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1. Introduction

LetD be a bounded domain with Lipschitz boundary inRn, and lety be a fixed
point inD. Then there is a solutionhy(x) to the Dirichlet problem{

1u(x) = 0 in D,

u(x) = −η(x − y) on ∂D,
where

η(x) =
{

log|x| if N = 2,

−|x|2−N if N ≥ 3.

The functionGD(x, y) = η(x−y)+hy(x) is called theclassical(negative) Green
function for the Laplacian, with pole aty. It is harmonic inD\{y} and tends to
zero on the boundary; furthermore, it is symmetric.

Now letD be a bounded domain inCn. By PSH(D) we denote the class of
plurisubharmonic (psh) functions onD. Thepluricomplex Green functionfor D
with pole atw is defined by

gD(z,w) = sup{ϕ(z) : ϕ ∈PSH(D), ϕ ≤ 0, ϕ(z) ≤ log|z− w| +O(1)}.
This definition was first given by Klimek [5]. It coincides with the classical

Green function in the complex plane. The functiongD(·, w) is a negative plurisub-
harmonic function inD and has a logarithmic pole atw. It is decreasing with re-
spect to holomorphic maps, which implies that it is biholomorphically invariant.
If D is hyperconvex, thengD(z,w) → 0 asz → ∂D andgD is continuous on
D̄ × D (cf. [3]). The pluricomplex Green function is symmetric for convex do-
mains [7], although it is not symmetric in general [1]. The pluricomplex Green
function plays a similar role in the pluripotential theory as the classical Green
function in the classical potential theory, so it is interesting to compare the two. In
the case whenD is strongly pseudoconvex, Carlehed [2] proved that the following
holds for allz,w ∈D:

gD(z,w)

GD(z,w)
≤ C(D)|z− w|2n−4.
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In particular, the quotient is bounded. The purpose of this article is to extend this
result to certain weakly pseudoconvex domains. A bounded domainD is called
locally convexifiableif everyp ∈ ∂D has a neighborhoodVp with the properties
thatD∩Vp is biholomorphic to a convex domain. A bounded domain is calledlo-
cally convexifiable of finite typem if it is locally convexifiable and of finite type
m. Our main result is the following theorem.

Theorem 1. LetD be a bounded, locally convexifiable domain of finite typem

in Cn. Then
gD(z,w)

GD(z,w)
≤ C(D)|z− w|2(n−m). (1)

In particular, the quotient is bounded ifn ≥ m.
Since any strongly pseudoconvex domain is a locally convexifiable domain of fi-
nite type 2, Theorem 1 generalizes the result of Carlehed.

However, this theorem does not hold in general whenn < m. We shall show
that the quotientgD/GD is unbounded on the domain

D = {z∈Cn : |z1|2 + |z2|m + · · · + |zn|m < 1},
wherem > n is even.

2. An Estimate for the Pluricomplex Green Function

In this section we shall prove the following result, which plays an essential role in
proving the main theorem.

Proposition 2. LetD be a bounded, locally convexifiable domain inCn. Sup-
pose that there exist positive numbersα > β and α ≥ 2 as well as anr > 0
such that, for everyp ∈ ∂D, there is a holomorphic functionhp onD ∩ B(p, r)
satisfying

c1|z− p|α ≤ 1− |hp(z)| ≤ c2|z− p|β (2)

for suitable constantsc2 > c1 > 0 (independent ofp), whereB(p, r) denotes the
ball in Cn that is centered atp with radiusr. Then there exists a constantC > 0
depending only onα, β, r, c1, c2 such that

−gD(z,w) ≤ C δ
β

D(z)δ
β

D(w)

|z− w|2α , (3)

whereδD(z) denotes the Euclidean boundary distance ofz.

For the sake of simplicity, we make the following assumption on the diameter of
D: diam(D) < 1. In this section, we shall denote byC all the constants depending
only onα, β, r, c1, c2. We first prove several lemmas.

