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Embeddings of S(2, 27) in Complex
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1. Introduction

We classify embeddings of $2,27) in Eg(C): there are twelve equivalence
classes, and all embeddings factor through a natl#al@) subgroup. This result
contributes to the program, initiated in the early 1980s, to study embeddings of fi-
nite groups into an exceptional complex algebraic group—that is, oge @),
F4(C), E¢(C), E7(C), Eg(C). In fact, this result on S2, 27) removes the final
obstruction to achievinthe classification of all QE-pairghat is, pairs(S, G),
whereS is a finite quasisimple group ar@ is a complex exceptional algebraic
group such that there exists an embeddingiofG. The classification of QE-pairs

is discussed in [GR4], which updates the survey [GR2].

The methods we use to construct and analyze embeddings represent some in-
novations. We mention (1) a new strategy in searching for invariant Lie algebras,
given arepresentation of a finite group, and (2) a computational problem of search-
ing for tensor squares of elements in a given linear subspace of a tensor square
of a vector space; this leads to the concept of relative eigenvalues and relative
eigenvectors.

Earlier computer constructions of a particular finite subgroup in an exceptional
group of Lie type have followed one of two strategies: either giving generating
elements of the finite group as words in explicit generators of the algebraic group,
or determining an invariant Lie algebra on a module for the finite group. The idea
of our new approach is to start with a natural invariant symplectic Lie algebra
for SL(2, 27) and then find an invariant subalgebra of tylsg Our search for
the invariant subalgebras is exhaustive; hence it determines conjugacy classes of
embeddings.

It is known that the simple group P82, 27) embeds intaF,(C) [CoW] and
hence into the algebraic groupggC), 2E7(C), and Eg(C) (see [GR4, Table
QE] or [GR2, Table PE]). Our goal in this article is to exhibit and classify em-
beddings of the covering group &, 27) into Eg(C). We first note that such an
embedding could arise only from a Lie primitive embedding of{&L27) into
2E(C). (Afinite subgroup of a connected algebraic groupiésprimitiveif there
is no infinite intermediate Zariski closed subgroup; according to [CoW], there is
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no embedding int&Es or 3Es and there are no small representations that could
yield an embedding intd g, Dg, C7, or B7.)

We recall the definition of thad-orderof an elemeng in a connected algebraic
group: it is the smallest integer> 0 such thag” is in the center.

We use the ternEFO theory(“elements of finite order”) to indicate the stan-
dard theory of classification of finite order semisimple elements of a connected
guasisimple algebraic group, analysis of the spectra on highest weight modules,
and so on. This is a body of standard results that is surveyed in [G; GR2; GR4].
For a systematic search of elements of a given order in a connected algebraic group
of adjoint type, we mention the computationally useful procedure of labeling the
extended Dynkin diagram (sS¢K]).

Here is our main result.

THeorEM 1.1. There are exactly twelve conjugacy classes of embeddings of
SL(2, 27) into 2E;(C). If M is thel33-dimensional adjoint module or thes-
dimensional irreducible module f&E,(C), then the embeddings are associated

to exactly six characters 0BL(2, 27) for the representation oM. These char-
acters form a set of algebraic conjugates, and to each is associated two of the
twelve embeddings. Each embedding gives a faithful actiddLé®, 27) on the
56-dimensional irreducible module f@&E(C) and a faithful action ofPSL(2, 27)

on thel33-dimensional irreducible module f&E(C).

2. The Story of SL(2, 27) in 2E;(C)

We shall work extensively with irreducible characters of{3127); we name each
character by its degree, with an alphabetic subscript to distinguish the different
characters of a given degree. We use lowercase subscripts to denote irreducible
characters of the simple group P&L.27) and uppercase subscripts to denote char-
acters offaithful irreducible representations of 82, 27). The alphabetic position

of the subscript corresponds to the position of a character as displayeditiabe

of Finite Groupg CCNPW]. Thus, 28 denotes the first faithful 28-dimensional
character of SI2, 27) and 26 denotes the third 26-dimensional irreducible char-
acter of PSI2, 27) in Atlasorder. The unique 27-dimensional irreducible is there-
fore written 27.

