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Explicit Solutions to the
H-Surface Equation on Tori

HeNrRY C. WENTE

|. Introduction

A twice continuously differentiable mapfrom Q c R? into R? is a solution to
the H-surface equation if

Ax = 2H(x, A x,) ONnS2. D

HereAx = x,, + X, is the standard Laplacian @7 and the wedge symbol de-
notes the usual cross product. We represent points ity («, v) or sometimes
w = u + iv; points in the target space are representes by(x, y, z) € R>.

Itis important to observe that solutions to (1) remain solutions after a conformal
change of coordinates. Thus it makes sense to consider solutionsfeghegace
equations on a Riemann surface. This may be seen as follows. We set the Dirichlet
integral to be

D(x) = // (Ixul? + [x01?) du dv )
Q
and the oriented volume functional to be
V(x) = E// X - (x4 A Xy)dudv. €)
3/Ja

Observe thaD (x) is invariant under a conformal change of coordinates and that
V(x) is a parametric integral invariant under any smooth change of coordinates.
Solutions to (1) are extremals of ti&-functional

Ey(x) = D(x) + 4HV (x). (4)
To any solution of (1) is attached the Hopf differential
(X * Xp)dw? = F(w)dw?. (5)

This is a holomorphic quadradic differentid; = 0) and in local coordinates
F(w) = (|x,]° = |x,|%) — 2i(x, - x,). A solutionx (u, v) of (1) represents a sur-
face of constant mean curvature (cmc surface) only whet) = 0. Solutions of
the H-surface equation have the same relationship to cmc surfaces as harmonic
maps to minimal surfaces.

Inan earlier paper [6] and also more recently [7], the author took up the question
of solutions to (1) on annular domains that vanish on the boundary. By confor-
mal invariance one may assume that the domain is a standard annulus bounded

Received November 20, 2000. Revision received April 6, 2001.

501



502 HeENRY C. WENTE

by two concentric circles centered at the origin. We looked for rotationally sym-
metric solutions. Pulling back to the universal cover by the exponential map, we
search for solutions to (1) defined on the vertical sttip= {(u,v) | —a <u <

a} with x(u, v + 27) = x(u, v) such thatc (u, v) vanishes oMA. The regionA,
conformally covers the annulus

Qs={w|l/A < |w| < A}, A=c¢e".

Upon trying solutions of the form

x(u,v) = (f(u)cosv, f(u)sinv, g(u)) (6)

we find that the differential equation (1) becomes
"= f = —2Hfg, (7a)
g" = 2Hff". (7b)

We focus on the casH # 0 and so may rescale by settifig= —1. One inte-
gration of (7b) giveg’ = Hf? + ¢ for some constant. Substitute this into (7a)
with H = —1 and we obtain

f' = @A+20f +2f3=0. (8)

After one more integration we arrive at
[P=@+20f2+ f*=T, (9a)
g =—f3+c (9b)

Equation (9a) may be thought of as a 1-dimensional dynamical system with po-
tential energyW(f) = —(1+ 2¢) f2 + 4 and can be solved by quadratures (see
Figure 1). In earlier work we anayzed the situation when the total erflénggs
positive. In this case we chogepositive so thaW (L) = I" and produced the so-
lution f(u) to (9a), wheref (u) is even inu with f(0) = L and f'(0) = 0 and
where f(u) is positive on the interval-a < u < a with f(—a) = f(a) = 0.

Here the period is given by

/2 do
/0 V=@ + 2¢) + L2(1 + sire6)

One then obtaing(«) by integrating (9b). We choosg0) = 0 so thatg(u) is
an odd function ofi. One wantg;(a) = 0 as well. Clearly the constanimust be
positive, and the conditiop(a) = 0 becomes

®(L,c)=cP(L,c)—I(L,c) =0, (11a)

a=P(L,c)= (10)

7/2 L?sir? 0 do
0o =@+ 2c) + L2(1+sirP0)
At this point we observe that the Hopf differenti&{w) given by (5) becomes
Fw)=f?+g%— f?=T+c? 12)

(making use of system (9)); hence[lfis positive then the immersion fails to be
conformal.

