced branched surface or a two-sided surface. Since M is irreducible, each closed incompressible surface in M is isotopic to an incompressible surface in M_{0}. Furthermore, each B_{i} is also incompressible in M. Therefore, each closed incompressible surface in M is carried by some B_{i} with positive weights.

We call the branched surfaces B_{1}, \ldots, B_{n} given in Theorem 3.1 basic branched surfaces for M.

Lemma 3.2. Let M be an orientable Haken 3-manifold. For each closed connected incompressible surface F carried by a reduced branched surface B with positive weights, each component of $\partial_{v} N$ is an essential annulus in $M-N(F)$, where N is an extended fibered neighborhood of B.

Proof. Let A be a component of $\partial_{v} N$. Since M is orientable, A is an annulus. First, we show that A is incompressible in $M-\stackrel{N}{N}(F)$. If it is not, then-for a compressing disk D for A with the number $\left|D \cap \partial_{v} N\right|$ minimal among all compressing disks-we let D_{0} be an innermost disk D with respect to $D \cap \partial_{v} N$. We claim that D_{0} is isotopic to a disk of contact for N. Notice that D_{0} is properly embedded in N because each component of $\partial_{v} N$ is incompressible in $M-\stackrel{\circ}{N}$. Since D is contained in $M-\stackrel{\circ}{N}(F)$, it follows that D_{0} is contained in L, where L is the closure of $N-N(F)$, which is an I-bundle. Since ∂D_{0} is contained in $\partial_{v} N$, the component of L containing D_{0} is homeomorphic to a product $D_{0} \times I$. Thus, there exists a disk of contact that is isotopic to D_{0}. This contradicts condition (I.1).

Next, we show that A is ∂-incompressible in $M-\stackrel{N}{N}(F)$. Let D be a $\partial-$ compressing disk for A in $M-\stackrel{N}{N}(F)$. By the incompressibility of $\partial_{v} N$, we may assume that $D \cap \partial_{v} N$ consists of properly embedded arcs in D. Let D_{0} be an outermost disk of D with $\partial D_{0}=\alpha \cup \beta$, where $\partial D_{0} \cap \partial_{v} N=\alpha$. We let A_{0} be the component of $\partial_{v} N$ such that $\alpha \subset A_{0}$. By the minimality of $\left|D \cap \partial_{v} N\right|$, it follows that the two points $\partial \alpha$ are contained in mutually distinct component of ∂A_{0}. Since L is an I-bundle, it follows that D is contained in $M-N$. This contradicts condition (I.3).

Lemma 3.3. Let M, F, and B be as in Lemma 3.2. Then F is not pseudoacylindrical in M.

Proof. Let N be an extended fibered neighborhood of B. If ∂N is empty, then each component of $M-\stackrel{\circ}{N}(F)$ is an I-bundle. Hence F is not pseudo-acylindrical in M.

We assume that ∂N is not empty and that F is pseudo-acylindrical in M. By Lemma 3.2, for each component A of $\partial_{v} N$ it follows that $\partial A \subset F \times\{0\}$, since F is pseudo-acylindrical; here, $N(F)$ is identified with the product $F \times[0,1]$. Since $\partial_{h} N$ has no closed component, $F \times\{1\}$ is contained in N. Hence, some component L_{1} of L with $\partial L_{1} \cap F \times\{1\} \neq \emptyset$ is an I-bundle over a closed surface. By the hypothesis that $\partial_{v} N$ is not empty, L_{1} must be a twisted I-bundle over a closed surface. This shows that there exists an essential annulus $A^{\prime} \subset L_{1}$ with $\partial A^{\prime} \subset$ $F \times\{1\}$. Hence F is not pseudo-acylindrical.

Now let us prove Theorem 1.1. First, we prove the following lemma about reducible 3-manifolds.

Lemma 3.4. Let M be a reducible 3-manifold. Then M does not contain acylindrical surfaces.

Proof. Let F be any two-sided closed incompressible surface embedded in M. Our plan is to show that F cannot be pseudo-acylindrical. Let l be a nontrivial simple closed curve in F and let E be an essential sphere embedded in M. By the incompressibility of F, we can choose the sphere E such that E does not meet F. We join points $x \in l$ and $y \in E$ with an arc α such that $\alpha \cap F=x$ and $\alpha \cap E=$ y, and we put $A^{\prime}=\partial N(l \cup \alpha \cup E ; M)$. Clearly, A^{\prime} consists of three components: one of the three is a sphere parallel to E, and the other two are annuli. For an annular component A of $A^{\prime}-F$ "surrounding $\alpha \cup E$ ", we see that $A \cap(M-\stackrel{N}{N}(F))$ is incompressible and not ∂-parallel in the $M-\stackrel{N}{N}(F)$. Therefore, A is essential in $M-\stackrel{\circ}{N}(F)$ and hence F is not acylindrical.

Proof of Theorem 1.1. First, we prove the theorem for irreducible 3-manifolds. By Theorem 3.1, each closed two-sided incompressible surface is carried with positive weights by some basic branched surface B that is a reduced branched surface or has no branch loci. By Lemma 3.3, F is pseudo-acylindrical if and only if B has no branch loci and the surface B is pseudo-acylindrical. Hence, each pseudo-acylindrical surface in M is isotopic to one of the basic surfaces that are pseudo-acylindrical surfaces. Since the number of basic branched surfaces B_{1}, \ldots, B_{n} is finite, the conclusion follows.