LeEmMMA 2.1. Let x133and xse denote the irreducible characters @£ (C) with
degreesl33and 56, respectively. Then, associated to embeddingSla®2, 27)
in 2E7(C) are exactly six pairs of restrictions gf133z and xse to SL(2, 27). One
such pair is26, + 26, + 26. + 27, + 28, and 28, + 28, and the other five pairs
are obtained from these by applying algebraic conjugac$3ih roots of unity.
(These irrationalities occur here in the degr@8irreducibles)

Proof. By algebraic conjugacy, it suffices to assume that there is an embedding
and then show that it has a pair of restrictions equal to one of the six pairs.
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An element of order 4 (say,) in SL(2, 27) must correspond to an element of
2E7(C) thatmaps to an involution &7(C) (i.e., has Ad-order 2). From [CoG]we
deduce thag133(f) € {—7, 25}. However, x133 contains no copies of the trivial
character (since SR, 27) is Lie primitive in E7(C)) and thereforegizs(f) <
ded x133)/13 < 25 (sincey(f)/degy) < 1/13 for all nontrivial ordinary irre-
duciblesy ). We deduce thati33(f) = —7. Now, ded x133) = 133 andy133(f) =
—7 imply that x;33 decomposes either as (a) a sum of three characters from the
collection 26, 26, 26, together with 27and a 28-dimensional character or (b) as
a sum of three copies of 2and two characters from the set,2@6,, 26,. If the
decomposition involves a 28-dimensional character, we can apply an algebraic
conjugacy to ensure that it is 28

The charactey g restricts to a sum of irreducible representations af5P27) of
degrees 14 and 28. (The only other faithful irreducibles of5R7) have degree
26, and we cannot decompose 56 as 26 plus a nonnegative integer linear combina-
tion of 14, 26, and 28.) It follows that, in the eigenvalue spectrum of the action of
an element of order 28 in P, 27) on the 56-dimensional module foE2(C),
each primitive 28th root of unity has multiplicity 4. The EFO theory gives us the
conjugacy classes of elements of order 28 Ey@). A search of these classes
shows that there are just two classes of elements of order E4(i@) that lift
to elements of order 28 inE%(C) with this spectrum, and both possibilities are
rational on the adjoint module. It follows that the three charactegs 24, 26.
appear with equal multiplicity in the restriction gfss to SL(2, 27). Henceyiss
restricts to the sum of 2626,, 26,, 27,, and 28.

The multiplicity of any eigenvalue of an $2, 27)-element of order 13 on the
56-dimensional module for 2;(C) must be between 4 and 8. This is because
the multiplicity of any given eigenvalue of such an element on an irreducible rep-
resentation is either 2 or 3 (for a 28-dimensional representation) or 1 or 2 (for a
14-dimensional representation). From EFO theory, such an element is either ra-
tional on the adjoint module or has a powevith x133(r) = 1+ y13 andyse(t) =
y13x 54 y13x* 6. (We useAtlasnotation for irrational character values, so that
y13 is the sum of an inverse pair of primitive 13th roots of unity.) Our earlier de-
scription of the restriction 0f133 shows that the first of these possibilities does
not occur, and the lemma follows. O

We remark that the same character-theoretic analysis applies to an embedding of
SL(2, 27) into a group Z7(k) wheneverk is a field whose characteristic is co-
prime to the order of S2, 27) (this is an obvious application of Larsen@, p)
correspondence [GR1]). Indeed, in our computer work, where we work over a
finite field to have exact arithmetic, we choose to perform calculations in char-
acteristic 1093. We note that 1093 does not divige(2, 27)|, so the character
analysis of Lemma 2.1 applies. Furthermore, the character irrationaiitBeand

y7 that can arise in the characters, 286,, 26., 27,, 28,, 28y, and 2§ belong

to the prime fieldFyp93, SO that there are matrix representations of5R27) over

F1003 With these characters.
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We writek for the fieldF1993, £* for the multiplicative group of, andk for the al-
gebraic closure of. Let W be a 56-dimensiona&lSL(2, 27)-module with charac-
ter 28, + 28;. Write W for the module obtained frofv by extending scalars io

