Comparison of the Pluricomplex and the Classical Green Functions on Convex Domains of Finite Type

Bo-Yong Chen

1. Introduction

Let D be a bounded domain with Lipschitz boundary in \mathbf{R}^{n}, and let y be a fixed point in D. Then there is a solution $h_{y}(x)$ to the Dirichlet problem

$$
\begin{cases}\Delta u(x)=0 & \text { in } D \\ u(x)=-\eta(x-y) & \text { on } \partial D\end{cases}
$$

where

$$
\eta(x)= \begin{cases}\log |x| & \text { if } N=2 \\ -|x|^{2-N} & \text { if } N \geq 3\end{cases}
$$

The function $G_{D}(x, y)=\eta(x-y)+h_{y}(x)$ is called the classical (negative) Green function for the Laplacian, with pole at y. It is harmonic in $D \backslash\{y\}$ and tends to zero on the boundary; furthermore, it is symmetric.

Now let D be a bounded domain in $\mathbf{C}^{n} . \operatorname{By} \operatorname{PSH}(D)$ we denote the class of plurisubharmonic (psh) functions on D. The pluricomplex Green function for D with pole at w is defined by

$$
g_{D}(z, w)=\sup \{\varphi(z): \varphi \in \operatorname{PSH}(D), \varphi \leq 0, \varphi(z) \leq \log |z-w|+O(1)\}
$$

This definition was first given by Klimek [5]. It coincides with the classical Green function in the complex plane. The function $g_{D}(\cdot, w)$ is a negative plurisubharmonic function in D and has a logarithmic pole at w. It is decreasing with respect to holomorphic maps, which implies that it is biholomorphically invariant. If D is hyperconvex, then $g_{D}(z, w) \rightarrow 0$ as $z \rightarrow \partial D$ and g_{D} is continuous on $\bar{D} \times D$ (cf. [3]). The pluricomplex Green function is symmetric for convex domains [7], although it is not symmetric in general [1]. The pluricomplex Green function plays a similar role in the pluripotential theory as the classical Green function in the classical potential theory, so it is interesting to compare the two. In the case when D is strongly pseudoconvex, Carlehed [2] proved that the following holds for all $z, w \in D$:

$$
\frac{g_{D}(z, w)}{G_{D}(z, w)} \leq C(D)|z-w|^{2 n-4}
$$

[^0]In particular, the quotient is bounded. The purpose of this article is to extend this result to certain weakly pseudoconvex domains. A bounded domain D is called locally convexifiable if every $p \in \partial D$ has a neighborhood V_{p} with the properties that $D \cap V_{p}$ is biholomorphic to a convex domain. A bounded domain is called locally convexifiable of finite type m if it is locally convexifiable and of finite type m. Our main result is the following theorem.

Theorem 1. Let D be a bounded, locally convexifiable domain of finite type m in \mathbf{C}^{n}. Then

$$
\begin{equation*}
\frac{g_{D}(z, w)}{G_{D}(z, w)} \leq C(D)|z-w|^{2(n-m)} \tag{1}
\end{equation*}
$$

In particular, the quotient is bounded if $n \geq m$.
Since any strongly pseudoconvex domain is a locally convexifiable domain of finite type 2, Theorem 1 generalizes the result of Carlehed.

However, this theorem does not hold in general when $n<m$. We shall show that the quotient g_{D} / G_{D} is unbounded on the domain

$$
D=\left\{z \in \mathbf{C}^{n}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{m}+\cdots+\left|z_{n}\right|^{m}<1\right\}
$$

where $m>n$ is even.

2. An Estimate for the Pluricomplex Green Function

In this section we shall prove the following result, which plays an essential role in proving the main theorem.