Next, we consider the case where M is reducible. By the same argument as Lemma 3.4, if M is reducible and S is a pseudo-acylindrical surface in M, then S is isotoped off the reducing spheres and S is a separating surface in M. Let M_{0} be the cutting result of M along the a union of reducing spheres of M, and let \hat{M}_{0} be the manifold obtained from M_{0} by capping off spherical boundary components with 3-balls C. Then \hat{M}_{0} is an irreducible 3-manifold. Suppose M contains infinitely many pseudo-acylindrical surfaces S_{1}, S_{2}, \ldots, up to isotopy. Then each S_{i} is separating and does not meet the reducing spheres, and S_{i} is contained in \hat{M}_{0}. Since \hat{M}_{0} is irreducible, some S_{i} and S_{j} is isotopic in \hat{M}_{0}. The isotopy can be chosen so that C is preserved. Thus, if S_{i} is not isotopic to S_{j} in M, then (a) S_{i} can be isotoped to S_{i}^{\prime} in M so that $S_{i}^{\prime} \cap S_{j}=\emptyset$ and (b) in $\hat{M}_{0}, S_{i}^{\prime} \cup S_{j}$ bounds a product $W=S_{i} \times I$ such that C is contained in W. Hence, the number of isotopy classes of pseudoacylindrical surfaces in M is at most twice of that of \hat{M}_{0}. The proof is complete.

In [9], Sela obtained a stronger result than Theorem 1.1 and [3, Thm. 10], a result concerning a " k-acylindrical surface" for simple 3-manifolds (see [9] for the definition of k-acylindrical surface). In [12], the author gave a proof of a " k-acylindrical finiteness property" for irreducible 3-manifolds using branched surfaces. Furthermore, it was shown in [12] that, if M is hyperbolic and if each component of $M-\stackrel{\circ}{N}(F)$ is not an I-bundle, then the incompressible surface F is k-acylindrical for some k.

4. Finite Covering Spaces and Books of I-Bundles

In this section, we will search for pseudo-acylindrical surfaces in finite-fold cyclic covering spaces of an atoroidal 3-manifold. In fact, if we fail to find pseudoacylindrical surfaces, then the 3-manifold would be finitely covered by some 3manifold that can be decomposed into "books of I-bundles".

Let M be a 3-manifold. We say a surface S in ∂M is ∂-incompressible if there exists no properly embedded disk D in M such that $D \cap S$ is a single essential arc in S. A 3-manifold pair (M, R) is called an incompressible pseudo-sutured manifold pair if each component of R is an incompressible torus or an incompressible, ∂-incompressible annulus in ∂M. An essential loop in a component of R is called a suture. Notice that, if B is an incompressible branched surface in M, then (by Lemma 3.2) the pair ($M-\stackrel{\circ}{N}, \partial_{v} N$) is a pseudo-sutured manifold pair, where N is the extended neighborhood of B.

Let $\left(V_{1}, R_{1}\right), \ldots,\left(V_{m}, R_{m}\right)$ be incompressible pseudo-sutured solid torus pairs with $\left|R_{i}\right| \geq 2$. Each R_{i} is a union of mutually parallel disjoint annuli in ∂V_{i} with nonmeridional slopes. Let F_{1}, \ldots, F_{n} be compact surfaces with boundaries. If we glue $\bigcup_{i=1}^{n}\left(F_{i} \times I\right)$ to $\bigcup_{i=1}^{m} V_{i}$ with a homeomorphism $\bigcup_{i=1}^{n}\left(\partial F_{i} \times I\right) \rightarrow \bigcup_{i=1}^{m} R_{i}$, then we obtain a compact 3-manifold. Such a 3-manifold is called a book of I bundles; cores of the V_{i} (or the solid tori V_{i}) are called binders and the F_{i} are called pages.

Let $\mathcal{B I}$ be the set of 3-manifolds M in which there exists a finite union of two-sided incompressible surfaces S_{1}, \ldots, S_{m} such that each component of $M-\stackrel{\circ}{N}\left(\bigcup_{i=1}^{m} S_{i}\right)$ is a book of I-bundles.

We describe some properties of books of I-bundles. Hereafter, we shall use the following notation for books of I-bundles: $\left(V_{i}, R_{i}\right)$ denotes a binder pseudosutured solid torus pair; F_{i} denotes a page; and we put $V=\bigcup V_{i}, R=\bigcup R_{i}$, and $F=\bigcup F_{i}$.

Lemma 4.1. Let M be a book of I-bundles. If each page F_{i} has negative Euler characteristic, then M is irreducible, ∂-irreducible, and atoroidal.