We can readily construct an explicit matrix representation aS27) on W (or
W). Ingeneral, all irreduciblég +1)-dimensional representations of @._q) are
induced from 1-dimensional representations of the Borel subgroup. Hence, they
can be written down as cases of the following recipe.

REecipe 2.2. Letg be a prime power antlthe field of ordely. Write [+ for the
projective line ovel (with ¢ + 1 points),/* for the set of nonzero elementsiof
andq for a multiplicative generator df. Let K be a field (in most applications,
K is different from/) and let; be a(g — 1)th root of unity inK.

Let V be a(¢ + 1)-dimensional vector space ov&r with basisvg, vy, ...,
Vs-1, Voo Parameterized by*. Then we can define the GI)-elementsf,
(x €l), g, andh that generate an image of 8, ¢) by the following formulas:

Uifx = Vijx,
1 .
Vg = Evi/oz2 (i #00), Vo8 = {Vco;
varh = é‘irv—l/a" th = é-(qil)/zvooa vooh = Vo.

We can think of the matricef,, g, andh as images of the SR, ¢)-elements rep-
resented by the respective2 matrices(5 %), (% ,21). and(9 7).
If ¢ is odd, then the bilinear forra, -) defined by

(Voo» Vo) = (vi, v;) =0, (Voo, Vi) =1,
(Wi Vo) =920 (v v ) =7

is invariant under our representation of @Lg).

The 2x 2 matrix(é 2) in GL(2, q) acts as a diagonal outer automorphism of
SL(2, g). If the elementr has a square roq¢Z in K, then we can extend our
(¢ + D-dimensional representation of &, ¢) by representing this outer auto-
morphism by a matrix with

1
U,'d = \/Evia (l 75 OO), Uood = %Uoo'
Moreover, the matrix/ preserves the bilinear forim, -).

The following lemma makes clear that, in general, if field extensions are available
then we can adjust a representation of a group automorphism so as to preserve an
invariant bilinear form.

LemMma 2.3. LetV be anirreducible module fakG, wherek is an algebraically
closed field and5 is a finite group, and suppose thitis a nondegeneraté-
invariant bilinear form onV. Suppose that the automorphiarfixes the represen-
tation. Then there is a finite groud containingG as a normal subgroup and an
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element € H for which conjugation orG by b induces the action af, so that
the representation af onV extends to a representation &f onV that preserves
the formf.

Proof. Form the semidirect produdt := G(a). The action of/ on the group al-
gebrak G by conjugation orG; preserves the two-sided ideal (a matrix algebra over
k) associated t&, so by Skolem—NG&ther there is a projective representaftiarf

J in GL(V). SinceV is given as aG-module,y may be assumed to restrict to a
homomorphism oiG. Letd := a¥ € GL(V). If a has order, thenb” is a scalar
matrix. By algebraic closure, we may replddey b times a scalar to assurhé =

1, so in particulan has finite order. The action éfon the 1-dimensional space
of invariant bilinear forms is by a root of unitye K*. Taked € K, a square root

of c. Thend b preservest and induces the action afon G¥ = G. The group
(GY, b) is finite. O

We use Recipe 2.2 to compute explicit matrices giving the action ¢2,317) on
its faithful 28-dimensional modules with characterg 28d 28 . (Note that the
matrix g in the 28-dimensional representation of Recipe 2.2 has order dividing 26
and has trace +1/¢; thus we obtain representations with charactegs@® 2§
by applying the recipe witly chosen to be any particular primitive 26th root of
unity and its 9th power, respectively.) The direct sum of these matrix representa-
tions gives an explicit realization of the action of @.27) on W. We will fix this
choice of matrix representation for the remainder of the paper, and we will write
S for the group of 56x 56 matrices giving the representation. We wiitéresp.
5) for the centralizer of in GL(W) (resp. GL(VT/)). The groupC has structure
k* x k*. Matrix generators folC are readily available as direct sums of scalar
multiples of the identity acting on each of the summand®of