Proposition 2. Let D be a bounded, locally convexifiable domain in \mathbf{C}^{n}. Suppose that there exist positive numbers $\alpha>\beta$ and $\alpha \geq 2$ as well as an $r>0$ such that, for every $p \in \partial D$, there is a holomorphic function h_{p} on $D \cap B(p, r)$ satisfying

$$
\begin{equation*}
c_{1}|z-p|^{\alpha} \leq 1-\left|h_{p}(z)\right| \leq c_{2}|z-p|^{\beta} \tag{2}
\end{equation*}
$$

for suitable constants $c_{2}>c_{1}>0$ (independent of p), where $B(p, r)$ denotes the ball in \mathbf{C}^{n} that is centered at p with radius r. Then there exists a constant $C>0$ depending only on $\alpha, \beta, r, c_{1}, c_{2}$ such that

$$
\begin{equation*}
-g_{D}(z, w) \leq C \frac{\delta_{D}^{\beta}(z) \delta_{D}^{\beta}(w)}{|z-w|^{2 \alpha}} \tag{3}
\end{equation*}
$$

where $\delta_{D}(z)$ denotes the Euclidean boundary distance of z.
For the sake of simplicity, we make the following assumption on the diameter of D : $\operatorname{diam}(D)<1$. In this section, we shall denote by C all the constants depending only on $\alpha, \beta, r, c_{1}, c_{2}$. We first prove several lemmas.

Lemma 3. For all $z, w \in D$ with $\delta_{D}^{\beta}(w) \leq a|z-w|^{\alpha}$, where $a=c_{1} /\left(2^{\alpha+1} c_{2}\right)$, one has

$$
\begin{equation*}
-g_{D}(z, w) \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}} \tag{4}
\end{equation*}
$$

Proof. Let us fix w for a moment. We take a boundary point \tilde{w} so that $\delta_{D}(w)=$ $|w-\tilde{w}|$. If $\delta_{D}(w) \geq r / 2$, then $|z-w| \geq \delta_{D}^{\beta / \alpha}(w) / a^{1 / \alpha} \geq C$. By the trivial estimate

$$
-g_{D}(z, w) \leq \log \frac{\operatorname{diam}(D)}{|z-w|}
$$

we immediately get (4). Hence we may assume $\delta_{D}(w)<r / 2$. We will first show that

$$
\begin{equation*}
-g_{D \cap B(\tilde{w}, r)}(z, w) \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}} \tag{5}
\end{equation*}
$$

Since $\left|h_{\tilde{w}}\right|<1$ on $D \cap B(\tilde{w}, r)$, it follows that

$$
\begin{aligned}
-g_{D \cap B(\tilde{w}, r)}(z, w) & \leq-g_{\Delta}\left(h_{\tilde{w}}(z), h_{\tilde{w}}(w)\right) \\
& =-\frac{1}{2} \log \frac{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|^{2}}{\left|1-\overline{h_{\tilde{w}}(w)} h_{\tilde{w}}(z)\right|^{2}} \\
& =\frac{1}{2} \log \left(1+\frac{\left(1-\left|h_{\tilde{w}}(z)\right|^{2}\right)\left(1-\left|h_{\tilde{w}}(w)\right|^{2}\right)}{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|^{2}}\right) \\
& \leq \frac{1}{2} \frac{\left(1-\left|h_{\tilde{w}}(z)\right|^{2}\right)\left(1-\left|h_{\tilde{w}}(w)\right|^{2}\right)}{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|^{2}} \\
& \leq 2 \frac{\left(1-\left|h_{\tilde{w}}(z)\right|\right)\left(1-\left|h_{\tilde{w}}(w)\right|\right)}{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|^{2}},
\end{aligned}
$$