Proof. By the hypothesis that $\chi\left(F_{i}\right)<0$, each annulus R_{i} is incompressible and ∂-incompressible in M. Thus, if M is reducible then there exists an essential sphere in some V_{i} or $F_{i} \times I$, which is impossible because there are handlebodies. Hence we can conclude M is irreducible. If M is ∂-reducible then we let D be a compressing disk for ∂M. By the incompressibility and ∂-incompressibility of R_{i}, we may assume that $D \cap R=\emptyset$, since R_{i} is incompressible and ∂-incompressible. The disk D is therefore contained in V or $F \times I$. If D is contained in V then, by the incompressibility of $R, \partial D$ must bound a disk in $\partial V-R_{i}$. If ∂D is contained in $F \times\{0\}$ then, since $F \times\{0\}$ is incompressible in the product $F \times I$, it follows that ∂D bounds a disk in $F \times\{0\}$. These statements contradict the assumption that D is a compressing disk for ∂M. Hence, M is irreducible and ∂-irreducible. Let T be an incompressible torus in M. By the incompressibility of R, we may assume that the closure of each component of $T-R$ is an essential annulus in V or $F \times I$ and that $V \cap T \neq \emptyset$ and $T \cap(F \times I) \neq \emptyset$. However, since $\chi\left(F_{i}\right)<0$, each component of $T \cap(F \times I)$ cannot be essential in $F \times I$. The proof is complete.

Lemma 4.2. Let M be a book of I-bundles with each page F_{i} of negative Euler characteristic. Let $\partial_{0} M$ be a component of ∂M. Suppose that (1) $\partial_{0} M$ contains at most one component of $F_{i} \times\{0,1\}$ for any i, (2) each component R_{i} of R has integral slope on ∂V_{i}, and (3) $\partial_{0} M$ contains at most one component of $\partial V_{i}-R_{i}$ for any i. Then $\partial_{0} M$ is acylindrical in M.

Proof. Let A be an essential annulus in M with $\partial A \subset \partial_{0} M$. Let F^{\prime} be the maximal union of components of F such that $\left(F^{\prime} \times I\right) \cap \partial_{0} M=\emptyset$. Since each component of F has negative Euler characteristic, we may assume that $A \cap\left(\partial F^{\prime} \times I\right)=$ \emptyset. Because the slope of each suture is integral on the boundary of the binder solid torus, we may assume (by a suitable choice of a union A^{\prime} of essential annuli in M with $\left.A^{\prime} \cap\left(\partial_{0} M \cup A\right)=\emptyset\right)$ that the component M_{0} of $M-\stackrel{N}{N}\left(A^{\prime}\right)$ that contains $\partial_{0} M$ is homeomorphic to the product $\partial_{0} M \times I$. Thus, the annulus A is ∂-parallel to $\partial_{0} M$. This is a contradiction to the essentiality of A.

The main result in this section is the following theorem. A surface S in a 3-manifold M is said to be taut if $\sum_{i}\left(\left|\chi\left(S_{i}\right)\right|\right)$ is minimal among surfaces in the homology class of S, where the sum is over components S_{i} of S with $\chi\left(S_{i}\right) \leq 0$.

Theorem 4.3. Let M be a closed atoroidal 3-manifold with $\beta_{1}(M) \geq 1$. Then, for any primitive elemente $\in H_{2}(M ; \mathbb{Z}), M$ has a finite-fold cyclic cover $p: M^{\prime} \rightarrow$ M that is dual to e with at least one of the following properties:
(a) $M^{\prime} \in \mathcal{B I}$;
(b) M^{\prime} contains a pseudo-acylindrical surface.

In order to prove Theorem 4.3, we need some lemmas. Let S be a two-sided surface in M; namely, $N(S)$ is identified with the product $S \times[0,1]$. An essential annulus (or a Seifert pair) A properly embedded in $M-\stackrel{N}{N}(S)$ is said to be of type $\mathcal{A}_{0}\left(\mathcal{A}_{1}, \mathcal{A}_{01}\right.$, resp.) if $\partial A \subset S \times\{0\}(\partial A \subset S \times\{1\}$, one component of ∂A is contained in $S \times\{0\}$ and the other in $S \times\{1\}$, resp.).

Lemma 4.4. Let M be an atoroidal closed 3-manifold and let S be a two-sided nonseparating incompressible surface embedded in M such that $M-\stackrel{\circ}{N}(S)$ is not an I-bundle. Then there exists a finite-fold cyclic cover $p: M^{\prime} \rightarrow M$ such that, for some lift S^{\prime} of S, the manifold $M^{\prime}-N^{\prime}\left(S^{\prime}\right)$ contains no essential annulus of type \mathcal{A}_{01}. Furthermore, if S is taut in M, then $p: M^{\prime} \rightarrow M$ can be chosen so that S^{\prime} is taut in M^{\prime}.

Proof. Let (Σ, Φ) be the characteristic Seifert submanifold Σ of M. Suppose that some \mathcal{A}_{01}-type component of Σ is not an S^{1}-pair. Let $q: \tilde{M} \rightarrow M$ be the infinite cyclic cover of M that is dual to S, and let $\tau: \tilde{M} \rightarrow \tilde{M}$ be a generator of the covering translation. Let M_{1} be a fundamental domain in \tilde{M} such that the pair ($M_{1}, \partial M_{1}$) is homeomorphic to the pair $(M-\stackrel{\circ}{N}(S), \partial N(S))$, so that: $\left.q\right|_{M_{1}}$ is a homeomorphism; ∂M_{1} is a union of two copies of S; and $\left.q\right|_{\partial M_{1}}$ is a 2 -fold cover of S. We put $M_{j}=\bigcup_{i=1}^{j} \tau^{i-1}\left(M_{1}\right)$. Then each M_{j} has the common boundary component $\partial_{0} M_{j}=\partial_{0} M_{1}$. We put $\partial_{1} M_{j}=\partial M_{j}-\partial_{0} M_{j}$. Let $\left(\Sigma_{j}, \Phi_{j}\right)$ be the characteristic Seifert pair of $\left(M_{j}, \partial M_{j}\right)$, and let Σ_{j}^{01} be the subset that consists of components of Σ_{j} of type \mathcal{A}_{01}. We put $\Phi_{j}^{0}=\Sigma_{j}^{01} \cap \partial_{0} M_{j}$ and $\Phi_{j}^{1}=\Sigma_{j}^{01} \cap \partial_{1} M_{j}$.