The bilinear forms given by Recipe 2.2 are alternating on the representations of
SL(2, 27) with characters 28and 28:.. Hence they provide a family ¢f-invariant
symplectic forms orV. Each of these invariant symplectic forms is specified by
giving two parameters frork*. We write (-, -) for the particular form orW which
restricts to (a) the form given by Recipe 2.2 on the submodule with character
28y and (b) the negative of the form given by Recipe 2.2 on the submodule with
character 28. We observe that thé&-invariant forms onW belong to a single
orbit of C, so our choice of bilinear form is equivalent to any other if we are
prepared to allow field extensions. However, the bilinear formgiofall into
four orbits under the action @ (corresponding to elements bf/k*? x k*/k*?).
Our choice of orbit for the form is convenient in avoiding later need for field
extensions.

We write L for the Lie algebra of derivations of the symplectic fofin) (sim-
ilarly, we write L for the Lie algebra of derivations of the form when viewed as a
pairing onW). As Lie algebrasL andZ have typeCys. Itis clear that these Lie
algebras arg-invariant. Letl" be the general linear group @W), and lets =
Sp(56, %) be the subgroup df that preserves, -). Let C~ be the subgroup af
that fixes(-, -), so thatC~ = 2 x 2. The groupC ~ is the centralizer of in Z.



94 ROBERT L. GRIESS, JrR., & A. J. E. RyBa

We observe thaF;og3 contains square roots of its primitive 26th roots of unity
(since 1093= 1 (mod 4). Hence, the automorphisms specified in Recipe 2.2 pro-
vide an elemend in GL(W) that acts as a graph automorphisnf@nd preserves
the S-invariant bilinear formy-, -).

The computations that we describe later in this section will establish the fol-
lowing theorem.

CoMPUTATIONAL THEOREM 2.4. The Lie aIgebraZ contains exactly fours-
invariant subalgebras of typ&;. These algebras fall into a single orbit under
the normalizer ofS in ¥ and into two orbits(of size2) under C~. The four
S-invariant subalgebras of typE; are spannedas vector spacgdy elements in
the subalgebrd. C L.

CoRrOLLARY 2.5. The groupSL(2, 27) has twelve Lie primitive embeddings into
2E+(C). For each of the six algebraically conjugate characters given by Lemma
2.1, there are two embeddings and these are conjugate by the act®h@f 27).

Proof. According to Larsen’s0, p)-correspondence (see [GR1]), we can enumer-
ate Lie primitive embeddings of R, 27) into 2E;(C) by enumerating embed-
dings into 257@). Itis clear from Theorem 2.4 that such embeddings exist, but
we must now settle their number.

Let ® be a copy of Z7(k) with ® < . Write E for a typeE;-subalgebra of.
that is invariant unde®. Suppose now thaf is a copy of SI(2, 27) in ®. Then,
by Theorem 2.4S preserves exactly fout;,-subalgebras of . One of these i€
(sinceS < ®) and all four have the fornt ?, whereé € Nx(S).

Now suppose thaf; < @ is I'-conjugate tas, sayS = S; . We will show that
S andS; are setwise conjugate ib.

We begin by showing thaf and S; are X-conjugate. The form:, -) is S;-
invariantbecausg, < ® < X. We deduce that transformg:-, -) to anS-invariant
form (sincey takesS; to §). However, as we noted, theinvariant bilinear forms
on W are images of-, -) under elements of . Hence there is an elemehit C
such that = y§ preserves., -). But Sy = S.