I(L,c)= (11b)



Explicit Solutions to théd-Surface Equation on Tori 503

w
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Figure 1 The Dirichlet Problem

Equations (11) determine a smooth 1-parameter family of soluticasc(L).
The pair(L, ¢(L)) approachesl, 0), and in this limit the conformal parameter
a = P(L, ¢) approaches-oo and equation (9a) becom¢g& — 2+ f* = 0. We
end up with the Mercator representation of the round sphere{yiih), g(u)) =
(sechu, —tanhu). At the other extreme we hav&(L, ¢) — 0, so that the confor-
mal type is a thin annulus. See [7] for a detailed discussion.

In Section Il we continue our study of the system (9) and observe that, by set-
ting I" to be negative, the possibility of immersed tori of rectangular conformal
type appears if one assumes- —1/2. We analyze the situation completely.



504 HeENRY C. WENTE

In Section 11l we consider immersed solutions of (1) on tori of nonrectangu-
lar conformal type. We give a variational argument to show that a solution of any
conformal type must exist and then exhibit the solutions explicitly using the Weier-
strassP-function.

At this point we note that those solutions to (1) defined on the anrjuthat
are vanishing on the boundary can be extended to maj en{0} by repeated
odd reflection. We have at hand already nontrivial solutions to (1) defined on any
rectangular torus. Other (trivial) solutions on any torus can be constructed using
the Weierstras®-function, which gives a double cover §f from a torus of any
conformal type when we identify the complex plane with via stereographic
projection.

Recently Yuxin Ge [1] produced solutions to thesurface equation on certain
Riemann surfaces by solving an appropriate variational problem2LetR? be
a multiply connected domain bounded by circles that contains a “thick enough”
annulus. Ge shows the existence of solutions tdHk&urface equation of? such
that onoQ2 we havez; = x, = y, = 0, wherex,, y, are the normal derivatives
of x, y alonga2. By reflection he obtains solutions to (1) on a Riemann surface.
Presumably, if the Riemann surface is a rectangular torus then his solutions would
agree with those we construct in Section Il. Also, there has been an interesting
paper by Koh [3] wherein is suggested an approach to obtaining solutions to the
H-surface equation on tori using saddle-point techniques. The analysis is still
incomplete.

Still open is the existence of nontrivial solutions to tesurface equation with
zero boundry data on any multiply connected domain or on any Riemann surface.
A discussion of this may be found in Struwe [5].

I1. The Construction for Rectangular Tori

First we state an existence theorem for solutions tadhsurface equation on any
torus of rectangular conformal type. Such a torTjs,can be represented in the
form R?/G,, whereG, is the discrete lattice consisting of all poiri&na, 27rn)
wherea is positive andm, n) € Z,. A fundamental domain fof, is then

As={u,v)| —a<u<a, 0<v <27} 13)

We consider vector functions on the Sobolev spBg€éT,) with square inte-
grable first derivatives and denote W (7,) the subspace 6#1(7,) consisting of
rotationally symmetric functions having the form (6). For such functions we have

/ Ix?dudv =27 | (f2+g?du, (14a)
T, —a

D(x) =27 a(f’Z +8¢%2+ fAdu. (14b)

It follows that the spac®;(T,) can be identified with pairs of functiorg, g),
each inWy([—a, a]), that have continuous periodic extensionstavith period
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2a. Note thatif f, g € Wi([—a, a]) then, g are absolutely continuous and so the
conditionsf(—a) = f(a) andg(—a) = g(a) are meaningful.

