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Affine Surfaces withAK (S) = C

T. BANDMAN & L. MAKAR-LIMANOV

1. Introduction

In this paper we proceed with our research [BaM1; BaM2] of the smooth surfaces
with C*-actions. We denote b§(S) the ring of all regular functions ofi. Let us
recall that theAK invariantAK(S) c O(S) of a surfaces is just the subring of

the ringO(S) consisting of those regular functions Sithat are invariant under all
C*-actions ofS. This invariant can be also described as the subrir®(@f) of all
functions that are constants for all locally nilpotent derivation®¢f§) [KKMR;

KM; M1].

We would like to give the answer to the following question: What are the sur-
faces with the trivial invariand K ?

It is quite easy to show (see [M2]) that the complex liiés the only curve
with the trivial invariant. It is also well known that, K (S) = C andO(S) is a
unique factorization domain (UFD), thesis an affine complex plan&? [MiS;

S]. If we drop the UFD condition then we have many smooth surfaces with trivial
invariant—for example, any hypersurface of the fotmy = p(z)} c C3, where
all roots of p(z) are simple.

Since we did not know any other examples, we had the following working con-

jecture.

ConNIECTURE. Any smooth affine surfacewith AK(S) = C is isomorphic to a
hypersurface

{xy = p(z)} c C2.

It turned out that this conjecture is true only with an additional assumptiorsthat
admits a fixed-point—fre€ *-action. Also, if we assume thatis a hypersurface
with AK(S) = C thenS is indeed isomorphic to a hypersurface defined by the
equationcy = p(z).

Surfaces of this kind have been well known since 1989 owing to the following
remarkable fact, which was discovered by Danielewski [D] in connection with the
generalized Zariski conjecture (see also Fiegéig). the surfaceqx"y = p(z)}
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with n > 1 are not isomorphic téxy = p(z)} (actually, they are pairwise non-
isomorphic). Nevertheless, the cylinders over all these surfaces are isomorphic
(S x C" is called “the cylinder over surfac®’). So it seems natural to introduce

a notion of equivalence for the surfaces, where two surfaces are equivalent when
cylinders over these surfaces are isomorphic. That is why we also try to consider
surfaces withAK (S) = C up to this equivalence. Though we are far from a com-
plete understanding, we know that there are two classes of surfaces that cannot be
mixed by this equivalence relation. The first class consists of the hypersurfaces
{xy = p(z)} mentioned previously. Here is an example of a surface from the sec-
ond class:

xy = (z2 -1z
S=1(x,y,z,u)eC*: zu = (y2 -1y
xu = (2 -D(y*>-1

2. Definitions and Related Notions

If AK(S) = C, then the group of automorphisms®has a dense orbit. Hence it
is natural to compare these surfaces with quasihomogeneous surfaces, which have
been investigated by Gizatullin, Danilov, and Bertin [G1; G2; GD; Ber].

DEerINITION. A smooth affine surfac8 is calledquasihomogeneotifsthe group
Aut(S) of all automorphisms af has an orbit/ = S\ N, whereN is a finite set.

We will show that, ifAK(S) = C, then indeedS is a quasihomogeneous sur-
face. Therefore§ may be obtained from a smooth rational projective surfabg
deleting a divisor of special form, which is called a “zigzag” [G1; G2; GD; Ber].

Let us denote by the set of all surface$ with AK(S) = C and byH those
surfaces that have only three components in the zigzag. We prove in Section 3 that
a surfaces € A is isomorphic to a hypersurface if and onl\SiE # (Theorem 1).

In Section 4 we use this fact to prove that:

(1) if S1eH andS, € A \ H, then the cylinders; x C* andS, x C* cannot be
isomorphic (Theorem 2); and

(2) a surfaceS € A admits a fixed-point—fre€ *-action with reduced fibers if
and only if S € H (Theorem 3).

The following notation will be used in this paper:

O(X), the ring of regular functions on a variel,

K(S), canonical divisor of a surfacg

[ D], class of linear equivalence of a divisbr,

D, proper transform of a divisab after a blow-up;

D*, algebraic (total) transform of a divisd@ after a blow-up;

(w), (f), divisors of zeros of a forrw and a functionf, respectively;
Aut(S), automorphism group of a surfade

G(S), subgroup of AutS), generated by alC *-actions on a surfacg;
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0G(S), a general orbit of the groug (5);
A, a Zariski closure ofd (if another meaning is not specified).