Lemma 3. For all z,w ∈D with δβD(w) ≤ a|z − w|α, wherea = c1/(2α+1c2),

one has

−gD(z,w) ≤ C δ
β

D(w)

|z− w|α . (4)
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Proof. Let us fixw for a moment. We take a boundary pointw̃ so thatδD(w) =
|w − w̃|. If δD(w) ≥ r/2, then |z − w| ≥ δ

β/α

D (w)/a1/α ≥ C. By the trivial
estimate

−gD(z,w) ≤ log
diam(D)

|z− w| ,
we immediately get (4). Hence we may assumeδD(w) < r/2. We will first show
that

−gD∩B(w̃,r)(z, w) ≤ C δ
β

D(w)

|z− w|α . (5)

Since|hw̃| < 1 onD ∩ B(w̃, r), it follows that

−gD∩B(w̃,r)(z, w) ≤ −g1(hw̃(z), hw̃(w))

= −1

2
log
|hw̃(z)− hw̃(w)|2
|1− hw̃(w)hw̃(z)|2

= 1

2
log

(
1+ (1− |hw̃(z)|

2)(1− |hw̃(w)|2)
|hw̃(z)− hw̃(w)|2

)
≤ 1

2

(1− |hw̃(z)|2)(1− |hw̃(w)|2)
|hw̃(z)− hw̃(w)|2

≤ 2
(1− |hw̃(z)|)(1− |hw̃(w)|)
|hw̃(z)− hw̃(w)|2 ,

where1 is the unit disc inC. Notice that

1− |hw̃(w)| ≤ c2δ
β

D(w)

and

|hw̃(z)− hw̃(w)| ≥ 1− |hw̃(z)| − (1− |hw̃(w)|)
≥ c1|z− w̃|α − c2|w − w̃|β
≥ c1(|z− w| − δD(w))α − c2δ

β

D(w)

≥ (c1(1− a1/β)α − c2a)|z− w|α
≥ (c12−α − c2a)|z− w|α
≥ c12−α−1|z− w|α.

If |1− |hw̃(z)| ≤ 2(1− |hw̃(w)|), then

−gD∩B(w̃,r)(z, w) ≤ 4(1− |hw̃(w)|)2
|hw̃(z)− hw̃(w)|2

≤ C δ
2β
D (w)

|z− w|2α

≤ C δ
β

D(w)

|z− w|α ,

becauseδβD(w) ≤ a|z− w|α. Otherwise, one has
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|hw̃(z)− hw̃(w)| ≥ 1− |hw̃(z)| − (1− |hw̃(w)|)
≥ 1

2(1− |hw̃(z)|).
It follows that

−gD∩B(w̃,r)(z, w) ≤ 4(1− |hw̃(w)|)
|hw̃(z)− hw̃(w)| ≤ C

δ
β

D(w)

|z− w|α .
The rest of the proof is standard. We fixz,w and set

λ =
{ |z− w| if |z− w| < r/4,

r/4 otherwise.

Clearly, one hasB(w, λ) ⊂ B(w̃, r). Set

b = inf
ζ∈D∩∂B(w,λ)

gD∩B(w̃,r)(ζ, w),

v(ζ) = b log(2|ζ − w|/r)
log(2λ/r)

.

Thenv is psh onD and satisfies

v(ζ) =
{
b ≤ gD∩B(w̃,r)(ζ, w) if |ζ − w| = λ,
v(ζ) = 0> gD∩B(w̃,r)(ζ, w) if |ζ − w| = r/2.

Hence the function

u(ζ) =

gD∩B(w̃,r)(ζ, w), ζ ∈D ∩ B(w, λ),
max{v(ζ), gD∩B(w̃,r)(ζ, w)}, ζ ∈D ∩ B(w, r/2)\B(w, λ),
v(ζ), ζ ∈D\B(w, r/2)

is also psh inD and has a logarithmic polew. Observe that

u(z) ≥ −C δ
β

D(w)

|z− w|α
because of (5). One also has

sup
ζ∈D

u(ζ) ≤ b log(2 diam(D)/r)

log(2λ/r)
≤ C δ

β

D(w)

|z− w|α .

It follows that

gD(z,w) ≥ u(z)− sup
ζ∈D

u(ζ)

≥ −C δ
β

D(w)

|z− w|α .
The proof is complete.