Furthermore, forx (1, v) = (f(u) cosv, f(u)sinv, g(u)) in Wi(T,), the Di-
richlet integralD(x) is given by (14b) and the volume function@(x) becomes

Vx) =27 | ffledu=—m | f? du. (15)
—a —a

THEOREM 2.1. Consider the set of functiony, g) € Wi([—a, a]) also satis-
fying f(—a) = f(a), g(—a) = g(a), and [* gu)du = 0. In this class of
functions that also satisfy the volume constrdifitt) = 1, there exists a mini-
mizerxo(u, v) = (fo(u) cosv, fo(u) Sinv, go(u)) of the Dirichlet integralD (x).
The pair ( fo, go) Will be solutions to the syste(i) for some constant/ and so
xo(u, v) is a solution to theH -surface equation on the tords.

Proof. Let ( f,,, g,) be a minimizing sequence. The boundedness of the Dirichlet
integral along with the conditio_rﬁfa gw) du = 0 implies that there is a subse-
guence inWy([—a, a]) converging weakly to a limit functionfo, go). The se-
quence(f,, g,) is an equicontinuous family and so a subsequence (relabeled)
converges uniformly t@ fo, go), Which satisfies the periodicity condition and de-
termines a candidatey(u, v) in Wi (7,). We need only check thaf(xq) = L
However, the fact that, (u, v) converges weakly and uniformly i@ (u«, v) is suf-
ficient to guarantee this. O

The proof of Theorem 2.1 is similar to a result of Patnaik’s, who proved in [4] an
existence theorem for rotationally symmetficsurfaces of annular type whose
boundary is a pair of coaxial circles. In this case the minimizers are conformal
cmc surfaces.

Observe that folr = 0 the system (7) giveg” — f = 0 and sof(«) can-
not be periodic unlesg(x) = 0. The minimizer of Theorem 2.1 hd$ # 0. By
rescaling we may sl = —1.

We move on to (9b) and consider the grapiiaff) = —(1+2¢) f2+ 4. We
assume thatt2c is positive. The graph has alocal maximuni@tO) and a globall
minimum at,/(1+ 2¢)/2 and is increasing fof > /(1+ 2c¢)/2. It follows that,
for any choice of” with —(1+4 2¢)%/4 < T’ < 0, there is a periodic solutiofi(u)
to (9a) of total period 2 oscillating between a maximufy, with /(1 + 2¢)/2 <

fu < V14 2c and a minimumf,, lying between 0 and/(1+ 2¢)/2 (see Fig-
ure 2). Having picked such ahwith f(0) = f and f(£a) = f,,, we integrate
(9b) to findg (1) where we may set(0) = 0.

We wantg(u) to be periodic as well. This will happengfia) = 0. Note that
g0 =c— f2 <c— (¥Z) = —1/2 < 0 (see Figure 3).

An integration of (9a) gives an inverse representatioyi@f,

m df

Fo T =W(f)

so that the period 2is determined by

u =

(16)
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Figure 2 The Torus Case
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Graph of g(u) when
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Figure 3
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fm df
a=P(,T)= —_ A7)
the expression fong = g(a) — g(0) is
¢ Mo(c— fAHdf
Ag =f (c— fAdu= — (18)
0 fm VT = W)

Our goals are to determirie, I') so thatAg = 0 and to estimaté#®(c, I').
These integrals can be simplified. The valygs fi, are roots of the equations
I'—W(f) =T+ @A+ 2c)f2 - f*=0. Upon solving forf? we find that

fZu=BEA, (19)

whereB = (1+2¢)/2 and 0< A < B is obtained by setting? = I" + B2. Make
the change of variabl¢? = Ax + B and find

fm X
_ = , F?=AX+B. (20
u / W 2/X vy N (20)

The period then becomes

11 dx
= P(B, A 21
. ( )= /1«/Ax+ BJ1—x2 (21)

It is convenient to set

fm 2
1B A) _frf / «/Ax+de’ 22)
T —W() JV1=x2
which leads to
Ag = ®(B, A) = cP(B, A) — I(B, A)
1 1 b (Ax +1/2)dx
—Z|P(B,A) —I(B,A 23
( ) BO—AED==5 | Treiae D

The equationd (B, A) = 0 determines the solutions to tli&-system equation
on rectangular tori. We are led to the following result.