“General” means “belonging to a Zariski open subset”siAgular point of a
rational function is a point where the function is not defined.

3. Characterization of HypersurfacesS with AK(S) =C

Following [Ber; Mi; MiS], by aline pencilon a surfaces we mean a morphism
p:. S — C into a smooth curve& such that the fibep—1(z) for a generat € C
is isomorphic toC. Then S contains a cylinderlike subset, that is, an open sub-
set that is isomorphic to a direct product©faind an open subset 6f[B, 111.4].
The pencils are different if their general fibers do not coincide. Any line pencil
over an affine curv&€ on a surfaceS corresponds to & *-actiong, on S such
that the general orbit af, coincides with a general fiber of the pencil; moreover,
it corresponds to a locally nilpotent derivation (LNB)in the ring O(S) of reg-
ular functions onS such tha®, f = 0 if and only if f is g,-invariant [KM; M1;
Mi; Sn]. If there are two different line pencils il thenp(S) = C (indeed, in
this casep(S) is an affine curve containing the image of a fiber of the second line
pencil, and this fiber is isomorphic ). Since we are looking for the surfaces
having manyC *-actions, we shall assume in the sequel th&t C.

For a pencilp over C, one can find a closurg of S such that the extension
p: S — Plofthe mapp: S — Cis regular and, in the commutative diagram

S —» §

ol 17 )
C — P1,
the divisorB = S \ S is connected and has the following properties.
() B=F+ D+ E, where:
(@) F=Plandp(F) =P - C;
(b) plp: D — Pis anisomorphism; and
(c) E =) Ei+) H;, wherep(H;) € C\ p(S) andp(E;) = z; € p(S)
are points.
Moreover,p~1(z;) is a union of disjoint smooth rational curves, and each of
them intersect® precisely at one point.
(1) B does not contaiii—1) curves, except perhas.
The structure of fibers is described in [Mi, Lemma 4.4.1]. If there are two dif-
ferent line pencils irs, thenE = )" E;.

DerFINITION.  We call a closureS agood-closureof an affine surfacé if it has
properties (1) andll).

DEFINITION. LetF, = p~%(z) = Zji’f n;C;, where theC; are connected (and
irreducible, owing to property (1)(c)) componentssif= 1 andn; = 1, then the
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fiber is callednonsingular.The singular fiber is either nonconnected or has-
landn > 1 If F, =3 21" C; (i.e.,n; = 1), then the fiber is callededuced.

ProposITION 1. Let S be a smooth affine surface with a line pengilLet S be
a goodp-closure ofS. Let F,,, ..., F,, be all singular fibers op, and letF,, =

Zj:j’l"' n; ;C;, ; be a sum of irreducible curves; ; with C; ; = C. Then there
exists a functiom € O(S) such that

(a) « is linear along each nonsingular fiber,, wherez # z; fori = 1,...,n
(i.e.,x|F, is a nonconstant linear functigonand
(b) alc,; =a; j=constforall1<i <nandl<j <k;.

Proof. Let 9, be a nonzero LND corresponding to the line penpcilf there is a
nonsingular fibetr, = p~1(z) such that, (v)|r, = 0 for allv € O(S), then we
may consider another LNﬁ;J = d,/(p — z) and repeat this procedure, if needed.
Hence we may assume thitdoes not vanish identically along the nonsingular
fibers ofpp.

Sinced, is a nonzero derivation, there exists a functiog O(S) for which
dp(v) # O, thatis, the minimak for whichd(v) = Ois not smaller than 2. Letus
takeu = 9, ~%(v). Sinced?(u) = 0, it follows thatd, (u) = f(z) depends only on
z=p(s)withseS. If f(Z) =0(Z # z1,...,24), thenu| ,-1;) = ug = const
and we consider a new functi@dn — ug)/(p — 2).

Repeating this yields a situation in which:

(1) 9,u = f(z), wheref may vanish only at the points, i =1, ..., n; and
(2) u is alinear function along each fibpr'(z), withz #£ z; fori =1,..., n.

We will show thatt = u; = const along each componeiit; of F,,i =1,..., n.

Indeed,u is linear along a general fiber, which means that the intersection
(U, p~Y(z)) = 1 for the closurd/,, in S of a general level curve/,, = {s € S :
u(s) = w}and anyz.