Lemma 4. For all z,w ∈D,

−gD(z,w) ≤ C δ
2β/α
D (z)

|z− w|2 .
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Proof. We fix z,w and setγ = |z− w|, w ′ = w + (w − z)/γ, andR = 1+ 2γ.
Then|w − w ′| = 1 andz ∈B(w ′, R), since|z− w ′| = 1+ γ < R. Without loss
of generality, we may assume thatw ′ = 0. We make the following claim.

Claim. There is a constantC ′ > 0, depending only onn, such that

−gB(0,R)(ζ, w) ≤ C ′, (6)

|dζgB(0,R)(ζ, w)| ≤ C ′/γ (7)

for all 1+ γ/2 ≤ |ζ| ≤ 1+ γ. Heredζ denotes the derivative w.r.t.ζ.

Remark.The explicit form ofgB(0,R)(ζ, w) shows that it is smooth off the diagonal.

Let us first observe that Lemma 4 follows from the claim. Letχ : R → [0,1] be
aC∞ function satisfyingχ ≡ 1 on(−∞,1/2] andχ ≡ 0 on [1,∞). We set

%(ζ) =
{
χ((|ζ| −1)/γ )gB(0,R)(ζ, w) if |ζ| ≤ 1+ γ,
0 otherwise.

By a straightforward calculation, we obtain

∂∂̄%(ζ) = gB(0,R)(ζ, w)∂∂̄χ((|ζ| −1)/γ )

+ ∂gB(0,R)(ζ, w)∂̄χ((|ζ| −1)/γ )+ ∂χ((|ζ| −1)/γ )∂̄gB(0,R)(ζ, w)

+ χ((|ζ| −1)/γ )∂∂̄gB(0,R)(ζ, w).

Neglecting the semipositive termχ((|ζ| − 1)/γ )∂∂̄gB(0,R)(ζ, w), we thus obtain
the inequality

∂∂̄%(ζ) ≥ −C
′′

γ 2
∂∂̄|ζ|2 (8)

from (6) and (7) for a suitable constantC ′′ > 0 depending only onn.
Now let z̃ be a boundary point, so thatδD(z) = |z− z̃|. We set

ϕz̃ = max{|hz̃| −1,−η}
for sufficiently small positive constantη. Thenϕz̃ is a well-defined psh function
onD with the estimate

c1|ζ − z̃|α ≤ −ϕz̃(ζ) ≤ c2|ζ − z̃|β,
where the constants are still denoted byc1, c2 for the sake of simplicity. Let us
denote

ψz̃(ζ) = −2c−2/α
1 (−ϕz̃(ζ))2/α + |ζ − z̃|2.

One hasψz̃ < 0 onD, ψz̃(z̃) = 0, and∂∂̄ψz̃ ≥ ∂∂̄|ζ|2 in the sense of distribu-
tions becauseα ≥ 2. Therefore, by (8), the function(C ′′/γ 2)ψz̃ + % is negative
and psh inD with a logarithmic polew. Hence

−gD(z,w) ≤ −C
′′

γ 2
ψz̃(z)− %(z)

≤ C δ
2β/α
D (z)

|z− w|2 .



32 Bo-Yong Chen

Lemma 5. Let a be as in Lemma 3. Then(4) also holds for allz,w ∈ D with
δ
β

D(w) ≥ a|z− w|α.
Proof. Using the fact thatD is locally convexifiable as well as a standard com-
pactness argument, we argue as follows. There existsr ′ > 0 (independent onp ∈
∂D) such that everyp ∈ ∂D has a neighborhoodVp with the properties thatD∩Vp
is biholomorphic to a convex domain andD ∩ B(p, r ′) ⊂ D ∩Vp. Without loss
of generality, we may assume thatr = r ′. It follows thatgD∩Vp is symmetric. By
Lemma 4, for allz,w ∈D ∩ B(p, r) we have that

−gD∩B(p,r)(z, w) ≤ −gD∩Vp (z, w) = −gD∩Vp (w, z)

≤ −gD(w, z) ≤ C δ
2β/α
D (w)

|z− w|2 .
Repeating the arguments as in the proof of Lemma 3, one has

−gD(z,w) ≤ C δ
2β/α
D (w)

|z− w|2 ,

from which (4) immediately follows becauseδβD(w) ≥ a|z−w|α andα ≥ 2.

