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On theL?” Boundedness of
Marcinkiewicz Integrals

YoNG DING, DAsHAN FAN, & YIBIAO PAN

1. Introduction and Results

Letn > 2 and letS"~! be the unit sphere iR” equipped with the normalized
Lebesgue measutkr. Letb(-) € L*°(RR,) and letQ be a homogeneous function
of degree zero olR” (which is then naturally identified with a function @it 1)
satisfyingQ € L(s"~%) and

[S Q) do(y) =0. (L)

For a suitable mappindg: R” — R¢, we define the Marcinkiewicz integral
operatoiue, o » ONRY by

o0 dr\Y?
M@,Q,b(f)(x)z(/(; | Fo (x)[? t—3> . 1.2)
where Q)
Fo,(x) =f| |y|ny_1b(ly|)f(x—<l>(y))dy- 1.3)

Ifn=d, ®©) = (y1,y2,...,y,), andb = 1, then we shall simply denote the
operatore o » bY 1q.

The main purpose of this paper is to study theboundedness of the operators
Hao.p- The operatopg was introduced by Stein [S1]. He proved tha®ifatis-
fies a Lip, (0 < « < 1) condition onS™~%, thenpuq is of type(p, p) forl < p <
2 and of weak typ€l, 1). Subsequently Benedek, Calderén, and Panzone [BCP]
showed that i2 is continuously differentiable o§i"~* thenpug, is of type(p, p)
forl < p < oco. In a more recent paper [DFP] we obtained ftieboundedness
of ;g under the substantially weaker assumption fat H1(S"~1). In fact, it
was proved in [DFP] that the operatoy g, , is bounded or.”(R") provided that
Qe HY(S" Y andb(-) € L*(R,). Herel represents the identity mapping from
R” to itself andH*(S"~1) denotes the Hardy space on the unit sphere that contains
Llog™ L(S"Y) as a proper subspace (see Section 3 for its definition).

In this paper we shall establish thé boundedness @i ¢ , for several classes
of mapping® with rough kernel€2, mirroring recent developments in the theory
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of singular integrals. A sample of our results is the following statement concern-
ing polynomial mappings.

THEOREM 1. LetP = (Py,..., P;), whereP; is areal-valued polynomial oR”
for 1 < j < d. Suppose thai(r) € L*(R.) and that© € H*(S"1) and satisfies
(1.1). Then, forl < p < oo, there exists a constait, > 0 such that

lp,6(Orwsy < Coll fllLrwra) (1.4)

for every f € LP(R?). The constanC, may depend on, d, anddeg P;) (1 <
Jj <d), butitis independent of the coefficientsRf

Similar results forC > mappings of finite type and homogeneous mappings will
be described in Section 4. The proof of Theorem 1, to be presented in Sections
2-3, can be easily adapted to treat other classes of mappings. Finally, we include
in Sectim 5 a brief discussion on the Marcinkiewicz integral operators related to
area integrals and the Littlewood—Palgyfunctions.

2. Main Lemma

For a family of measures = {7;; | k € N, t ¢ R} onR?, we define the operators
A, andt} by

oo 1/2
A(f)x) = Z(/};J(fk,t * f)(X)Izdl) (2.1
k=1
and
(Hx) = SURFX|Ik,t| * | f(x) (2.2)
for k e N.

LemMma 2.1. Letm e NandL:R? — R™ be a linear transformation. Suppose
that there are constaniSy, C, (1 < p < o0), «, B > 0, and y # 0 such that the
following hold fork e N, t e R, £ e R, and p € (1, 00):

ITeell < Co27*; (2.3)
|%6,:(©)] < Co2 ¥ minf97|LEN®, 297 LEN Y, (2.4)
IO rray < Cp2 81 f | Logra)- (2.5)
Then, forl < p < oo, there exists a constant, > 0 such that
IA () zrray < Apll f | oray (2.6)

forall f € LP(RY). The constani, may depend of, C,, «, B, ¥, n, d, and
m, but it is independent of the linear transformatian

Proof. Clearly we may assume thpt|«, |y |8 < 1. We shall begin with the spe-
cial case in whichn < d andL§ = nd(§) = (&1,...,&y,) fOr & = (&1,...,&4) €
R?. Choose aC* functiony,: R — [0, 1] such that sup@/) c [1/4, 4] and
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/oo LACIRY
0

r

Define the Schwartz functiong, ¥, : R” — C by

W, oo b)) = YER -+ E2)

andV¥,(z) = t~"W(z/t) fort > 0 andz e R™. If we let§,_,, represent the Dirac
delta onR¢—" then

o0 d
fx) :/o (‘I’z®5dfm)*f()€)7t =(yIn2 /R(“I’275®5d7m)*f(x)ds~ 2.7)