where Δ is the unit disc in \mathbf{C}. Notice that

$$
1-\left|h_{\tilde{w}}(w)\right| \leq c_{2} \delta_{D}^{\beta}(w)
$$

and

$$
\begin{aligned}
\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right| & \geq 1-\left|h_{\tilde{w}}(z)\right|-\left(1-\left|h_{\tilde{w}}(w)\right|\right) \\
& \geq c_{1}|z-\tilde{w}|^{\alpha}-c_{2}|w-\tilde{w}|^{\beta} \\
& \geq c_{1}\left(|z-w|-\delta_{D}(w)\right)^{\alpha}-c_{2} \delta_{D}^{\beta}(w) \\
& \geq\left(c_{1}\left(1-a^{1 / \beta}\right)^{\alpha}-c_{2} a\right)|z-w|^{\alpha} \\
& \geq\left(c_{1} 2^{-\alpha}-c_{2} a\right)|z-w|^{\alpha} \\
& \geq c_{1} 2^{-\alpha-1}|z-w|^{\alpha} .
\end{aligned}
$$

If $\left|1-\left|h_{\tilde{w}}(z)\right| \leq 2\left(1-\left|h_{\tilde{w}}(w)\right|\right)\right.$, then

$$
\begin{aligned}
-g_{D \cap B(\tilde{w}, r)}(z, w) & \leq \frac{4\left(1-\left|h_{\tilde{w}}(w)\right|\right)^{2}}{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|^{2}} \\
& \leq C \frac{\delta_{D}^{2 \beta}(w)}{|z-w|^{2 \alpha}} \\
& \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
\end{aligned}
$$

because $\delta_{D}^{\beta}(w) \leq a|z-w|^{\alpha}$. Otherwise, one has

$$
\begin{aligned}
\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right| & \geq 1-\left|h_{\tilde{w}}(z)\right|-\left(1-\left|h_{\tilde{w}}(w)\right|\right) \\
& \geq \frac{1}{2}\left(1-\left|h_{\tilde{w}}(z)\right|\right)
\end{aligned}
$$

It follows that

$$
-g_{D \cap B(\tilde{w}, r)}(z, w) \leq \frac{4\left(1-\left|h_{\tilde{w}}(w)\right|\right)}{\left|h_{\tilde{w}}(z)-h_{\tilde{w}}(w)\right|} \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
$$

The rest of the proof is standard. We fix z, w and set

$$
\lambda= \begin{cases}|z-w| & \text { if }|z-w|<r / 4 \\ r / 4 & \text { otherwise }\end{cases}
$$

Clearly, one has $B(w, \lambda) \subset B(\tilde{w}, r)$. Set

$$
\begin{aligned}
b & =\inf _{\zeta \in D \cap \partial B(w, \lambda)} g_{D \cap B(\tilde{w}, r)}(\zeta, w), \\
v(\zeta) & =b \frac{\log (2|\zeta-w| / r)}{\log (2 \lambda / r)}
\end{aligned}
$$

Then v is psh on D and satisfies

$$
v(\zeta)= \begin{cases}b \leq g_{D \cap B(\tilde{w}, r)}(\zeta, w) & \text { if }|\zeta-w|=\lambda \\ v(\zeta)=0>g_{D \cap B(\tilde{w}, r)}(\zeta, w) & \text { if }|\zeta-w|=r / 2\end{cases}
$$

Hence the function

$$
u(\zeta)= \begin{cases}g_{D \cap B(\tilde{w}, r)}(\zeta, w), & \zeta \in D \cap B(w, \lambda) \\ \max \left\{v(\zeta), g_{D \cap B(\tilde{w}, r)}(\zeta, w)\right\}, & \zeta \in D \cap B(w, r / 2) \backslash B(w, \lambda) \\ v(\zeta), & \zeta \in D \backslash B(w, r / 2)\end{cases}
$$

is also psh in D and has a logarithmic pole w. Observe that

$$
u(z) \geq-C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
$$

because of (5). One also has

$$
\sup _{\zeta \in D} u(\zeta) \leq b \frac{\log (2 \operatorname{diam}(D) / r)}{\log (2 \lambda / r)} \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
$$

It follows that

$$
\begin{aligned}
g_{D}(z, w) & \geq u(z)-\sup _{\zeta \in D} u(\zeta) \\
& \geq-C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
\end{aligned}
$$