Proof of Proposition 2.Combining Lemma 3 with Lemma 5, we see that

−gD(z,w) ≤ C δ
β

D(w)

|z− w|α
holds for allz,w ∈D.We will follow the argument of Carlehed [2]. WhenδD(z) ≥
1
4|z − w|, the proof follows immediately becauseδβD(z)/|z − w|α ≥ C. It suf-
fices to prove the proposition for the caseδD(z) < 1

4|z−w|. Let γ, z̃ be as before.
Observe that

(1) z∈D ∩ B(z̃, γ/2), sinceδD(z) < γ/4; and
(2) w /∈D ∩ B(z̃, γ/2), since

|w − z̃| ≥ |w − z| − |z− z̃|
= |z− w| − δD(z)
≥ 3

4|z− w| > γ/2.

If ζ ∈D ∩ ∂B(z̃, γ/2), then

|ζ − w| ≥ |z− w| − |z− ζ|
≥ |z− w| − (|z− z̃| + |ζ − z̃|)
≥ γ/4.

Let ϕz̃ be taken as before. Clearly, one has

−ϕz̃(ζ)
γ α
≥ c1|ζ − z̃|α

γ α
≥ c1

2α

for all ζ ∈D ∩ ∂B(z̃, γ/2). Therefore, the inequality
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gD(ζ,w) ≥ C δ
β

D(w)

|z− w|α
ϕz̃(ζ)

γ α

holds there. The same inequality holds trivially forζ ∈ ∂D ∩ B(z̃, γ/2), since
gD(ζ,w) = 0 there; hence it holds for allζ ∈ ∂(D∩B(z̃, γ/2)). SincegD(ζ,w) is
a maximal plurisubharmonic function ofζ in D ∩ B(z̃, γ/2) and sinceϕ̃z̃ is also
psh there, the inequality holds true inD ∩ B(z̃, γ/2). In particular,

gD(z,w) ≥ −C δ
β

D(z)δ
β

D(w)

|z− w|2α .

The proof is complete.

Proof of the Claim.Because the pluricomplex Green function is biholomorphi-
cally invariant, we may assume thatw = (t,0, . . . ,0) with t > 0. Furthermore,
we can takeR = 1 under the dilationζ → ζ/R. Thent = 1/R ≥ 1/3 and2

3γ ≤
1− t ≤ 2γ sinceR ≤ 3. By [2] one has

−gB(0,1)(ζ, w) = 1

2
log

|1− tζ1|2
|t − ζ1|2 + q(1− t 2)

= 1

2
log

(
1+ (1− |ζ|2)(1− t 2)
|t − ζ1|2 + q(1− t 2)

)
≤ 1

2

(1− |ζ|2)(1− t 2)
|t − ζ1|2 + q(1− t 2) ,

whereζ = (ζ1, ζ2, . . . , ζ2n) ∈ R2n and q = q(ζ) = |ζ2|2 + · · · + |ζ2n|2. If
|t − ζ1| > γ/4, then

|t − ζ1|2 + q(1− t 2) > γ 2/16.
Otherwise,

q = |ζ|2 − |ζ1|2
≥ (t + γ/2)2 − (t + γ/4)2
≥ (γ/2)t

≥ γ/6
for all t + γ/2 ≤ |ζ| ≤ t + γ. It follows that

|t − ζ1|2 + q(1− t 2) ≥ q(1− t 2) ≥ 2
3qγ ≥ γ 2/9.