Define theg-functiong(f) by

1/2
g(Hx) = <[R|(‘I’2w ® 8a—m) * f(x)|2ds> . (2.8)

A fact that will be used a little later is the” boundedness of the operatbr—
g(f), which follows from

/ W,(2)dz = (0) =0

and the Littlewood—Paley theory. By (2.7) and the Minkowski inequality,

2 1/2
dt)

o0 12
< (lylIn2) Z /(/ | (W0 @ 8g—m) * Thr * f(x)|2dt> ds
— Jr\Jr

A-(H)(x) = (y]In2) Z( / ’ f (Worirn ® Bgm) * Thr % f(x)ds
k=1 RIJR

= (yin2) [ K ds, (2.9)
R
where
o0 1/2
H(f)(x) =) ( / [(Waren @ Sa—m) * Ths * f(x)lzdt)
k=1 \UR
= Hy i (f)(x). (2.10)
k=1
Thus thel.” boundedness &f ;, would follow if we can prove that, fork p < oo,
IH (Al Loy < Cp2 " PEN £l Locgay (2.11)

holds for someC,, 6(p) > O.

We shall first verify (2.11) fopp = 2, which can be done by a simple applica-
tion of Plancherel’'s theorem. We shall consider the gase0 only, because the
casey < 0 can be dealt with in similar fashion. By (2.10),

1k B, = [ [ N F@P27 8 P 1 ds i,
R J R4
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where¢ = (&, ..., &) andé’ = (&, ..., &,). Whens > 0, by (2.4) we have

/IW(IZV(””E'IZ)fk,z(S)Izdt
R

<cg [ (21> dr
(rsHlg/)~1<2vt <2(2rs|g')) L
< C2—2[yot.v+(l+y01)k]. (212)

Similarly fors < 0, also by using (2.4), we have
/|‘(//(|2y(x+t)sl|2)fkyt(§)|2dt < C22[yﬂs—(l—yﬂ)k]' (213)
R

Thus, there exists@ > 0 such that

I Hs k(O 2ray < C27OCHOY £l 124y, (2.14)
which implies that (2.11) holds fgr = 2. Next we shall prove that, for evepy €
(1, 00),

| Hs (Nl Lroray < ClILf Il Lro(ra)y.- (2.15)

First let us consider the case<d pg < 2. Let G, (x) = (Wor ® §4_p) * f(x).
Then, fork € N, by (2.3) we have
/|G1(~)Idt
R

)

/ |Tk,z * Gy ()| dt
R

<c2*
Ll(Rd)

L(RY)
whereC is independent of. On the other hand, by (2.5),
¢ . < * . < Z*k .
su Gy O, o, < | <?§R”G’()') iy = €2 [sumGiO1]

forl < g < oo, whereC again is independent af The estimates we have
given here show that the linear mappifig G,(x) — 7 * G,4+,(x) is bounded
on LY(LY(R), RY) and LY(L*(R), R?), respectively. Thus, iy satisfies 1g =
2/po — 1, then we conclude by using interpolation that the mapging also
bounded orL.”°(L?(R), R%). More precisely,
1/2
(/|Gr(~>|2dz>
R

1/2
H (f s * Gs+,<-)|2dt>
R

From this and thd.”° boundedness of thefunction, we have

< G2
LPo(R4)

LPo(R4)

”Hs,k(f)”Ll’O(]Rd) < C27k||f||Lpo(Rd) f0r l < po < 2 andk S N

As for the case 2 pg < oo, it will be performed by imitating an argument in
[DR]. Letk € N andg = (po/2).. There exists av = w; € LY(R?) such that
lwll, =1and
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| Hs, ()N Lrocrey

— W 1/2
(f l /l( ¥ (s+1) ® (Sd—m) * [k,t * f(x)lzdt U)(x) dx>
R4 JR

s[(sumrk,tn) /R /R /R |(Wari0 @ 8a-m) # F(x = )P (x)
! 4 JRA 1/2
dxdrk,t(y)dt]

12
< C(Z_k/ [(Woyis+n @ Sg—m) * f(u)|2‘c,f(ﬁ))(—u) du dt)
R JRd
(with w(x) = w(—x))

< CR27MNg(NIZ oz ITE @) | Lareay ]2 < 271 f Nl vocray

where we used the boundedness of gheinction and assumption (2.5) again.
Summing ovek € N, we obtain (2.15). By (2.14), (2.15), and applying the Riesz—
Thorin interpolation theorem for sublinear operators [CZ], we obtain (2.11) for
1 < p < oco. This concludes the proof of (2.6) in the special case 7 2.