If ulc, , # constthen(U,, C;,;) > 1andU,, pX(z;)) > n; ;. Thus, ifn; ; > 1
then(U,, C; ;) = 0 andu|c, , = const

If n; ; = 1, then the fiber is nonconnected ami¢, ; # const implies that/,,
does not intersegi—1(z;) \ C; ; forageneraw € C. Thus,u|/371(1i)\ciyj must be
regular and constant. Onthe other hankas a pole alon® and s ;-1\ ¢, ; =
oco. Sinceu has only regular points, it follows that ala¢c, , = oo if k # j. But
u € O(S), so there are no components with= j. Hencep~(z;) has just one
component of multiplicity 1, which contradicts our assumption.

Thus, we may take = u. O

ProrosiTION 2. Any smooth affine surfacg with AK(S) = C is quasihomo-
geneous.

Proof. Assume that and+s areC*-actions onS having different orbits. Lep
andx be the corresponding line pencils, withandd, the corresponding LND.
Let R. = p~Y(z) andK,, = x Y(w) for generalz, w € C, and letR, andK,, be
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their closures in a goog-closuresS of S. We will now show thatS \ OG(S) is a
finite set.

If a points isin S\ OG(S) and if the fiberR,,, is nonsingular, the® ;) C
S\ OG(S) as well. Indeed, as shown in Proposition 1, we can chépaada, in
such a way that they do not vanish along nonsingular fibers; that is, there are no
fixed points in these fibers.

For the same reasom®,,, does not intersect a general fibky,; that is, it is
contained inK, ;. But thenp # p(s) along a general fibekK,,. Hencep|k, =
const and the fibers of these two actions coincide. ThusS \ OG(S) implies
thats € R, N K,,, for singular fibersk,, andK,,,. If S\ OG(S) is infinite, then
there exists a connected componéntc R, N K,,, for singular fibersr,;, and
K., of p andx, respectively.

Let5(zo) = CUE'U(UC;). whereE’ C S\ S and theC; are other com-
ponents ofp~1(zo). Considerk,, = C. The intersectionK,,, R,) > 1, so K,
intersectsk,, = p*(c0). Hence, the only puncture &, belongs toR,, and
this means thak,, N E’ = @. Thus,« has no singular points and must be con-
stantalongt’. SinceE’'N D # @, we havec|g: = «|p (see diagram (1) and recall
thatE’ is connected). But|p = oo (if it were not, thenc would be bounded and
hence constant along a general filkg).

We conclude that| g = oo and has no singular points. On the other hanid,
finite and constant along, which implies that the poin€ N E’ is singular. The
contradiction shows that no such cuwexists and thaf \ OG(S) is a finite set.
Hences is indeed quasihomogeneous. O

Any good p-closureS of S may be described by the grapts) in the following
way: The vertices of this graph are in bijection with irreducible components of
the divisorB = S\ S, and two vertices are connected by an edge if they intersect
each other.
Now we shall use the description of quasihomogeneous affine surfaces due to
Gizatullin and Bertin [Ber; G1; G2; GD].
Any such surfacé is either isomorphic t@? or may be obtained by the follow-
ing blow-up process, described in [G2]. L& = P! x P, and letp: P! x P! —
P! be a projection onto the second factor. IRt= p1(z9) andF; = p(z1)
with zo, z1 € P, and letD be a section; thatig|,: D — P! is an isomorphism.
Leto =o10---00,: § — So be the sequence of blow-ups

5 P/ 5 o1
§5=8,25,1— - 2 5,

where oy is a blow-up of a point inF; and o; is a blow-up of a point in
(01...0,_1)"X(F1). Leto™X(Fy) = ZU A, whereZ is a linear chain of smooth ra-
tional curves (zigzag) such thatn D is a point and wherd = [ J A; is a union
of smooth rational curves; such thatd; N A; = #andA; N Z is a point for each
i. Then the quasihomogeneous surface S\ (Z U Fo U D).

We useG; to denote allA; such thatA% = —1 and useM; to denote allA;
with A2 < —1. We may assume that th@& were blown up at the last stage of the
process. Then the process consists of the following steps.
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Step Ois an initial step. We start with the divisor, which is described by the
following graph:

f d f
where vertices, d, f1 represent componenty, D, Fy, respectively.
Step 1is the blow-upoy: S — So of a pointw; € F; into an exceptional com-
ponentE C S;. We denoteF} = F1+ E asEq + E1, whereEg and E; are two
rational curves; the graph @ U D U E; U Eq looks like

’

f d e1 eo

where the verticed, d, e1, eo represent the components, D, Eq, Eg, respec-
tively. PutZ; = E1 U Ey.