The proof is complete.
Lemma 4. For all $z, w \in D$,

$$
-g_{D}(z, w) \leq C \frac{\delta_{D}^{2 \beta / \alpha}(z)}{|z-w|^{2}}
$$

Proof. We fix z, w and set $\gamma=|z-w|, w^{\prime}=w+(w-z) / \gamma$, and $R=1+2 \gamma$. Then $\left|w-w^{\prime}\right|=1$ and $z \in B\left(w^{\prime}, R\right)$, since $\left|z-w^{\prime}\right|=1+\gamma<R$. Without loss of generality, we may assume that $w^{\prime}=0$. We make the following claim.

Claim. There is a constant $C^{\prime}>0$, depending only on n, such that

$$
\begin{align*}
-g_{B(0, R)}(\zeta, w) & \leq C^{\prime} \tag{6}\\
\left|d_{\zeta} g_{B(0, R)}(\zeta, w)\right| & \leq C^{\prime} / \gamma \tag{7}
\end{align*}
$$

for all $1+\gamma / 2 \leq|\zeta| \leq 1+\gamma$. Here d_{ζ} denotes the derivative w.r.t. ζ.
Remark. The explicit form of $g_{B(0, R)}(\zeta, w)$ shows that it is smooth off the diagonal.
Let us first observe that Lemma 4 follows from the claim. Let $\chi: \mathbf{R} \rightarrow[0,1]$ be a C^{∞} function satisfying $\chi \equiv 1$ on $(-\infty, 1 / 2]$ and $\chi \equiv 0$ on $[1, \infty)$. We set

$$
\varrho(\zeta)= \begin{cases}\chi((|\zeta|-1) / \gamma) g_{B(0, R)}(\zeta, w) & \text { if }|\zeta| \leq 1+\gamma \\ 0 & \text { otherwise }\end{cases}
$$

By a straightforward calculation, we obtain

$$
\begin{aligned}
\partial \bar{\partial} \varrho(\zeta)= & g_{B(0, R)}(\zeta, w) \partial \bar{\partial} \chi((|\zeta|-1) / \gamma) \\
& +\partial g_{B(0, R)}(\zeta, w) \bar{\partial} \chi((|\zeta|-1) / \gamma)+\partial \chi((|\zeta|-1) / \gamma) \bar{\partial} g_{B(0, R)}(\zeta, w) \\
& +\chi((|\zeta|-1) / \gamma) \partial \bar{\partial} g_{B(0, R)}(\zeta, w) .
\end{aligned}
$$

Neglecting the semipositive term $\chi((|\zeta|-1) / \gamma) \partial \bar{\partial} g_{B(0, R)}(\zeta, w)$, we thus obtain the inequality

$$
\begin{equation*}
\partial \bar{\partial} \varrho(\zeta) \geq-\frac{C^{\prime \prime}}{\gamma^{2}} \partial \bar{\partial}|\zeta|^{2} \tag{8}
\end{equation*}
$$

from (6) and (7) for a suitable constant $C^{\prime \prime}>0$ depending only on n.
Now let \tilde{z} be a boundary point, so that $\delta_{D}(z)=|z-\tilde{z}|$. We set

$$
\varphi_{\tilde{z}}=\max \left\{\left|h_{\tilde{z}}\right|-1,-\eta\right\}
$$

for sufficiently small positive constant η. Then $\varphi_{\tilde{z}}$ is a well-defined psh function on D with the estimate

$$
c_{1}|\zeta-\tilde{z}|^{\alpha} \leq-\varphi_{\tilde{z}}(\zeta) \leq c_{2}|\zeta-\tilde{z}|^{\beta}
$$

where the constants are still denoted by c_{1}, c_{2} for the sake of simplicity. Let us denote

$$
\psi_{\tilde{z}}(\zeta)=-2 c_{1}^{-2 / \alpha}\left(-\varphi_{\tilde{z}}(\zeta)\right)^{2 / \alpha}+|\zeta-\tilde{z}|^{2}
$$