We claim that $\Sigma_{m}^{01}=\emptyset$ for some positive integer m. By a suitable isotopy, each component of $\Sigma_{i+1} \cap M_{i}$ that meets $\partial_{0} M_{i}$ is contained in Σ_{i}^{01}; this follows because, after eliminating trivial circle components of $\partial \Sigma_{i+1} \cap \partial_{1} M_{i}$ via their incompressibility, the intersection $\Sigma_{i+1} \cap M_{i}$ forms an essential Seifert pair of M_{i}.

So, the equation $\chi\left(\Phi_{i+1}^{0}\right)=\chi\left(\Phi_{i}^{0}\right)-\chi\left(\Phi_{i}^{0}-\Phi_{i+1}^{0}\right)$ holds. Put $a(i)=-\chi\left(\Phi_{i}^{0}\right)$ and $b(i)=-\left|\partial \Phi_{i}^{0}\right|$. Set $c(i)=(a(i), b(i))$, a complexity that is ordered lexicographically. As we have seen before, $a(i+1)=a(i)+\chi\left(\Phi_{i}^{0}-\Phi_{i+1}^{0}\right)$. Thus, we have $a(i+1) \leq a(i)$.

Claim 4.5. $\quad c(i)>c(2 i)$.
Proof. We may assume that each component of $\Sigma_{2 i}^{01} \cap \partial_{1} M_{i}$ is incompressible and ∂-incompressible or parallel to $\Phi_{2 i}^{1}$ in $\Sigma_{2 i}^{01}$. Let Σ^{\prime} be the union of the closures of components of $\Sigma_{2 i}^{01}-\partial_{1} M_{i}$ each of which meets $\partial_{1} M_{2 i}$. If $\Sigma^{\prime}=\emptyset$, we are done. It follows that $\tau^{-i}\left(\Sigma^{\prime}\right)$ can be isotoped into Σ_{i}^{01}. If $c(i)=c(2 i)$ then, for each component l of $\partial\left(\Sigma^{\prime} \cap \partial_{1} M_{i}\right)$, the loop $\tau^{-1}(l)$ is parallel to a component of $\partial \Phi_{i}^{0}$ in $\partial_{0} M_{i}$. Furthermore, Σ_{i}^{01} is isotopic to $\tau^{-i}\left(\Sigma^{\prime}\right)$. Hence we can find an incompressible torus (possibly immersed) in \tilde{M} / τ^{i}. Now the torus theorem [5] yields a contradiction to the condition that M is atoroidal and contains a nonseparating surface such that the exterior is not an I-bundle.

It is true (see [11]) that the number of mutually nonparallel disjoint essential annuli properly embedded in an atoroidal 3-manifold M is bounded by a number that is dependent only on $\chi(\partial M)$. As a result, the inequality $|b(i)|<n$ holds for some n, and thus we have $\Sigma_{m}^{01}=\emptyset$ for some m.

Now we let M^{\prime} be an m-fold cyclic cover of M that is dual to S. Let S^{\prime} be a lift of S. If there exists an essential annulus in $M^{\prime}-\stackrel{\circ}{N}\left(S^{\prime}\right)$ of type \mathcal{A}_{01}, then some component of the characteristic Seifert submanifold Σ^{\prime} of $M^{\prime}-\stackrel{\circ}{N}\left(S^{\prime}\right)$ is an S^{1}-pair. Let k be the number of S^{1}-pairs in Σ^{\prime}. By the atoroidality of M, for the $(k+1)$-fold cyclic cover $M^{\prime \prime}$ of M^{\prime} dual to S^{\prime}, the exterior $M^{\prime \prime}-\stackrel{N}{N}\left(S^{\prime \prime}\right)$ contains no essential annuli of type \mathcal{A}_{01}, where $S^{\prime \prime}$ is a lift of S^{\prime}. So, by taking a finite cyclic cover of M, we can eliminate the essential annulus of type \mathcal{A}_{01}.

Now we prove the latter part of this lemma. Let $p: M^{\prime} \rightarrow M$ be the resulting cyclic cover. Suppose S is taut in M and there is an incompressible surface F^{\prime} that is homologous to S^{\prime} in M^{\prime} with $\chi\left(F^{\prime}\right)>\chi\left(S^{\prime}\right)$. By an argument similar to [2, Lemma 3.6], we can find a surface $F^{\prime \prime}$ that is homologous to S^{\prime} in M^{\prime} with $\chi\left(F^{\prime \prime}\right)>\chi\left(S^{\prime}\right)$ such that $F^{\prime \prime} \cap p^{-1}(S)=\emptyset$. Since $F^{\prime \prime}$ and S^{\prime} are homologous in M^{\prime}, there exists a compact 3-manifold B^{\prime} embedded in M^{\prime} with $\partial B^{\prime}=F^{\prime \prime} \cup S^{\prime}$ and $B^{\prime} \cap p^{-1}(S)=S^{\prime}$. Hence, $p\left(F^{\prime \prime}\right)$ is an embedded surface homologous to S in M, since $\left.p\right|_{B^{\prime}}$ is an embedding. This contradicts the assumption that S is taut in M.