Step 2s one of the following two procedures.

(a) The blow-ups,: S, — §; of a pointw, € Z; into a componenE, C S5
in such a way that a graph @ U D U E; U Eq U E5 is linear. That is, we blow
up either the poini;, N D or the pointEy N Eq or a point inEq. We putZ, =
El U Eo U E>.

(b) The blow-up of the poinEg N E; to obtain a curveE,. Then putEy = M,
andZ, = E1U E,. The graph offy U D U Z, looks like

f d e1 €2
There are no other ways to obtain a linear graph.
For a generat, let the graph offo U D U Z,,_1 be
. . e e
(or perhaps withoutp), where a vertex,. represents the componefit obtained
at the step;.

Step mis one of the following procedures.

(a) The blow-upo,,: S,, — S,_1 of a pomtwm € Zy into a component
E, C S, insuch away that the graph of the diviseyu DU Z,,_1UE,, is linear.
That is, a blown-up point is eithe£,,_1 N D or E,NE,withE;,E CZjy1,
or it is a blow-up of a point ir£,,,_, (this point may happen to be the intersection
E, N M;).PutZ,, =2, UE,.

(b) If E,, , does not intersect any; i = 1,...,s) obtained at a preceding
step, denoté,, , = M, and blow up a pointirZ,,_1\ (E;,, ;\(Z,_1NE;, ,))
to obtain a componert,,, in such a way that the graph &f, = E,, U (L(E)))
(Ei #M;;i=0,...,k—1 j=1.. s+1islinear. FEZ = —1 thenthe
blown-up point should be an intersection Bf, , with the adjacent component
(since all(—1) curves are added at the last step).

Stepk + 1 is the last step. Let;...«, be different points inZ; such that
eacha; belongs to one component only<li < ¢q. Letr;... 7, be blow-ups of
the pointsay ... o into the curvesG; (1 < i < g), respectively, and le§ be
(10720 07y) XSk

The desired surfacg = S\ (FoU D U Zy).
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ReMark. This description of quasihomogeneous surfaces implies, in particular,
that there may be only one singular fiber for a line pepcil

We want to choose the “minimal” way to obtaéhby the described process, that
is, to obtain a goog-closure ofS. For this we want to replacgy = P! x P! by
a minimal ruled surfacg, (see [B]).

In the sequel, for simplicity of notation we will denotg, Ej asZy, E;, since
this cannot lead to confusion.

ProrosiTION 3. The surfaceS 2 C2 obtained by the blow-up process described
previously may be obtained by a similar procesgart with the minimal surface
So = FF,, and end withS such thatEj2 # —Llin S forall E; C Z.

Proof. We prove the proposition by induction on the number of stepdfe start
with the surfacey = F, and show that, by changing we may always eliminate
the (—1) components.

Assume thak = 0. Sincep~Y(z1) C S is singular (recall thas % C?), there
are pointsy; € F; (1 < i < g) that are blown up at the first (and last) step into
the curves;. Thus, inS this fiber has the fornd; + Zﬁjﬁ G; (the multiplicities
are equal to)l, which implies that the fiber is not connected; 1, and(F;)2 =
—q < -1

Assume now that the proposition is true forfalk kq. Let E; be a component
of F} in §;, such thatE2 = —1. There are two possibilities as follows.

(1) E; is aresult of the blow-up;. The points of this component are not blown
up at any later step, since doing so would mmﬁe< —1 Thus,E; may be con-
tracted back and we may obtain surfatby the same process, omitting the step
numberj (i.e., as a complement to zigzag obtained by the blow-up process with
one less step).

(2) E; is a proper transform af;. In this case we may blow it down after step
1 and obtain the same surface by the same process (with one less step), starting
with the surfaceSg = F,,1 0r So = F,,_1.

By the assumption of the induction, it follows that the proposition is true
for kg. O

DerFINITION.  We denote byA the class of all smooth affine surfac8swith
AK(S) = C. Letus denote b C A the subset of those surfaces for whick=
0 in a goodp-closure obtained by the described process.

THEOREM 1. A surfaceS € Aisisomorphic to a hypersurface if and onlysiE H.

Proof. The proof is based on a property of hypersurfaces, which was explained
to the authors by V. Lin and M. Zaidenberg. Although this result is classical, we
could not find a direct reference. We proceed as follows.