Similarly, E is Sy-invariant becausg; < ®, SOE? is anS-invariant subalgebra
of L. We deduce thaE® = E? for somed € Nx(S). HenceE®®™ = E, so that
o6~ 1is an element ofb that conjugates; to S. Thus, two Sl(2, 27) subgroups
of @ are conjugate if and only if they are conjugatd’in

The SL(2, 27)-decompositions of the charactergs and x5 given in Lemma
2.1 fall into two orbits under AUSL(2, 27)). Hence there are two orbits &f
on SL(2, 27)-subgroups ind. Because we have just established tatontrols
fusion inT" of SL(2, 27) subgroups, we can now deduce that there are two conju-
gacy classes of SR, 27) subgroups inb. We further observe that no embedding
of SL(2, 27) into @ is stabilized by a field automorphism of &, 27), since the
character decompositions of Lemma 2.1 are not stabilized by field automorphisms.
Moreover, no embedding of $P, 27) into @ is stabilized by an outer diagonal
automorphism, since Theorem 2.4 shows that outer diagonal involutions fix no
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S-invariant Lie algebras of typg€7. We deduce that the two classes of subgroups
give rise to exactly twelve classes of embeddings. O

Proof of Theorem 2.4Me now describe our computer construction that establishes
the Computational Theorem 2.4. Our goal is to clasSiipvariant Lie algebras

of type E7 in L. Asalie algebrai has typeC,g, but we can also view it as an
S-module, in which context it is isomorphic K&2(W). This isomorphism and the
translation of [, -] to an explicit invariant Lie product (also written as {) on
Sz(W) are given in [R]. We carry out our computa‘uonsSﬁ(W) rather than in

L. We used our own implementation of the MeatAxe to works#iiv ), but the
computations described here could also be carried out with the GAP and Magma
systems.

The moduleS2(W) has character 33+ 13, + 6 x 26, + 6 x 26, + 6 x 26, +
2x26;+2%x26,+2x26;+6x27,+6x28,+4x28,+5%x28.+4x28;,+
4 x 28, +5x 28. If 7w is anirreducible character 6f we write L, for the sub-
module osz(W) spanned by all irreducible submodulesS’éfW) with character
7. Thus Lyg, has character & 26,. It is a routine application of the MeatAxe
to obtain bases for all of the modules of the fofrp. (Note that we perform this
computation over the prime field and work inside the modifigV ).)

The irreducible submodules éf6, can be parameterized by the 1-dimensional
subspaces of a 6-dimensional spakesay. Take six independent (isomorphic)
irreducible submodules df 56,, and select a vector from the first of these sub-
modules together with a corresponding vector (undesasomorphism) from
each of the other independent submodules. We will call this 6-tuple of vectors
(wt, w?, ..., w®). Any nonzero vectotxy, xo, ..., xg) € X corresponds to the ir-
reducible submodule df,6, spanned by thé-images of)_, x;w’. Moreover, all
irreducible submodules df¢, are obtained in this way. It is easy to use the stan-
dard basis program of the MeatAxe to obtain an explicit 6-tuple of vectors from
S2(W) as just described.

For each elemente S, let¢,: X @ X — SZ(VT/) be the linear transformation
defined by

G5 (X1, ..., x6) @ (Y1, ... y6)) = [ X, xiw', 3, yiw's].

Suppose thaf is an S-invariant subalgebra a$2(W) with type E7. ThenE
has anS-invariant constituent with character 26This constituent is an irre-
ducible submodule of ¢, ; it corresponds to a vectdry, xo, ..., xg) € X as
before. Lets be an element of; then we havd }", x;w’, Y, x;w's| € E C
L2g,+L26, + Log +L27,+ Log,. NOW Lg, +L2g, +Lo2g, + L27,+ L2g, is aproper
subspace af, so for each choice afwe have(xy, xo, ..., x6) ® (x1, X2, ..., X6) €
¢;1(L26a + Lyg, + Los, + Loy, + Log,). We used a standard Gaussian elimina-
tion to compute this inverse image for a random nonidentity elemens. We
obtained a 10-dimensional subspakes ¢ (Lae, + L2g, + L2g, +L27, + L2sg,)-

In order to locate candidates for the vectoy, x», ..., xg), we are faced with
determining which vectors df can be written as “tensor squares” of elements in
X. This is a special case of the following general problem.
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PrOBLEM 2.6. Suppose thaX is a vector space and is a given subspace of
X ® X. Find an efficient procedure to determine all element§ dhat can be
written in the formx ® x for somex € X.