Proof of Theorem 4.3. Let S be a taut, incompressible, nonseparating surface such that $[S]=e \in H_{2}(M ; \mathbb{Z})$. Let Σ be the characteristic submanifold of $M-\stackrel{\circ}{N}(S)$. If $\Sigma=M-\stackrel{N}{N}(S)$, then M is a surface bundle over S^{1} with a fiber S (property (a)). If $\Sigma=\emptyset$, then S is acylindrical (property (b)). By Lemma 4.4, we may assume that $M-\stackrel{\circ}{N}(S)$ contains no essential annuli of type \mathcal{A}_{01}. Furthermore, since the cyclic covering space dual to S is unique up to homology class of S, by taking a cyclic cover of M we may assume that, for each incompressible surface F that is homologous to S in M with $\chi(F)=\chi(S)$, the manifold $M-N(F)$ contains no
essential annulus of type \mathcal{A}_{01}, since there exists only finitely many incompressible surfaces in M (up to isotopy) with any fixed Euler characteristic [6, Cor. 2.3].

Let $q: \tilde{M} \rightarrow M$ be an infinite cyclic covering space of M that is dual to S. Let \tilde{S}_{0} be a lifting of S into \tilde{M}, and let A_{0} be an annulus in \tilde{M} such that $A_{0} \cap \tilde{S}_{0}=\partial A_{0}$ and $\left(\tilde{M}-\stackrel{\circ}{N}\left(\tilde{S}_{0}\right)\right) \cap A_{0}$ is an essential annulus of type \mathcal{A}_{1}.

We construct surfaces $\left\{\tilde{S}_{i}\right\}$ in \tilde{M} successively as follows. We are given an incompressible surface \tilde{S}_{i} in \tilde{M} such that $S_{i}=q\left(\tilde{S}_{i}\right)$ is an embedded incompressible surface in M, so that $M-\stackrel{N}{N}\left(S_{i}\right)$ contains no essential annulus of type \mathcal{A}_{01}. We identify the regular neighborhood $N\left(\tilde{S}_{i}\right)$ with the product $\tilde{S}_{i} \times[0,1]$, so that $\tilde{S}_{i} \times\{1 / 2\}=\tilde{S}_{i}$ and $\tilde{S}_{i} \times\{1\}$ is contained in the front-side of $\tilde{M}-\tilde{S}_{i}$, that is, the component of $\tilde{M}-\tilde{S}_{i}$ that contains $\tau\left(\tilde{S}_{i}\right)$, where $\tau: \tilde{M} \rightarrow \tilde{M}$ is a generator of the covering translation group. See Figure 4.

Figure 4

If there exists an annulus A_{i} in \tilde{M} such that $A_{i} \cap \tilde{S}_{i}=\partial A_{i}$ and $\left(\tilde{M}-\stackrel{\circ}{N}\left(\tilde{S}_{i}\right)\right) \cap A_{i}$ is an essential annulus of type \mathcal{A}_{1}, then we set $\tilde{S}_{i+1}=\partial_{+} N\left(\tilde{S}_{i} \cup A_{i}\right)$, where $\partial N\left(\tilde{S}_{i} \cup A_{i}\right)=\partial_{-} N\left(\tilde{S}_{i} \cup A_{i}\right) \cup \partial N_{+}\left(\tilde{S}_{i} \cup A_{i}\right)$ and $\partial_{-} N\left(\tilde{S}_{i} \cup A_{i}\right)$ is parallel to \tilde{S}_{i}. Notice that the manifold B_{i} cobounded by $\tilde{S}_{i} \cup \tilde{S}_{i+1}$ is a book of I-bundles and that $\chi\left(\tilde{S}_{i+1}\right)=\chi\left(\tilde{S}_{i}\right)$. Furthermore, $S_{i+1}=q\left(\tilde{S}_{i+1}\right)$ is embedded in M; otherwise, for the annulus A_{i} we would have $q\left(\AA_{i}\right) \cap q\left(\tilde{S}_{i}\right) \neq \emptyset$. In this case, some component of $q\left(A_{i}\right) \cap\left(M-\stackrel{\circ}{N}\left(q\left(\tilde{S}_{i}\right)\right)\right)$ is an essential annulus of type \mathcal{A}_{01}, which contradicts the absence of essential annuli of types \mathcal{A}_{01} for all surfaces in M of Euler characteristic equal to $\chi(S)$. Furthermore, since $\left(\tilde{S}_{i} \cup \tau\left(\tilde{S}_{i}\right)\right) \cap \tilde{S}_{i+1} \neq \emptyset$, the surface S_{i+1} is embedded in $M-\stackrel{\circ}{N}\left(S_{i}\right)$. Thus, the book of I-bundles $q\left(B_{i}\right)$ is embedded in M and hence the surface S_{i} is homologous to S_{i+1} in M. Here we can prove that the surface \tilde{S}_{i+1} is incompressible in \tilde{M} directly as follows. For otherwise, let \tilde{D} be a compressing disk for \tilde{S}_{i+1}. Recall that $S_{i+1}=q\left(\tilde{S}_{i+1}\right)$ is embedded in $M-\stackrel{N}{N}\left(S_{i}\right)$. Since \tilde{S}_{i} is incompressible, we may assume that $\tilde{D} \cap \bigcup_{j=-\infty}^{\infty} \tau^{j}\left(\tilde{S}_{i}\right)=\emptyset$. Therefore, $D=q(\tilde{D})$ is a compressing disk for S_{i+1}. This contradicts the assumption that $S=S_{0}$ is taut in M and so proves our claim.