LemMma 1. LetX c C" (n > 2) be a smooth hypersurface. Then the canonical
classkK (X) of X is trivial (i.e., the divisor of zeros of a holomorphie — 1)-form
on X is equivalent to zefo
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Proof. By the adjunction formula, the canonical class of a complete intersection

in a projective space is a multiple of the linear section [H, p. 188]. Thus, for an

affine hypersurface, this class is represented by the divisor with support in the
hyperplane section at infinity. O

Let S € AandS # C2. The graph’(S) has the form

or (If eo = Mq)

or (if k = 0)

where the vertices, d, fi, e, eo represent the component%, D, Fy, Ey, Eo,
respectively, and vertex, represents the componefi obtained at the step.

DerINITION.  We say that; < ¢; (E; < E)) if ¢; is on the left ofe; in the graph
['(S). If E; = My, andE; N E; # ¢, then we say thad; < ¢; if ¢; < ¢;.

LEMMA 2. The canonical claspk (Sx)] of S (k > 0) is the class of the divisor
k
K(S0) = aFo—2D — E1+ ) &iE;, 2
i=2
where
o el g <=1 if ¢ <eq; g >0 if ¢ > eq. 3)

Let

i=k
Ff=Ff =) nk
i=0

be the algebraidtotal) transform ofFy in Si. If Eq # M4, then
g <n;—1 if ¢, <eg; g >n; if e > eq; n=ng=1 4)
If Eo = M, then

g <n;—1 if ¢, <eo; g >0 if ¢ >ep (i #0); 4
np = 2, Ex = 0. ( )
Proof. We prove first inequalities (3) by induction én
The canonical class df, is [«Fo — 2D] [B, Prop.111.18]. Consider the first
step: the fibe; C F, is blown up into two rational curveB; = F; + E. Both
curves have self-intersectiorl. Two cases are possible.

Case 1: N D =@, EN D # #. According to the formula for the canonical
class of a blow-up [H, Chap.V, Prop. 3.3], the canonical divisor
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K(Sp) = of(K(F,) + E
=aFy—2D —2E + E =aFy—2Dg— E.
In this case we denoté = E; andF; = Eo.
Case 2: 1N D # (¥, EN D = §. Then the canonical divisor
K(S1) = o{(K(F,) + E
=aFy—2D+E = (a+1)Fy—2D — F,

sinceFy = E + F. In this case we denoté = Eg andFy = E;. Thus, fork =
1 the formula is proved.

If Eq = M1, we check the second step. We haye> ¢;, ¢1 = —1, ¢, = 0,
andeg = 0.

Assume now that (2) and (3) are proved foriak kq:

ko—1
K(S‘kofl) = O[ﬁo - 2D — E1+ Z & E;.
i=2
Then

K(Sky) = 07, (K(Sko-1) + Exq
ko—1
=aFg—2D — Ei+ Y &E; + eryEx,.
=2

Consider the following cases.

(1) At stepko we blow up a pointwy, that belongs only to the componefi
and is represented by the vertex on the far right (maximal) or next to max-
imal (if we decide that the maximal one will ;). In this caseg; is on
the right ofe;. By the induction assumption we hage > 0, andg,, =
(e, +1 > 0.

(1) At stepkg we blow up the meeting point; N E,/, wheree, < e, < e3.
Theng, < -1 ey < -1 andg, =, +ey +1<-1-14+1< -1

(1) At stepko we blow up the meeting poirfi; N E;/, wheree, > ey > e (it
may be thak, > e; andE, = M;). Theng, > 0, ey > —1, andg, =
& +egy+1>-1+1>0.

(IV) At step ko we blow up the meeting poirff; N D. Thene, < e; ande;, =
&6 —-241<-1-1<-1

Since the grapl'(S) is linear, we have exhausted all the possibilities.

Now let us prove the inequalities (4) andy4Fork = 1we haveF} = E1+ Eg
andK (81) = aFy — 2D — Ey; thereforeg; < ny— 1. In caseEg = M;, we check
k = 2: this yieldse; < e, 2 = 0, andny = 2.