THEOREM 2.2. The equationd(B, A) = 0 from (23) with B = ¢ + 1/2 and
A2 =T + B? (0 < A < B) determinesA as a function o3, A = A(B), defined
for B > 1/2 with1/2 < A(B) < B. As B approached/?2 the pair (B, A(B))
approacheq1/2,1/2), corresponding to the case= I' = 0. In this limit the
toral solutions converge tof (1), g(u)) = (sechu, —tanhu), which is the Mer-
cator representation of the unit sphere witl+—oo, v) = (0, 0,1) = north pole
andx(+o0, v) = (0, 0, —1) = south pole Also, asB approached/2 the period
a = P(B, A(B)) approachest-co. AsB — 400, A(B) also becomes infinite and
lim P(B, A(B)) = 0.
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The family of toral solutions ranges over all conformal types. All of the solutions
have H = —1. Denote byxp the solution corresponding to the paiB, A(B)).
We havdim D(xg) = 87 asB — 1/2 andlim D(xp) = oo as B becomes infi-
nite. If we rescale by settings = 73 x5, wherer is chosen so tha¥ (yg) = 1,
thenlim D(yg) = 87 asB — 1/2 andlim D(yg) = oo as B becomes infinite
(see Figure 4).

A4 B~ AY2

(torus solutions)

B = A — } (Delauney)

Y

(3. 3) (round sphere)

=Y

|
|
|
|
|
|
|
1
2
Figure 4

Finally, the generating curve for(u, v) given by( f(u), g(u)) with —a < u <
a is an embedded curve with(u) > 0, so that the corresponding immersed sur-
face is embedded. These surfaces are never conformal.

Proof. The proof follows from a sequence of assertions involving the integrals
(21)—(23).

1. ForA < 1/2 we haveAx +1/2 > 0 forx € [-1,1] and so®(B, A) < 0
using (23).

2. ForA = 1/2, ®(B, A) is still negative and fod = B = 1/2 we have
®(1/2,1/2) = —1. Otherwise,® (B, B) = +oo whenB > 1/2 and equals-oo
forO< B <1/2.

3. ®(B,0) = —/2/B < 0 and so, for every > 1/2, there existsA(B) with
®(B, A(B)) =0.

4. We have

Tox dx 1/1 (B —1/2)xdx (24)

-1
®A(B, A) = —/ - = .
A 4 J1VAx+BV1—x2 4J)4(Ax+ B)¥2/1—x2
Consequently, iB > 1/2 and O< A < B then we see thab,(B, A) is positive.

Thus the equatio® (B, A) = 0 determinesA = A(B) defined forB > 1/2 with
1/2 < A(B) < B,and limA(B) =1/2asB — 1/2.



Explicit Solutions to théd-Surface Equation on Tori 509

5. liMmp_ 400 VB® (B, A) = —/4 for any fixedA because
B [t (Ax+1/2
¢§¢(3,A)=_§/ (Ax +1/2)) dx

_1+/Ax + By/1—x2
1 d
o £ __T (25
4)1V1-x2 4
It follows that limg_, ; o A(B) = +00.
6. LetB = kA wherek > 1. We have
P(kA,A) 1 1
im 2¢A 4 _ o xdx (26)
A—+o00 \/Z 4/x+ 4/1 x

It follows that, for anyx (0 < A < 1), we have O< A(B) < AB for B sufficiently
large. Observe that(B) has sublinear growth.