Hence (6) is valid because 1− |ζ| ≤ 1− t − γ/2 ≤ 2γ. By the Cauchy–Schwarz
inequality, one has

|dζgB(0,1)(ζ, w)| ≤ t |dζ1|
1− tζ1

+ |t − ζ
1||dζ1| +∑2n

k=2|ζ k||dζ k|(1− t 2)
|t − ζ1|2 + q(1− t 2)

≤ 1

1− t +
√

1+ (2n−1)(1− t 2)√|t − ζ1|2 + q(1− t 2)
≤ C0

γ
,

whereC0 > 0 is a constant depending only onn. The proof is complete.
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3. Proof of Theorem 1

We recall at first some basic facts for convex domains of finite type. AssumeD =
{ρ(z) < 0} to be a bounded convex domain of finite typem with a defining func-
tion ρ. Let us make precise the finite-type hypothesis: For eachp ∈ ∂D and each
complex lineL in the complex tangent space atp, there is a unit directionv in L
such that

m∑
i=2

|Di
vρ(p)| 6= 0.

HereDi
vρ(p) denotes theith directional derivative ofρ atp. On the other hand,

if L is transverse then of courseDv(p) 6= 0 for somev. By continuity and com-
pactness we can write the finite-type assumption as follows: If

aij(p, v) = ∂i+j

∂λi∂λ̄j
ρ(p + λv)|λ=0, p ∈ ∂D, |v| = 1,

then ∑
1≤i+j≤m

|aij(p, v)| ≥ c(D) > 0.

The following deep result was proved by Diederich and Fornæss.

Theorem [4]. Letnp be the normal unit vector to∂D at the boundary pointp,
and letv be a complex tangential unit vector. Then there exists a holomorphic
supporting functionSp(z) at p with the estimate

ReSp(z) ≤ Reµ

2
− K

2
(Imµ)2 − ĉ

m∑
k=2

∑
i+j=k
|aij(p, v)||λ|k

if we writez = p + µnp + λv with λ,µ ∈C. HereK, ĉ > 0 are constants inde-
pendent ofp, v.

For eachp ∈ ∂D, we definehp = eSp . Then

c1|z− p|m ≤ 1− |hp(z)| ≤ c2|z− p|
for suitable constantsc1, c2 > 0.

Now we begin to prove our theorem. By hypothesis, the functionhp just defined
exists locally. By Proposition 2, one has

−gD(z,w) ≤ C(D)δD(z)δD(w)|z− w|2m . (9)

Let us recall some estimates of the classical Green function for bounded domains
of C1,1 boundary inCn with n ≥ 2 (cf. [2; 8]):

−GD(z,w) ≥ C(D)

|z− w|2n−2
if |z− w| < max

{
δD(z)

2
,
δD(w)

2

}
, (10)

−GD(z,w) ≥ C(D)δD(z)δD(w)|z− w|2n if |z− w| ≥ max

{
δD(z)

2
,
δD(w)

2

}
. (11)
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We proceed with the proof by examining two cases as follows.

(1) When|z − w| < max{δD(z)/2, δD(w)/2}, we use inequality (10) together
with the trivial estimate

−gD(z,w) ≤ log
diam(D)

|z− w| .
(2) When|z− w| ≥ max{δD(z)/2, δD(w)/2}, we use (9) and (11).

Thus, the proof of the main theorem is complete.

4. An Example

Let us consider the domain

D = {z∈Cn : |z1|2 + |z2|m + · · · + |zn|m < 1},
wherem > n is even. Clearly,D is a convex domain of finite typem. Let 0< t <

1 be any positive number and setHt = {z ∈Cn : z1 = t, z3 = z4 = · · · = zn =
0}. ThenD ∩ Ht is a disc with radius(1− t 2)1/m. Letw = w(t) = (t,0, . . . ,0)
and

z = z(t) = (t, 1
2(1− t 2)1/m,0, . . . ,0

)
.

ThenδD(z) ≈ δD(w) ≈ 1− t. By definition of the pluricomplex Green function,
one has

gD(z,w) ≤ gD∩Ht(z, w)
= g1(1/2,0)

= −log 2.

We use a similar estimate for the classical Green function (cf. [2; 6]):

−GD(z,w) ≤ C(D)δD(z)δD(w)|z− w|2n .

Hence

gD(z,w)

GD(z,w)
≥ C(D) |z− w|

2n

δD(z)δD(w)

≥ C(D)(1− t)2(n/m−1)

→∞
ast → 1, becausen < m.
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