One has $\psi_{\tilde{z}}<0$ on $D, \psi_{\tilde{z}}(\tilde{z})=0$, and $\partial \bar{\partial} \psi_{\tilde{z}} \geq \partial \bar{\partial}|\zeta|^{2}$ in the sense of distributions because $\alpha \geq 2$. Therefore, by (8), the function $\left(C^{\prime \prime} / \gamma^{2}\right) \psi_{\tilde{z}}+\varrho$ is negative and psh in D with a logarithmic pole w. Hence

$$
\begin{aligned}
-g_{D}(z, w) & \leq-\frac{C^{\prime \prime}}{\gamma^{2}} \psi_{\tilde{z}}(z)-\varrho(z) \\
& \leq C \frac{\delta_{D}^{2 \beta / \alpha}(z)}{|z-w|^{2}}
\end{aligned}
$$

Lemma 5. Let a be as in Lemma 3. Then (4) also holds for all $z, w \in D$ with $\delta_{D}^{\beta}(w) \geq a|z-w|^{\alpha}$.

Proof. Using the fact that D is locally convexifiable as well as a standard compactness argument, we argue as follows. There exists $r^{\prime}>0$ (independent on $p \in$ $\partial D)$ such that every $p \in \partial D$ has a neighborhood V_{p} with the properties that $D \cap V_{p}$ is biholomorphic to a convex domain and $D \cap B\left(p, r^{\prime}\right) \subset D \cap V_{p}$. Without loss of generality, we may assume that $r=r^{\prime}$. It follows that $g_{D \cap V_{p}}$ is symmetric. By Lemma 4, for all $z, w \in D \cap B(p, r)$ we have that

$$
\begin{aligned}
-g_{D \cap B(p, r)}(z, w) & \leq-g_{D \cap V_{p}}(z, w)=-g_{D \cap V_{p}}(w, z) \\
& \leq-g_{D}(w, z) \leq C \frac{\delta_{D}^{2 \beta / \alpha}(w)}{|z-w|^{2}}
\end{aligned}
$$

Repeating the arguments as in the proof of Lemma 3, one has

$$
-g_{D}(z, w) \leq C \frac{\delta_{D}^{2 \beta / \alpha}(w)}{|z-w|^{2}}
$$

from which (4) immediately follows because $\delta_{D}^{\beta}(w) \geq a|z-w|^{\alpha}$ and $\alpha \geq 2$.
Proof of Proposition 2. Combining Lemma 3 with Lemma 5, we see that

$$
-g_{D}(z, w) \leq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}}
$$

holds for all $z, w \in D$. We will follow the argument of Carlehed [2]. When $\delta_{D}(z) \geq$ $\frac{1}{4}|z-w|$, the proof follows immediately because $\delta_{D}^{\beta}(z) /|z-w|^{\alpha} \geq C$. It suffices to prove the proposition for the case $\delta_{D}(z)<\frac{1}{4}|z-w|$. Let γ, \tilde{z} be as before. Observe that
(1) $z \in D \cap B(\tilde{z}, \gamma / 2)$, since $\delta_{D}(z)<\gamma / 4$; and
(2) $w \notin D \cap B(\tilde{z}, \gamma / 2)$, since

$$
\begin{aligned}
|w-\tilde{z}| & \geq|w-z|-|z-\tilde{z}| \\
& =|z-w|-\delta_{D}(z) \\
& \geq \frac{3}{4}|z-w|>\gamma / 2 .
\end{aligned}
$$

If $\zeta \in D \cap \partial B(\tilde{z}, \gamma / 2)$, then

$$
\begin{aligned}
|\zeta-w| & \geq|z-w|-|z-\zeta| \\
& \geq|z-w|-(|z-\tilde{z}|+|\zeta-\tilde{z}|) \\
& \geq \gamma / 4
\end{aligned}
$$