We can view this as a problem of finding a relative eigenvector for a collection of
matrices.

DEFINITION 2.7. Suppose that;, Ao, ..., A, is a collection of (not necessarily
square) matrices of the same dimensioneelAtive eigenvalués a projective point
(ar:az: --- :a,)forwhichthereis anonzerovectosuchthavAq, vA,, ..., vA,
are linearly dependent vectors in the proporti@eita; : - - - :a,); thatis,ajvA; =
a;vA; foralli, j. We also say that is arelative eigenvector for the relative eigen-
value(ai:az: --- :a,).

We remark that ifA; and A, are square matrices such thgtis invertible, therv
is a relative eigenvector with eigenval(g : a,) if and only if v is an eigenvector
of A1A;" with eigenvalue /a;.
We transform Problem 2.6 into a relative eigenvector problem by selecting
bases ofX and X ® X so that a vector ok corresponds to a row vector =
(x1, x2, ..., x,) With tensor square

Q@@ = (X1X1, X1X2, + .., X0Xp, X2X1, X2X2, -+ vy X2Xps s XpXp)-

Now, in Problem 2.6, ifY has dimensiom: then we can describe a basislof<
X ®X by giving anm x n? matrix. This matrixis naturally partitioned intdblocks,
By, B>, ..., B, of sizem x n. (The blockB; corresponds to thecolumns ofx ®
of the formx; x;.) Any solution to Problem 2.6 gives a veci®e= (y1, y2, ..., Ym)
such that8B; = x1a, BBy = xoa, ..., BB, = x,a. Hence(xy:xo:x3: -+ 1 xy,)
is a relative eigenvalue for the matricBg, B>, ..., B,. Moreover, there is a rel-
ative eigenvectopg for the relative eigenvaluéry: xo: x3: --- : x,) such that the
imagesBB; are all multiples of xy, x2, x3, ..., x,).

In the particular instance of Problem 2.6 that we face, with(@imm= 6 and
dim(Y) = 10, the spaceB is small enough to allow us to locate all relative eigen-
values quickly. In fact, the echelon form of our basig’afives the following six
matrices forBy, Bo, ..., Bg overFigoa

999 992 O 0 0 O 992 1 0 0 0 O
0 0 0 0 0 O 0 0 0 0 0 O
0 0 0 0 1 0 0 0 0 0 0 O
0 0 0 0 0 O 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 O
0 0 0 0 0 O 0 0 0 0 0 1
0 0 757 161 O O 0 0O 579 623 0 O
0 0O 98 341 0 O 0 O 485 58 0 O

658 1034 O 0 0 O 1034 O 0 0 0 O

1066 426 O 0 0 O 426 0 0 0 0 O
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0 0 0 0 0O O 0 0 0 0 0O O
0 O 884 1015 0 O 0 0 1015 1 0O O
0 0 0 0 0O O 0 0 0 0 0O O
0 0 0 0 0O O 0 0 0 0 0O O
0 0 0 0 0O O 0 0 0 0 0O O
0 0 0 0 0O O 0 0 0 0 0O O
757 579 0 0 511 1 161 623 O 0 425 O
985 485 O 0 387 0 341 585 O 0 180 1
0 0O 202 157 0 O 0 0 157 0 0O O
0 0 5 756 0O O 0 0 756 0 0O O
0 0 0 0 0 0 0 0 0 0 0O O
0 0 0 0 0 0 0 0 0 0 0O O
1 0 0 0 0 0 0 0 0 0 0O O
0 1 0 0 0 0 0 0 0 0 0O O
0 0 0 0 0 0 1 0 0 0 0 O
0 0 0 0 0 0 0 1 0 0 0O O
0 0 511 425 0 O 0 0 1 6 0 0
0 0O 387 180 0 O c o0 0 1 0 0
0 0 0 0 691 1 c o0 0 o0 1 0
0 0 o0 0 357 0 0 0 0 0 0 1