The general case can be resolved by using a technique developep 2h
Suppose that = {ty, | k € N, r € R} satisfies (2.3)—(2.5) with a given linear
transformatior..: RY — R¥. Letm = rank(L) < d. Then there are nonsingular
linear transformations,, : R — R” andG,: R? — R such that

|G dGak| < |LE| < N|GurgGatl. (2.16)
Definevy , by

/f(X)dvk,z(X)=f FU'x) dri (%), (2.17)
R4 R4

whereU = G, %o (G,,* ® idga—n). Then, by (2.3)—(2.5) and (2.16),= {vy, |

k € N, t € R} satisfies (2.3)—(2.5) witlh replaced byrd. Thus

1AL Lrray < Apll fll Loy (2.18)
holds for 1< p < oo. Finally, (2.6) follows from (2.18) after making a trivial
change of variables. Lemma 2.1 is proved. O

3. Proof of Theorem 1
Recall that
HY(S"™) = {f €S'(S"™H t 1P fllasnsy < 00)
and|| f || yrsn- = 1P fll za(sn-1, Where

/ A-r3f
gn—1

P*f(z) = sup ,
lrz =yl

O<r<1

do(y)|.

A useful property ofH(S"~1) is its atomic decomposition. A functias(-) on
S"~tis a (regular)H* atom if it satisfies the following:
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suppa) C " tN{yeR" : |y — ¢| < p}
for somes € $"tandp € (0, 2]; (3.1)

/S”_la(y) do(y) =0; (3.2)
lalloo < p~ 2. (3.3)

Lemma 3.1 [Co; CTW]. If Q e HY(S"1) and satisfie$3.1)—(3.3) then there
exist{c;} ¢ C and H! atoms{a;} such that

Q= chaj
J
and ||Q||H1(Sn 1) Z |C]
Proof of Theorem 1In light of Lemma 3.1, it suffices to prove that

lwp, o, b(f)”LP(JRd) C ||f||Lp(1Rd)
holds where2 is a H atom satisfying (3.1)—(3.3).
Define the family of measures = {0}, | k €N, t e R} on R? by

«/|
nz FPON l(ny Loyhdy.  (3.4)

/ fx)doy,(x) =
Rd

Then

21— k<|y‘<21 k+1

wp,b(f) < As(f). (3.5)
By the arguments ifFP2,Sec. 7; see esp. (7.36)], there are families of measures
@ ={r) |keN, teR},.... 7" =z | keN, teR},
each of which satisfies (2.3)—(2.5), such that

Orr = Zf“) (3.6)

for k € N andr € R. It then follows from Lemma 2.1 and Minkowski inequality
that

M
lep.2b(Olleesy < D MNA0 (Alleeay < Coll fllznay

j=1
for f e LP(R?) and 1< p < cc.

4. Additional Results on Marcinkiewicz Integrals

Mappings of Finite Type

Let B(0, r) denote the ball centered at the originRA with radiusr. For a suit-
able function2 and a mappingb: B(0, r) — R, we define the Marcinkiewicz
integral operatofte, o by
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QW)
flx —®(y)

. 2 4\1/2
M@,Q(f)(x):< f ) —t> RN
0 lyl<t [yl

(3
(If @ is a mapping fronR” into R¢, thenr = 00.)

A C* mapping®: B(0,1) — R is said to be ofinite typeat the origin if, for
each unit vector € R?, there is a multi-indext (with || > 1) such that

Ay [®(y) - nlly=0 #O. (4.2)
We have the following result concerning the Marcinkiewicz integrals associated
to mappings of finite type.

dy

THEOREM 2. Let®: B(0,1) — R¢ be aC*> mapping that is of finite type at the
origin. If Qe L4(S"~1) for someg > 1and satisfie§l.1),thenu o o is bounded
onL?(R%) forl < p < oo.

A proof of Theorem 2 can be obtained by imitating that of Theorem 1. The only
difference is that, instead of using the argumentfHR2, Sec. 7], one uses the
arguments in [FGP1] in conjunction with Lemma 2.1.

Homogeneous Mappings
ForTl' = (y1, ..., y2) € R? andt > 0, let T, denote the dilation oR¢ given by

Fi(x, ..o, x0) = (tylxl, ceey ty"xd). (43)
A mapping®: R" — R? is said to be homogeneous of degre#
@ (ry) = Ii(P(y)) (4.4)

holds fory € R"\{0} and¢ > 0.
By employing the methods in [FGP2; Ch] and Lemma 2.1, we obtain the
following.