Let $\varphi_{\tilde{z}}$ be taken as before. Clearly, one has

$$
-\frac{\varphi_{\tilde{z}}(\zeta)}{\gamma^{\alpha}} \geq \frac{c_{1}|\zeta-\tilde{z}|^{\alpha}}{\gamma^{\alpha}} \geq \frac{c_{1}}{2^{\alpha}}
$$

for all $\zeta \in D \cap \partial B(\tilde{z}, \gamma / 2)$. Therefore, the inequality

$$
g_{D}(\zeta, w) \geq C \frac{\delta_{D}^{\beta}(w)}{|z-w|^{\alpha}} \frac{\varphi_{\tilde{z}}(\zeta)}{\gamma^{\alpha}}
$$

holds there. The same inequality holds trivially for $\zeta \in \partial D \cap B(\tilde{z}, \gamma / 2)$, since $g_{D}(\zeta, w)=0$ there; hence it holds for all $\zeta \in \partial(D \cap B(\tilde{z}, \gamma / 2))$. Since $g_{D}(\zeta, w)$ is a maximal plurisubharmonic function of ζ in $D \cap B(\tilde{z}, \gamma / 2)$ and since $\tilde{\varphi}_{\tilde{z}}$ is also psh there, the inequality holds true in $D \cap B(\tilde{z}, \gamma / 2)$. In particular,

$$
g_{D}(z, w) \geq-C \frac{\delta_{D}^{\beta}(z) \delta_{D}^{\beta}(w)}{|z-w|^{2 \alpha}}
$$

The proof is complete.
Proof of the Claim. Because the pluricomplex Green function is biholomorphically invariant, we may assume that $w=(t, 0, \ldots, 0)$ with $t>0$. Furthermore, we can take $R=1$ under the dilation $\zeta \rightarrow \zeta / R$. Then $t=1 / R \geq 1 / 3$ and $\frac{2}{3} \gamma \leq$ $1-t \leq 2 \gamma$ since $R \leq 3$. By [2] one has

$$
\begin{aligned}
-g_{B(0,1)}(\zeta, w) & =\frac{1}{2} \log \frac{\left|1-t \zeta^{1}\right|^{2}}{\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)} \\
& =\frac{1}{2} \log \left(1+\frac{\left(1-|\zeta|^{2}\right)\left(1-t^{2}\right)}{\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)}\right) \\
& \leq \frac{1}{2} \frac{\left(1-|\zeta|^{2}\right)\left(1-t^{2}\right)}{\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)}
\end{aligned}
$$

where $\zeta=\left(\zeta^{1}, \zeta^{2}, \ldots, \zeta^{2 n}\right) \in \mathbf{R}^{2 n}$ and $q=q(\zeta)=\left|\zeta^{2}\right|^{2}+\cdots+\left|\zeta^{2 n}\right|^{2}$. If $\left|t-\zeta^{1}\right|>\gamma / 4$, then

$$
\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)>\gamma^{2} / 16
$$

Otherwise,

$$
\begin{aligned}
q & =|\zeta|^{2}-\left|\zeta^{1}\right|^{2} \\
& \geq(t+\gamma / 2)^{2}-(t+\gamma / 4)^{2} \\
& \geq(\gamma / 2) t \\
& \geq \gamma / 6
\end{aligned}
$$

for all $t+\gamma / 2 \leq|\zeta| \leq t+\gamma$. It follows that

$$
\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right) \geq q\left(1-t^{2}\right) \geq \frac{2}{3} q \gamma \geq \gamma^{2} / 9
$$