If there exists no such annulus in \tilde{M} then \tilde{S}_{i} is pseudo-acylindrical in \tilde{M}, and $q\left(\tilde{S}_{i}\right)$ is also pseudo-acylindrical in M (property (b)).

Because $\chi\left(\tilde{S}_{i}\right)=\chi(S)$, the manifold M contains only finitely many incompressible surfaces $q\left(\tilde{S}_{i}\right)$, up to isotopy [6, Cor. 2.3]. As a result, the surface $S_{i}=q\left(\tilde{S}_{i}\right)$
is isotopic to some $S_{j}=q\left(\tilde{S}_{j}\right)$ for some $i>j$. The isotopy between S_{i} and S_{j} is lifted to an isotopy between \tilde{S}_{i} and $\tau^{n}\left(\tilde{S}_{j}\right)$ for some n. Hence there exists a map $g: \tilde{S}_{i} \times[0,1] \rightarrow \tilde{M}$ such that $g\left(\tilde{S}_{i} \times\{0\}\right)=\tilde{S}_{i}$ and $g\left(\tilde{S}_{i} \times\{1\}\right)=\tau^{n}\left(\tilde{S}_{j}\right)$. Since $\tilde{S}_{i} \times[0,1]$ is compact, we may assume that $g\left(\tilde{S}_{i} \times[0,1]\right) \cap \tilde{S}_{j}=\emptyset$. By an argument similar to [13, Cor. 5.5], we can construct an isotopy $f_{t}: \tilde{M} \rightarrow \tilde{M}$ such that f_{0} is the identity, each $\left.f_{t}\right|_{\tilde{S}_{j}}$ is the identity, and $f_{1}\left(\tilde{S}_{i}\right)=\tau^{n}\left(\tilde{S}_{j}\right)$. The compact submanifold $M^{\prime \prime}$ of \tilde{M} cobounded by $\tilde{S}_{j} \cup \tau^{n}\left(\tilde{S}_{j}\right)$ is thus homeomorphic to the union of books of I-bundles $B^{\prime \prime}=B_{j} \cup \cdots \cup B_{i-1}$, and so the manifold M is finitely covered by a union of books of I-bundles $M^{\prime \prime} / \tau^{n}$ (property (b)).

5. Examples

As an application of Theorem 1.1, we give a method to show the existence of infinitely many certain Haken 3-manifolds, up to homeomorphism.

To state our result, we use the following notation. Recall that $\mathcal{B I}$ is defined to be the set of 3-manifolds (up to homeomorphism) such that, for each M in $\mathcal{B I}$, there exists a union of two-sided incompressible surfaces S_{1}, \ldots, S_{m} such that each component of $M-\stackrel{\circ}{N}\left(\bigcup_{i=1}^{m} S_{i}\right)$ is a book of I-bundles. Let $\vec{n}=\left(n_{1}, \ldots, n_{k}\right)$ be a k tuple of positive integers n_{i} (possibly $n_{i}=n_{j}$ for $i \neq j$). Put $\mathcal{A B I} \mathcal{I}_{\phi}=\{M \in \mathcal{B I} \mid$ M is closed orientable, irreducible and atoroidal\}. Let $\mathcal{A B} \mathcal{I}_{\vec{n}}$ be the set of compact, orientable, irreducible, ∂-irreducible, atoroidal and anannular 3-manifolds in $\mathcal{B I}$ such that ∂M consists of k components $\partial_{1} M, \ldots, \partial_{k} M$ with genus $\left(\partial_{i} M\right)=$ n_{i} for $\vec{n}=\left(n_{1}, \ldots, n_{k}\right)$.

It is easy to prove the following proposition using a result of Myers [7].
Proposition 5.1 [11]. $\sharp \mathcal{A B I}_{\vec{n}}=\infty$ for any $\vec{n}($ possibly $\vec{n}=\emptyset)$.
The proposition is applied when one constructs 3-manifolds that contain acylindrical surfaces arbitrarily; a proof based on the finiteness result on acylindrical surfaces is given in [11].