We prove (4) for any by induction. Assume that it is proved for @&ll< k.
Then inS;, we have
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i=ko—1
Ffo=op (Ff*™N = > miE; + nigEx.
i=0
wheren,, = n, + n, if E;, appears as a blow-up of the intersectionn E, and
wheren,, = n; if Ey, is the result of a blow-up of eithdd N E, or of a point of
the maximal (or adjacent) componédit only.
Using the inequalities (4) far < ko, we obtain the following relations:

N, = Ny < & < & + 1= g, if E;isthe maximal (or adjacent) component
ands # 0;

nk0=n0=1§ 1=8k0 if E; = Eo;

g =ns+n, <& +¢& <& +e +1l=¢g,ifeg <e; <e

R =no+n =14+n, <0+ +1l=¢g,ifeo=¢; <e;

N =ns+no=14+n;>14+e+1=¢g,+1life, <e, =eg;

N =ns+n,>¢e+1+e +1=¢g,+1life, <e < eo;

gy =Ny > & + 1=, + 2 > g, + 1if E, is the minimal component.

Assume now thaEqg = M;. SinceE, < M for all s, the inequalities (4) still
hold fore; < e, (the process is the same in this interval). Any comporgnt-
E,, s # 0, is obtained fromE;, by sequence of blow-ups. Sineg= 0 and since
we add positive integer each time, we can obtain only positive valueg foence,
this part of (4) is evident. O

LEmMA 3. Denote the transform afy in S by

Fif =Ff= Y nik +Zg,G +ZmM,,

E,CZy

where sums includ@espectively all the component&; C Z;, G;, and M; and
wheren; =1, g; > 0, n; > 0, andm; > 0.

Then[K (S)] = 0if and only if the divisork (S) is equivalent to a linear com-
bination

i=q i=t
5 wiki+ fho+db+m( a6+ Ymon) ©

E;CZy i=1 i=1

for somen € Z.
Proof.

K(S)

K(S)*+) G
k q
=afgp—2D - E1+ Y _&Ei+ ) 8G;, (6)
i=1 i=1

whered; = g, + 1 for eachG; intersectingE; and where alli/; are included in
the first sum.

If [ K(S)] = 0, thenK(S) is the divisor of a rational functioh that has zeros
and poles irS only along components; andM,;. But theni does not vanish and
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has no poles in any fibdr,, z # z1. Since general fiber is isomorphic@ it fol-
lows that# is constant along each fiber, thatigs) = (p(s) — z1)™. But then
8; = mg; ande; = mm;. O

DeFINITION.  We call componenE; essentialf there is a componer@;, of the
fiber F;* C S suchthatG; N E, # .

ReEMARK. We see from Lemma 3 thak[(S)] = O impliese; + 1 = mn, for any
essential componeifi,. At least one essential component should exist, since the
fiber contains at least orie-1) curve.

LemMma 4. If k > 0, then[K(S)] # 0.
Proof. Consider the graph

e e e e
f d e e1 en

Assume thatK(S)] = O; that is,e; + 1 = mn, for an essential component and
mm; = ¢;. Several cases are possible regarding the place of essential components
in the graph.
(1) Eo # M, and there is an essential componénptsuch that,; > eq. Then,
according to Lemma 2, < g, +1=mn, and son > 1
(I Eq # M, and there is an essential componé&Rtsuch thate; < e¢; < ep.
Then, according to Lemma 2,, > ¢ +1 = mny; > 0 and hence
m > 0.
(1) Eqo # M, and there is an essential componéntsuch that, < e;. Then,
accordingto Lemma 2, & &, + 1= mn; andm < 0.
(IV) Eg = Mj; sincegg = 0, it follows thatm = 0.
We may thus have only one of these cases.
Let us assume that < e; for any essential componeht, and thatEg # M.
Letro = max{t : ¢, > ey, t > 0}. By construction,(E,é)2 = —1in 8 (itis
the result of a blow-up). Hence it should contain a point that is blown up at the
last(k + 1) step. But therEté is essential, which is impossible in this case (since
e1 < eté).
The case; > ¢g, Eg # M1, for all essential components can be treated analo-
gously, since the last component to the leftgfalso must be essential.
Case(ll) is impossible, since: € Z. In case (IV),n = 0 and thug, = —1 for
any essential componeAt. By Lemma 2, there is only one such compongnt
ButthenZ, = E;U E; andE3 = —1, which is impossible.
Therefore, (5) can be true only if the graph has three components:

7 d A
LemMma 5. If k = 0, thenS is a hypersurface.

Proof. Let p: § — C be a line pencil inS, let p be its extension to a good
p-closureS of S, and letp, andd, be the corresponding *-action and LND re-
spectively. Leto~1(0) be the only singular fiber. All the multiplicities are 1 in this
case, so the fiber cannot be connected.iletO(S) be a function such that:
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(1) dpu = p™;
(2) u is alinear function along each fibpri(z), z # 0; and
(3) u = u; = const along each compone@it of p~%(0),i =1,...,q.