7. We now estimate the peria®l(B, A(B)). Since® (B, A(B)) = 0 we may
use (23) to writeP(B, A(B)) = I(B, A(B))/(B —1/2). However,

1 (*VA+Bdx B [* dx 7B
I(B, A(B — —_— < — = —. 27
wasn <5 [ = <G A= @
Thus, B
b/ B
P(B, A(B _—— 28
(. AB) < - (28)

which shows that the limit oP(B, A(B)) = 0 asB — +oo. We already know
lim P(B, A(B)) = P(1/2,1/2) = +o00 asB — 1/2. Our immersed tori range
over all conformal types.

8. Letxp be the immersion corresponding to the pair A(B)). We claim that
lim D(xp) = 4+o00 asB becomes infinite.

Start now with the formula foPb (x) given by (14b); making use of the identities
in system (9), one findg'? + g2 + f2 = (I" + ¢?) + 2f2. This leads to

D(xg) = 4n (T + c?)P + 87, (29)
whereP and! are the integrals (21) and (22). Now ube= cP — I = 0 to obtain
D(xp) = 47 [T + c% + 2¢] P(B, A(B)); (30)

since—((14+2¢)/2)? < T < Qitfollows thatl +c?4-2¢ > —(c+1/2)°4+c?+2c =
¢—1/4= B — 3/4. We have
A (B — 3/4)1(B, (A(B))

D(xp) > 4n(B — 3/4)P(B, A(B)) = B-1/2 (3D
However,
VAx +Bdx 1 ' Bdx _n\/ﬁ
oy =3 [ LIS [ = @
We finally get
D(xg) > 47 (B —3/4) 7B ’ (33)

(B-1/2) 4
showing thatD(xp) — +o0 asB becomes infinite.
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SinceH = —1 we haveD(xg) + 6HV(xp) = D(xp) — 6V(xp) = 0. We
now setyg = tzxp, whererg > 0 is chosen so that(yg) = th(xB) =1
we findz3 = 6/D(xp). This leads to the identitp(yz) = 6%3D(x5)¥3 and so
lim D(yp) = +o00 asB — +oo as well.

Observe next that, aB approaches /P, the pair (B, A(B)) must approach
(1/2,1/2). SinceB = (1+ 2¢)/2 andl’ = A? — B?, we see thal’ < 0 and the
pair (¢, I') approaches0, 0). It follows from (21) that the period = P(B, A)
becomes infinite while the generating paji(u), g(u)) converges to the solution
of system (9) withc = I' = 0. Thatis, /2 — f?2+ f% = 0 andg’ = — f? with
initial conditions f(0) =1, f'(0) = 0, g(0) = 0, andg’(0) = —1. We find that
(f(u), g(u)) = (sechu, —tanhu), which gives the Mercator representation of the
unit sphere.

Finally, we claim that the generating curyg(u), g(u)) for any one of these
tori is a simple closed curve. For8 u < a, we have thatf(u) is strictly de-
creasing fromfy, to f,, > 0 while g(u) is negative for O< u < a with g(0) =
g(a) = 0. This assertion is clear (see Figure 5). The immersed suxfage v)
is also embedded. O

& A
the limit unit circle

Vad (Fw). gw)

/Z/

fn u W f

Figure 5 The Generating Curves for Tori

Our family of toroidal H-surfaces converges to a round spher@as 1/2 with

the north pole at0, 0, 1) and south pole a0, 0, —1). The toral surfaces resem-

ble a sphere from which two small disks near the poles have been removed and a
narrow tube inserted, connecting the two holes. In this limit the conformal type
hasa = P(B, A) — +o00. We now investigate the shape of the tofalsurfaces
when B becomes infinite. We have the following lemma.

LemMmA 2.1. Let(B,, A,) beasequence with, — +ooandsuch thaB,,/AEl —
L >0(.e,B, =A% + A,, whereA,/A2 — 0). Consider the corresponding
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pair of functions( f,,, g,) solving systenf9) when restricted to the intervata <
u < a, so that the curve will not close up unle®$B,,, A,) = 0. Asymptotically,
the pair of functions will satisfy the identity

(fu = VAAL) + g2 =1/40. (34)

The generating curves describe a round circle with celﬁ{éKA,,, 0) and radius

1/2V/A.