TueEOREM 3. Let ®: R" — R? be homogeneous of degrEe= (y1, ..., v4).
withy; # 0forl < j <d. If ®|g-1is real-analytic and ifQ € H*(S"~1) and
satisfieq1.1),thenu ¢ g is bounded or.”(R¥) for 1 < p < oo.

Surface of Revolution

Next we consider the Marcinkiewicz integrals associated to surfaces of revolution.
Let ¢ be a real-valued function on [B0), and let

@(y) = (y, oy (4.5)
for y e R". Let M, denote the following maximal operator &#:

2k+1

(My)g(u,v) = SUDZ"‘/ lgu —t,v—¢())|dt.
keZ 2k

THEOREM 4. Let®: R" — R"+1be given as irf4.5). If Q € HY(S"1) satisfies

(L.1),thenpu e g is bounded o .2(R"+1). If, in addition, ¢ is convex and increas-

ing and if M is bounded orL.?(R?) for 1 < p < oo, thenue g is bounded on

LP(R™Y forl < p < oo.
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Proof. By Plancherel’s theorem, thie? boundedness qf s o is equivalent to

0 dt
sem = [ mte P <c. (4.6)
uniformly in & e R" andn € R, where
: Q
m(€,n) = / e 1Ey+ndyD) (y)l dy. 4.7
lyl<t Iy1"=
If we let
@ = [ a0 do) (4.8)
then it follows from [FP1, Thm. A] that
0 5 ds Yz
Sup(f 1o (s8)] —) = ClIQ g2 < o0. (4.9)
teR7"\ JO s

Thus, by (4.6)—(4.9), Holder’s inequality, and Fubini’'s theorem,

o0 t
1
sup J(E ) < sup/ /|19(ss>|2—2dsdrsc||sz||§,1,
(€ meRm+t gern Jo Jo t

which proves the first part of Theorem 4. The second part follows from the argu-
ments in [LPY] and Lemma 2.1. O

5. Area Integrals and g; Functions

We shall end the paper with a theorem on the Marcinkiewicz integral operators re-
lated to the area integral and the Littlewood—Palgyunction. We shall consider
polynomial mappings only, but it is clear that similar results can be obtained for
other classes of mappings.

Let P be a polynomial mapping fro®” into R¢, and letFp ; be given as in
(1.3). We define the operatoiise = fip, o, aNdulp ; = 1p o4, DY

1 1/2
ﬂp(f)(x)=( f |Fp,,<u>|2mdudt) , (5.1)
I(x) t

wherel'(x) = {(u, 1) eR”fl D lx —u| <t}, and
1/2

t @ , 1
wp () (x) = <//Ri+1(m> | Fp,i(u)] mdudt> (5.2)

fora > 1
Our results can be stated as follows.

THEOREM 5. Suppose that(r) € L*(R ) and thatQ € H*(S"~1) and satisfies
(1.1). Then, for2 < p < oo, there exists a constaudt, > 0 such that

14 (P Leray < Coll £l Loway (5.3)
and



On the L? Boundedness of Marcinkiewicz Integrals 25

liep (lLrray < Cpll fllLr(ra) (5.4)

for every f € LP(R9). The constantC, may depend on, 4, anddeg P;) (1 <
Jj <d), butitis independent of the coefficientsRyf

The proof of Theorem 5 is based on the following lemma.

LemMA 5.1. LetA > 1 Then, for any nonegative functi@gn we have
/ (W (N *g() dx < G / (1p2p (N (M)(x)dx,  (5.5)
R R

whereM denotes the usual Hardy-Littlewood maximal operatoiRgn

Proof. By definition, we have

/R (N0 dx

t
/Rd //m+1<t+|x—u|) |, (”)| —gdudt g(x)dx
F )7| su ! )dA id idtd
/ / | Pl(u| t>(§) t+ |x —ul g(x)td X /3 u

=i [ (ur.asl )M @) du
R
for A > 1L Lemma 5.1is proved. O

Proof of Theorem 5Whenp = 2, one can obtain (5.3) by simply taking= 1
in (5.5) and then invoking Theorem 1. For2p < oo, we letg = (p/2)’. Then,
by Lemma 5.1, Theorem 1, and Hdélder’s inequality,

2
||I’L>;7,)»(f)”LP(Rd) Sup
llgl q_l

/ (1 () (X)) g (x) dx

<Gy sup | (up.an(f)(x)*Mg(x)dx
lgllg=1J R4

< CA(HsHup ||Mg||q)||up @b (D2 ey < Crpll £ I gy
8 q—
Thus (5.3) holds for Z p < co. Inequality (5.4) follows from (5.3) and the ob-
servation thafip (f)(x) < Ci[uwp ;(f)(x)]. Theorem 5 is proved. O
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