These matrices are small enough and sparse enough to make easy the deter-
mination of relative eigenvalugs;: x;: x3: x4: x5: xg) and corresponding rela-
tive eigenvectorgys, ..., y10). For example, consideration of the third and fourth
columns of the last two matrices shows thiat, yg) is a relative eigenvector
with relative eigenvaluéxs:xe) for the matrices: (332 135) and (5 9). This is
just an ordinary eigenvector computation. Moreover given the sparse outer col-
umns of the fourth matrix, knowledge of and yg determines the proportions
(x11x21 x5 xg)—this becauseyz, ys)(2o1 o2s 931259 is a scalar multiple of
(x1, x2, X3, X4, X5, Xg). After a short series of similar computations, we obtained
four possibilities for(x1:x2: - - - 1 xg) as follows:

(684 :249:20:54 :135)1with relative eigenvector

(793 730,528 825 684, 249, 20, 54,135 1);

(684:249:1073:1039:135) Wwith relative eigenvector

(793 730,528 825 684, 249,1073 1039 135, 1);
(414:915:374:196 : 556 ) Wwith relative eigenvector

(108Q 161, 654, 495, 414, 915, 374, 196, 556, 1);
(414 :915:719:897 : 556 ) With relative eigenvector

(1080 161, 654, 495, 414, 915, 719, 897, 556, 1).

We thus find that there are at most fafxinvariant Lie subalgebras df that
have typeE;. Moreover, we know explicit vectors spanning 26-dimensional sub-
spaces of each of these four potential Lie subalgebrds im all four cases the
26-dimensional subspace generates a 133-dimensional subalgebravbich
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must beS-invariant because it is generated bys&invariant space. In each case,
an application of the MeatAxe shows that tligsnvariant 133-dimensional alge-
bra has character 26+ 26, + 26. + 27, + 28, when viewed as as-module.
Moreover, for each of the four 133-dimensional algebras, we can check (as before)
that each of its five irreducible submodules is a generating set. It follows that the
algebra has n@-invariant subalgebra. Moreover, since the four 133-dimensional
algebras have been obtained as algebras of 56 matrices, it is an easy matter
to check (from its 56-dimensional representation) that each of them has a non-
singular trace form. Now consider one of the four 133-dimensional algebras that
we have obtained, call X. As in [GR3, Lemma 4], we can apply Block’s theo-
rem [B] to show thatX is a direct sum@; X; of indecomposable ideals, each of
which is either (a) 1-dimensional or (b) simple and having one of the tfpas
C, D, E, F, or G. By construction, we know that is generated by the elements
of one of its 26-dimensional subspaces. It follows tkiaiannot be abelian; hence
at least one of its idealX; is nonabelian. The sum of theimages ofX; must
be X, sinceX has noS-invariant subalgebra. However, as in the proof of [GR3,
Lemma 4], the sum of-images ofX; is a direct sum of independefitimages of
X;. We deduce that diiiX;) divides dim X ) = 133 = 7 x 19. But the only divisor
of 133 that is the dimension of a simple Lie algebra of one of the types., G
is 133 itself (we are in characteristic not 2 or 3, so the algebras with Chevalley
bases for indecomposable root systems remain simple). It follows(thad X
must both have typ&-, and thus our construction ¢f as automorphisms of a
56-dimensional representation ¥fgives an embeddin§ < 2E7(1093.

Finally, we verified the information in Theorem 2.4 about the actiovg{s)
on the fourS-invariant Lie algebras by checking that the algebras are paired up
by the groupC — and that these pairs are interchanged by the explicit matitix
Nz(S)\C™.
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