Here we give a sketch proof for the "infinitely many" part.
Proof. If $\mathcal{A B I}_{\vec{n}}$ is a finite set then there exists a number g such that, for any 3manifold $M \in \mathcal{A B} \mathcal{I}_{\vec{n}}, M$ does not contain acylindrical surface of genus greater than g, since each manifold in $\mathcal{A B} \mathcal{I}_{\vec{n}}$ contains only finitely many acylindrical surfaces (up to isotopy) by Theorem 1.1. However, this contradicts the following argument. Let W_{g+1} be a 3-manifold in $\mathcal{A B} \mathcal{I}_{\vec{n}^{\prime}}$, where $\overrightarrow{n^{\prime}}=\left(n_{1}, \ldots, n_{k}, g+1\right)$. If we identify ∂M_{g+1} with the component $\partial_{+} W_{g+1}$ of ∂W_{g+1} whose genus is $g+1$, then the result is in $\mathcal{A B} \mathcal{I}_{\vec{n}}$ and contains the acylindrical surface $\partial M_{g+1}=\partial_{+} W_{g+1}$ with genus $g+1$. Hence, $\sharp \mathcal{A B} \mathcal{I}_{\vec{n}}$ is infinite.

Recall that an annulus properly embedded in M is defined to be essential if it is incompressible and not ∂-parallel in M. An annulus properly embedded in M is said to be strictly essential if it is incompressible and ∂-incompressible in M. Notice that, if M is irreducible and ∂-irreducible, then these definitions are equivalent. However, for a reducible 3-manifold we can prove the following proposition. Here
we say that a surface S embedded in M is weakly acylindrical if $M-\stackrel{\circ}{N}(S)$ does not contain properly embedded strictly essential annuli.

Proposition 5.2. There exists a reducible closed 3-manifold M such that M contains infinitely many weakly acylindrical surfaces, up to isotopy.

Proof. Let M_{0} be a closed irreducible 3-manifold that contains a nonseparating acylindrical surface S_{0}. Let V be a solid torus in M that meets S_{0} with a single meridian disk of V. Let x_{1} be a point in $\stackrel{\circ}{V}-S$ and let x_{2} be a point in $M_{0}-\left(V \cup S_{0}\right)$. We attach the product $S^{2} \times[0,1]$ to $M_{0}-\stackrel{\circ}{N}\left(x_{1} \cup x_{2}\right)$ and obtain a reducible 3-manifold M with the nonseparating sphere $E=S^{2} \times\{1 / 2\}$, where we take $N\left(x_{1} \cup x_{2}\right)$ sufficiently small so that it does not meet ∂V. Then there exists an embedding $g:[-1,1] \times S^{1} \times S^{1} \rightarrow M$ such that $g\left(\{0\} \times S^{1} \times S^{1}\right)=$ $\partial V, g\left([-1,1] \times\{0\} \times S^{1}\right) \subset S_{0}$, and x_{1}, x_{2} are not contained in the image of g, where $S^{1}=\mathbb{R} /(\bmod 2)$. Thus, the map g can be thought to be local coordinates of $N(\partial V ; M)=\operatorname{Im}(g)$.

There exists a homeomorphism $f: M \rightarrow M$ that agrees with the identity on $M-\stackrel{\circ}{N}(\partial V ; M)$ and such that the map $f \circ g:[-1,1] \times S^{1} \times S^{1} \rightarrow M$ is given with $f \circ g\left(t, \theta_{1}, \theta_{2}\right)=g\left(t, \theta_{1}+t+1, \theta_{2}\right)$. Such a homeomorphism f is sometimes called a Dehn-twist along ∂V. Put $S_{i}=f^{i}\left(S_{0}\right)$. It is easy to see that each S_{i} is incompressible in M. We show that S_{i} is weakly acylindrical in M. Since each S_{i} can be identified with S_{0} by the homeomorphism $f: M \rightarrow M$, it suffices to show that S_{0} is weakly acylindrical in M. Suppose S_{0} is weakly acylindrical in M; then $M-\stackrel{N}{N}\left(S_{0}\right)$ contains a strictly essential annulus A. By the incompressibility of A, we may assume that $A \cap E=\emptyset$. Therefore, A is a properly embedded annulus in $M_{0}-\stackrel{N}{N}\left(S_{0}\right)$. Since S_{0} is acylindrical in M_{0}, the annulus A is compressible or ∂-compressible in $M_{0}-\stackrel{\circ}{N}\left(S_{0}\right)$. However, if D is a compressing or a ∂-compressing disk for A in $M_{0}-\stackrel{\circ}{N}\left(S_{0}\right)$, then D is still a compressing or a ∂-compressing disk for A in $M-\stackrel{\circ}{N}\left(S_{0}\right)$. Hence, A is not strictly essential in $M-\stackrel{\circ}{N}\left(S_{0}\right)$, so S_{0} is weakly acylindrical in M. Because there exists a loop l dual to E such that l intersects S_{i} with the algebraic intersection number i, it follows that the weakly acylindrical surfaces S_{0}, \ldots are mutually nonisotopic in M.

It is not true that incompressible surfaces in a reducible 3-manifold M are isotoped off the reducing spheres; if we choose a separating incompressible surface F in a 3-manifold and remove one point on each side of F, then the surface F is still incompressible and cannot be isotoped to be disjoint from a sphere bounding a twice-punctured ball. It is true that, for the 3-manifold constructed in Proposition 5.2, any incompressible surfaces can be isotoped off the essential sphere; however, it contains infinitely many weakly acylindrical surfaces up to isotopy. Therefore, some result on irreducible 3-manifolds is not inherited by reducible 3-manifolds. Before Lemma 3.4, the condition that M be irreducible is necessary for the result of Floyd and Oertel [1] and for constructing an extended fibered neighborhood N of the incompressible branched surface B in Section 3 .