Such a function exists, by Proposition 1. We will show that we can cheose
such that; # u; wheni # j and such that the rational extensiomf « to S is
finite and nonconstant alonky. Indeed,u is linear along a general fiber, which
means that the intersectigty,,, F.) = 1 for the closure of a general level curve
U, = {s € S : u(s) = w} and the closure”, of a general fibel, = {s € S :
p(s) = z}.

There are three possibilities, as follows.

l.ii|f, = uo € C anduo # uy = itlg,. Then the intersectioy N F1 = oy
is a singular point, and a general level curve passes threughnother singular
pointa; = DN F1, sinceii|p = co. Thus, a general level curvé, must pass
througha, as well. But this contradictd/,,, F.) = 1.

Thus,ﬁ|ﬁ1 =ug e Cimpliesug = uy = up = --- = u,, and we can consider
a new function(u — ug)/p instead ofu (becauser;* = F + > G;,ie,phasa
simple zero along each component).

Il. & has a pole anngﬁ. Then each point; = F1NG; (i =1, ..., ¢q) should
be a singular point ai, andU,, should pass through eaah. From(U,,, F.) =1
it follows that there is only one compone@t, and the fibep~%(0) is connected
in this case.

ThenS ~ C2 (see e.g. [S]) and is evidently |somorph|c to a hypersurface.

Il. & is not constant ann@l BecauseU,,, F1) = 1 for a general, it takes
every value only once alonf;. FromG; N G; = 0, it follows thatu; # u; for
iZjandi,j=1...,s

Now consider a polynomigb(u) = (u — u1)... (u — uy) andv = p()/p.
Sincei is finite alongFy, ¥ is regular and finite at all points ¢fand has a simple
pole alongFy.

Let A; = H; + G; be the divisoli = u;. Since(U,,, F1) = 1for a general,
we have(A;, F1) = 1and(H;, F1) = (A}, F1) — (G;, F1) = 0. Thus, F; does not
intersect zeros of function. In particular, the intersection points = G N Fy
are not singular fod; the restrlct|orv|G has simple poles isy and is Ilnear along
eachG;,i =1, ..., ¢4 (i.e., ittakes every valuge P! at precisely one point af;).

The restriction ofv on S we denote by, v € O(S). We define a regular map
¢: S — C3asg(s) = (p(s), v(s), u(s)). We want to show thap is an isomor-
phism of S onto a hypersurface

' ={(x,y,1)€C3| xy = p(r)} c C3.

(A) ¢ is an embedding. Indeed, the functionsandu divide points in(S \
(LU G:)). sincep divides fibers of a line pencil and is linear along each fiber
pHz), z #0.

The valuest|s, = u; provide the distinction between the compone@isof
%0, sinceu; # u; wheni # j. The functionv is linear along eacl¥;, so its
values are different in the different points of each
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(B) ¢ is onto. Lets’ € §" ands’ = (x/,y’,t'). If x" # 0, then in the fiber
o Y(x") there is a point such thals) = ¢'. (Indeed, o 1(x") = C andul ,-1,) Is
linear.) Now,v(s) = p(u)/p = p(t’)/x' =y, SO¢p(s) = s'.

If x" =0, thenp(r’) = 0 and s = u; for some 1< j < g. The functionv
is linear along the componedt;, so there is a poing € G; such thaw(s) = y’.
Theng(s) = (0, y",u;) = (0,y’,t") =" O

Proof of Theorem 1 (cont.Any surfaceS € H is a hypersurface by Lemma 5. If
SeAbutS ¢ H, then (by Lemma 4)K(S)] # 0 and (by Lemma 1§ cannot be
isomorphic to a hypersurface. O

An example of a surfacg € A \ H was given in Section 1§ ¢ C*is defined by
the system of equations

xy = (22 =1z,
zu = (y* =Dy,
xu = (y> =1 (% -1).
We will show that this surface is not isomorphic to a hypersurface. On the other
hand, there are two locally nilpotent derivations defined in the @G§), namely:
d1x =0,
1z = x2,
d1y = (3z2° — Dx,
du = 2z(y%2 — Dx + 2y(z? — (3% - 1);
dou =0,
d2y = u?,
32z = (3y* = Du,
d2x = 2y(z® = Du + 2z(y* = D(3y* - D).
It follows that AK(S) = C.