Proof. We refer to equations (20)—(23), where we made the change of variable
f? = Ax+ B or F2 = AX + B with the functionX (1) determined by (20). From
(23) one may expressin terms ofX by
=1 (Y (Ax+1/2)dx
8772 x vAx + BJ1—x2

Now letA = A, with B, = AAfl + A,, so that in the limit we find
4rg? =1- X2 (36)
Solving for f in terms ofX leads to

— A2 A2
X:%(fZ—B)z(f A +A3§f+\/)» +A). @a7)

SinceB, = AA2 + A, and since by (20) we havB — A < f2 < B+ A, it
follows that lim(f, + /AAZ + A, )/A, = 2/&; this shows that

-l<X <1 (35)

X240 = (fu(X) = VAA,). (38)

This, along with (36), leads to
(fu — VAA) + g2 = 1/40. (39)
O

We now have the following result.

THEOREM 2.3. Consider the family of toroidaH-surfaces(H = —1) deter-
mined by the conditiod® (B, A) = 0. We claim thatim B/A%>(B) = A = 1/2 as

B becomes infinite. It follows that the generating curve for the immersed torus is
asymptotically the round circle

(f —VB)Y + g% =1/2 (40)
with center(v/B, 0) and radiusl//2.
Proof. The proof is based on the following estimate. Bet= 1 A% with ® (B, A)
given by (23). We claim
aA-20)r
8132

Fromthis it follows that ifA = A(B) is determined byb (B, A) = 0 thenB/A? —
A =1/2 and so the theorem follows from Lemma 2.1.

lim ADP(LA% A) = (41)
A—o00
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We can writed (L A2, A) as the sum
D(LA%, A)
=h+1

1t x dx 1 [t dx
_1 / = / . (42
2J 0 r+ (x/AVI=x2  4A J 1 /) + (x/A)V1—x2
From the binomial expansion we have

1 X
172 _ _ 2
A + (x/A)) = _ﬁ [1 A + 01/A )]. (43)
This leads to
1 1 x24x 2
"= gz /_l i PO a2
1 T ax
Ih=— + 0(1/A?), 44b
? 4JXA/_1 T W (440)
giving us
2 __ T _ 2
(LA A) = —8A,\3/2(1 21) + O(1/A?). (42

REMARKs. Another special class of surfaces contained in the family are the De-
launey surfaces. These occur exactly when the immersion is conformal and is
determined by the conditioRl + ¢? = 0 from (12). From the identitied? =
I' + B? andB = ¢ + 1/2 this condition can be rewritten &€ = B — 1/4, so the
factorr = 1. From Lemma 2.1, the limit curves are circles — JE)Z +g2 =
1/4 with radiusr = 1/2 as it should be.

Sincerl™ + ¢2 = 0 we must havé < 0. Now —(1+ 2¢)%/4 = —(c +1/2)2 =
—c?—c¢—1/4 < T = —c? < 0, which can only happen f > —1/4. We find:

¢ = -1/4, the cylinderf(u) =1/2;
—1/4 < ¢ < 0, unduloids;
¢ =T =0, theunitsphere;
¢ > 0, nodoids.
Finally, our family of surfaces also includes surfaces of revolution with Gauss
curvatureK = —1. For some members of the family this will occur precisely
when f'(a) = g’(a) = 0, so that the generating curve will contain a cusp. This

will occur whenf,, = \/c, leadingtoB — A = f2 = ¢ = B —1/2 and hence
A =1/2. Thisis equivalenttd” + c(c +1) = 0.