Hence (6) is valid because $1-|\zeta| \leq 1-t-\gamma / 2 \leq 2 \gamma$. By the Cauchy-Schwarz inequality, one has

$$
\begin{aligned}
\left|d_{\zeta} g_{B(0,1)}(\zeta, w)\right| & \leq \frac{t\left|d \zeta^{1}\right|}{1-t \zeta^{1}}+\frac{\left|t-\zeta^{1}\right|\left|d \zeta^{1}\right|+\sum_{k=2}^{2 n}\left|\zeta^{k}\right|\left|d \zeta^{k}\right|\left(1-t^{2}\right)}{\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)} \\
& \leq \frac{1}{1-t}+\frac{\sqrt{1+(2 n-1)\left(1-t^{2}\right)}}{\sqrt{\left|t-\zeta^{1}\right|^{2}+q\left(1-t^{2}\right)}} \\
& \leq \frac{C_{0}}{\gamma}
\end{aligned}
$$

where $C_{0}>0$ is a constant depending only on n. The proof is complete.

3. Proof of Theorem 1

We recall at first some basic facts for convex domains of finite type. Assume $D=$ $\{\rho(z)<0\}$ to be a bounded convex domain of finite type m with a defining function ρ. Let us make precise the finite-type hypothesis: For each $p \in \partial D$ and each complex line L in the complex tangent space at p, there is a unit direction v in L such that

$$
\sum_{i=2}^{m}\left|D_{v}^{i} \rho(p)\right| \neq 0
$$

Here $D_{v}^{i} \rho(p)$ denotes the i th directional derivative of ρ at p. On the other hand, if L is transverse then of course $D_{v}(p) \neq 0$ for some v. By continuity and compactness we can write the finite-type assumption as follows: If

$$
a_{i j}(p, v)=\left.\frac{\partial^{i+j}}{\partial \lambda^{i} \partial \bar{\lambda}^{j}} \rho(p+\lambda v)\right|_{\lambda=0}, \quad p \in \partial D, \quad|v|=1,
$$

then

$$
\sum_{1 \leq i+j \leq m}\left|a_{i j}(p, v)\right| \geq c(D)>0
$$

The following deep result was proved by Diederich and Fornæss.
Theorem [4]. Let n_{p} be the normal unit vector to ∂D at the boundary point p, and let v be a complex tangential unit vector. Then there exists a holomorphic supporting function $S_{p}(z)$ at p with the estimate

$$
\operatorname{Re} S_{p}(z) \leq \frac{\operatorname{Re} \mu}{2}-\frac{K}{2}(\operatorname{Im} \mu)^{2}-\hat{c} \sum_{k=2}^{m} \sum_{i+j=k}\left|a_{i j}(p, v)\right||\lambda|^{k}
$$

if we write $z=p+\mu n_{p}+\lambda v$ with $\lambda, \mu \in \mathbf{C}$. Here $K, \hat{c}>0$ are constants independent of p, v.

For each $p \in \partial D$, we define $h_{p}=e^{S_{p}}$. Then

$$
c_{1}|z-p|^{m} \leq 1-\left|h_{p}(z)\right| \leq c_{2}|z-p|
$$

for suitable constants $c_{1}, c_{2}>0$.
Now we begin to prove our theorem. By hypothesis, the function h_{p} just defined exists locally. By Proposition 2, one has

$$
\begin{equation*}
-g_{D}(z, w) \leq C(D) \frac{\delta_{D}(z) \delta_{D}(w)}{|z-w|^{2 m}} \tag{9}
\end{equation*}
$$

Let us recall some estimates of the classical Green function for bounded domains of $C^{1,1}$ boundary in \mathbf{C}^{n} with $n \geq 2$ (cf. [2; 8]):

$$
\begin{array}{r}
-G_{D}(z, w) \geq \frac{C(D)}{|z-w|^{2 n-2}} \quad \text { if }|z-w|<\max \left\{\frac{\delta_{D}(z)}{2}, \frac{\delta_{D}(w)}{2}\right\}, \\
-G_{D}(z, w) \geq C(D) \frac{\delta_{D}(z) \delta_{D}(w)}{|z-w|^{2 n}} \quad \text { if }|z-w| \geq \max \left\{\frac{\delta_{D}(z)}{2}, \frac{\delta_{D}(w)}{2}\right\} . \tag{11}
\end{array}
$$