CorOLLARY To LEMMA 1. The surface§ ¢ C* defined by equations
xy = (22 — Dz,
= (y* =Dy,
xu=(y*=D* -1
is not isomorphic to a hypersurface.
Proof. Consider the 2-formw = (dx A dz)/x. Itis regular in the Zariski open
subsetVy = {(x, y,z,u) € S | x # 0}, where(x, z) are the local coordinates.
The fiber{x = 0} consists of four components:
Gi={x=0,z=1}, Gy ={x=0,z=-1},
G3={x=0,z=0,y=1}, G4={x=0,z=0,y=-1}.
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We consider the respective Zariski open neighborhdadd/,, Us, U, of these
components as follows:

U= {(x,y,z,u) €S|z #0, z # —1} with local coordinateg; = (z — 1)/x
andy = x;

Uy ={(x,y,z,u) €S | z #0, z # 1} with local coordinateg, = (z +1)/x
andy, = x;

Us={(x,y,z,u)eS |22 #1, y #0, y # —1} with local coordinategs =
(y —D/zandys = z;

Us = {(x,y,z,u) eS| z2 # 1 y # 0, y # 1} with local coordinateg, =
(y+1D/zandyy = z.

Rewritingw in these coordinates, we obtain:

dx ANdz .
w = in Uy,
X
w=dyn Adey in Uy,
w=dy ANdy; in Us,
dpsNd .
o= _ YsdpzAdys in U,
w33 +1
dpsnd .
w = _w N U4.
Qaysa—1

Sincepsyz +1=y # 0inUs andgas — 1 = y # 0 in Uy, this form is holo-
morphic everywhere o§. However,w|s, = w|g, = 0 and the divisolw) =
G3+ G4is not equivalent to zero af, by Lemma 3. Therefore, by Lemma 1, the
surfaceS cannot be isomorphic to a hypersurface. O

4. Corollaries for Cylinders and C*-Actions

THEOREM 2. LetS; andS, be smooth affine surfaces such that + and S,
A\ H. ThenS; x CK % §, x C* for anyk e N.

Proof. Assume, to the contrary, th&tf x C* ~ S, x CFk = W.

SinceS; € H, by Theorem 1 it is isomorphic to a hypersurfage- C3, and
W ~ § x Ckis a hypersurface it**3 as well. Hence the canonical classe$tof
andS, are trivial. But then, by Lemma 3 is a hypersurface and, owing to The-
orem1,S, e H. OJ

TueoreM 3. A surfaceS € A admits a fixed-poin€ T-action with all the fibers
reduced if and only if € H.

Proof. Let S € A and letg, be a fixed-point—fre€ *-action. Letp be a corre-

sponding line pencil and lgt~%(0) consist of; componentsy, ..., G,. Consider

another surfacé, = {xy = (z — 1 ... (z — ¢)} € C3. This surface is smooth,
affine, and has tw@ *-actions:
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z4+rx—=D...(z+rx —q)
x

<P,?(X,y,Z)=<X, ,z+kx>;

Z+ry—=D...(z+ry—¢q)
y

Thus, S, € A. The actionsp} and goyA have no fixed points, because the corre-
sponding LNDs,

wf(x,y,z)=< ,y,z—l-)»y).

0y : 8x(x) =0, 8x(Z) =X, ax(y) = P/(Z)
and

ay . ay(y) =0, 3y(Z) =Y ay(x) = P/(Z),
never vanish.

The fibers of the line pencp, in S, corresponding t@, are the curvegx =
const. All of them are connected except the fibee= 0, which hasg connected
components. The fibers of the line peneih S have precisely the same structure.

By the theorem of Daniliewski and Fieseler [D; F], the cylind§rs C ~
S, x C. ButS, is a hypersurface and 8§ € H, by Theorem 1. By Theorem 2, we
also haves € H. Therefore, ifS admits a fixed-point—fre€ *-action thenS € H.

Now assume thaf € H. As shown in Lemma 5§ is isomorphic to the surface

S' ={(x,y,2)€C3|xy = p(t)} c C3.

SincesS is smooth, all the roots, ..., ¢, of p(¢) are simple. That is why the LND
0, defined as
0:0(x) =0, 3(t) =x, 3(y) = p'(t),

does not vanish of’. But then theC *-action defined by has no fixed points.

O
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