Proposition 5.3. Each pseudo-acylindrical surface in a Seifert manifold is ∂ parallel.

Proof. It is known that any closed incompressible surface in a Seifert manifold is isotopic, either vertical to the dual-Seifert fibration or horizontal [5, Thm. VI.34]. Let F be a closed incompressible surface in a Seifert manifold. If F is horizontal then, by [5, Thm. VI.34], each component of $M-\stackrel{\circ}{N}(F)$ is an I-bundle. If F is vertical, then F is ∂-parallel or each component of $M-\stackrel{\circ}{N}(F)$ contains vertical essential annuli.

By Proposition 5.3, our interest in studying acylindrical surfaces is directed to atoroidal 3-manifolds.

Proposition 5.4. There exists an atoroidal 3-manifold M containing infinitely many two-sided surfaces F, up to isotopy, with one of the following properties:
(A) each essential annulus A in $M-\stackrel{\circ}{N}(F)$ is type \mathcal{A}_{01}; or
(B) each essential annulus A in $M-\stackrel{\circ}{N}(F)$ is type \mathcal{A}_{0} or \mathcal{A}_{1}.

Proof. (A) For example, let M be a surface bundle over S^{1} that is atoroidal and let $\beta_{1}(M) \geq 2$. Neumann [8] showed that such a 3 -manifold contains a nonseparating fiber surface of arbitrarily high genus. If F is a nonseparating fiber surface in M, we have $M-\stackrel{\circ}{N}(F)=F \times I$. Consequently, there exists an essential annulus of type \mathcal{A}_{01} and there does not exist an essential annulus of type \mathcal{A}_{0} and \mathcal{A}_{1}. Hence the conclusion follows.
(B) Let τ be the train-track indicated on the left-hand side in Figure 5, and let B_{0} be the 2-complex $\tau \times S^{1}$. The 2-complex B_{0} is naturally embedded in S^{3} and forms a branched surface with the branch loci union of four circles and six sectors, each of which is an annulus. Let B be a branched surface obtained from B_{0} by attaching a handle to each sector of B_{0}. The branched surface B is still embedded in S^{3} and has six sectors, each of which is a torus with two disks removed. Let N be a fibered neighborhood of B in S^{3}. Notice that N is a book of I-bundles, since B has no "triple points". We cap off N with a 3-manifold in $\mathcal{A B I}_{(3,3,5,5)}$ so that the resulting manifold M is orientable.

Figure 5

Table 1

	\mathcal{A}_{1}	\mathcal{A}_{0}	\mathcal{A}_{01}	finiteness	
pseudo-acylindrical	\emptyset		\emptyset	Yes	Theorem 1.1
	\emptyset	\emptyset	\emptyset	Yes	
	\emptyset		No	Proposition 5.4(A)	
			\emptyset	No	Proposition 5.4(B)

For the book of I-bundles N, each page has negative Euler characteristic. Thus, by Lemma 4.1, N is irreducible, ∂-irreducible, and atoroidal. Hence M is irreducible and atoroidal. It can be seen that condition (I.1) follows because N is irreducible and ∂-irreducible by Lemma 4.1. Furthermore conditions (I.2) and (I.3) hold for N in M because $M-\stackrel{\perp}{N}$ is irreducible, ∂-irreducible, atoroidal, and anannular. Therefore, B is an incompressible branched surface in M. Let F_{n} be a surface carried by B with the positive weights indicated in Figure 5; an abstract diagram for $n=5$ is shown on the right-hand side of the figure. Notice that F_{n} is a connected two-sided surface with genus $\left(F_{n}\right)=4 n+7$. By [1, Thm. 2], F_{n} is incompressible in M. Furthermore, there exists no essential annulus of type \mathcal{A}_{01}, since $M-\stackrel{\circ}{N}$ is anannular and has essential annuli of type \mathcal{A}_{0} and \mathcal{A}_{1} in the fibered neighborhood N.

We have Table 1 as our conclusion.
Acknowledgment. The author would like to thank Professor Ippei Ishii, Professor Kimihiko Motegi, and Professor Chuichiro Hayashi for their useful comments and helpful discussions.

References

[1] W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology 23 (1984), 117-125.
[2] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445-503.
[3] J. Hass, Acylindrical surfaces in 3-manifolds, Michigan Math. J. 42 (1995), 357-365.
[4] J. Hempel, 3-manifolds, Ann. of Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976.
[5] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math., 43, Amer. Math. Soc., Providence, RI, 1980.
[6] W. Jaco and U. Oertel, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984), 195-209.
[7] R. Myers, Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), 115-127.
[8] D. A. Neumann, 3-Manifolds fibering over S^{1}, Proc. Amer. Math. Soc. 58 (1976), 353-356.
[9] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), 527-565.
[10] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton Univ., 1978.
[11] Y. Tsutsumi, Embedded incompressible surfaces in 3-manifolds, Masters thesis, Keio Univ., 2001.
[12] ——, Acylindrical surfaces and branched surfaces, II, preprint.
[13] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.

Department of Mathematics
Keio University
3-14-1, Hiyoshi, Kohoku-ku
Yokohama 223-8522
Japan
yukihiro@math.keio.ac.jp