We proceed with the proof by examining two cases as follows.
(1) When $|z-w|<\max \left\{\delta_{D}(z) / 2, \delta_{D}(w) / 2\right\}$, we use inequality (10) together with the trivial estimate

$$
-g_{D}(z, w) \leq \log \frac{\operatorname{diam}(D)}{|z-w|}
$$

(2) When $|z-w| \geq \max \left\{\delta_{D}(z) / 2, \delta_{D}(w) / 2\right\}$, we use (9) and (11).

Thus, the proof of the main theorem is complete.

4. An Example

Let us consider the domain

$$
D=\left\{z \in \mathbf{C}^{n}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{m}+\cdots+\left|z_{n}\right|^{m}<1\right\}
$$

where $m>n$ is even. Clearly, D is a convex domain of finite type m. Let $0<t<$ 1 be any positive number and set $H_{t}=\left\{z \in \mathbf{C}^{n}: z_{1}=t, z_{3}=z_{4}=\cdots=z_{n}=\right.$ $0\}$. Then $D \cap H_{t}$ is a disc with radius $\left(1-t^{2}\right)^{1 / m}$. Let $w=w(t)=(t, 0, \ldots, 0)$ and

$$
z=z(t)=\left(t, \frac{1}{2}\left(1-t^{2}\right)^{1 / m}, 0, \ldots, 0\right)
$$

Then $\delta_{D}(z) \approx \delta_{D}(w) \approx 1-t$. By definition of the pluricomplex Green function, one has

$$
\begin{aligned}
g_{D}(z, w) & \leq g_{D \cap H_{t}}(z, w) \\
& =g_{\Delta}(1 / 2,0) \\
& =-\log 2 .
\end{aligned}
$$

We use a similar estimate for the classical Green function (cf. [2; 6]):

$$
-G_{D}(z, w) \leq C(D) \frac{\delta_{D}(z) \delta_{D}(w)}{|z-w|^{2 n}}
$$

Hence

$$
\begin{aligned}
\frac{g_{D}(z, w)}{G_{D}(z, w)} & \geq C(D) \frac{|z-w|^{2 n}}{\delta_{D}(z) \delta_{D}(w)} \\
& \geq C(D)(1-t)^{2(n / m-1)} \\
& \rightarrow \infty
\end{aligned}
$$

as $t \rightarrow 1$, because $n<m$.
Acknowledgment. The author would like to thank the referee for finding a big error in the manuscript.

References

[1] E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in \mathbf{C}^{n}, Indiana Univ. Math. J. 37 (1988), 865-867.
[2] M. Carlehed, Comparison of the pluricomplex and the classical Green functions, Michigan Math. J. 45 (1998), 399-407.
[3] J. P. Demailly, Measures de Monge-Ampère et measures pluriharmoniques, Math. Z. 194 (1987), 519-564.
[4] K. Diederich and J. E. Fornæss, Support functions for convex domains of finite type, Math. Z. 230 (1999), 145-164.
[5] M. Klimek, Extremal plruisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France. 113 (1985), 231-240.
[6] S. Krantz, Function theory of several complex variables, Wadsworth \& Brooks/Cole, Pacific Grove, CA, 1992.
[7] L. Lempert, La metrique de Kobayashi et la representation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
[8] Z. Zhao, Green function for the Schrödinger operator and conditioned FeynmanKac gauge, J. Math. Anal. Appl. 116 (1986), 309-334.

Department of Applied Mathematics
Tongji University
Shanghai 200092
People's Republic of China
chenboy@online.sh.cn

[^0]: Received October 11, 2000. Revision received June 4, 2001.
 The author was supported by NSF grant TY10126005 and the grant of Tongji University no. 1390104014.