1. Immersions of Nonrectangular Type

Suppose the-surface of revolution about theaxis has a generating function
(x(u), y(u), z(n)), not necessarily a planar curve. The surface representation then
takes the form
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x(u, v) = (x(u) cosv — y(u) sinv, x(u) Sinv + y(u) cosv, z(u)). (46)
The immersion will have period@a, 2b) and(0, 27) when

x(u+ 2a)cosd — y(u + 2a)sin2b = x(u), (47a)

y(u+2a)sin2b + y(u + 2a) cos b = y(u). (47b)

The vector functionx (u, v) in (44) will be a solution to theéd -surface equation
@) if

x" —x =2H(—x7'), (48a)
y'—y=2H(-yz"), (48b)
7" =2H(xx"+yy"). (48¢)
An integration of (48c) gives’' = ¢ + H(x? + y?), leading to the system
x"=@A—2cH)x —2H?*(x%+ y?)x, (49a)
y'=@1—2cH)y — 2H?*(x?>+ y?)y, (49b)
7 =c+ Hx2+y?. (49c¢)

We now show that, for every choice of perios:, 2b) and(0, 27) with a >
0, there is a solutior (u, v) to the H-surface equation with these periods and hav-
ing the form (46).

As in Section |l we denote the flat tor@iga, b) asR?/G (a, b), whereG (a, b) is
the discrete translation group with fundamental peri@is 2b) and(0, 2r). We
form the Sobolev spacé®i(T (a, b)) andW; (T (a, b)), where the latter space are
those periodic functions of the form (46) satisfying the periodicity conditions (47).
A fundamental domair (a, b) is the parallelogram iiR? with vertices(—a, —b),
(a,b), (—a, —b + 2m), and(a, b + 27). A direct calculation gives

D(x)=2r | [(x?+ Y%+ + (x*+ yH)]du, (50a)

—a

a a
V(x) = 271/ z2(xx'+yy)du = —71/ Z(x2+y?) du. (50b)
THeoreM 3.1. For each(a, b) wherea is positive, there exists a membey of
the space¥;(T (a, b)) that is a minimizer of the Dirichlet integraD(x), subject

to the volume constrairit(x) = 1. Such a minimizer is obtained from a generat-
ing curve(xo(u), yo(u), zo(u)), which is a solution to the systefd8) for some

H # 0; hencexo(u, v) solves theH -surface equation.

Proof. In the cIasszz(T(a, b)), the Dirichlet integral and volume functional are
given by the single variable integrals (48). The argument now proceeds exactly as
in the proof of Theorem 2.1 of Section II. Observe that,fbe= 0, the only peri-

odic solution is whent (1) = y(u) = 0. O

Since the solution in Theorem 3.1 h&ls# 0, we can rescale so that = —1,
which we now do. Our goal is to exhibit the solution to the system (48) when
—1 In this case the system (48) is
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x" = A4 2c)x — 2(x? + yd)x, (51a)
Y=+ 20)y — 2(x* + y?)y, (51b)
7 =c—(x2+y?. (51c)

We seek solutions to this system satisfying the periodicity conditions (47). The
equations (51a,b) can be interpreted as the equations of planar motion of a particle
acted upon by a central force. Upon introduction of polar coordinates: cost
andy = r sing, system (51) becomes

(x".y") = (A+ 20)r — 2r®)u,, (52a)
d=c—r? (52b)
whereu, = (x/r, y/r) is the outward-pointing unit radial vector. We search for

solutionsr = r(u) and® = 6(u). In polar coordinates one finds

a
Dx)=2r | (247202 4+r*+7?du, (53a)

V(x) = 271[ zrr' du = —71[ 2'r?du. (53Db)

We have conservation of angular momentum, and in polar coordinates the system
(52) becomes

F2H ¥ — A+ 202 +r4 =T, (54a)
r20' = h, (54b)
Z=c—r2 (54c)

The solution to the system depends on three constantsI'). For 2 = 0 there

is no angular momentum and we are back in the framework of Section II. Other-
wise we can solve (54a) by quadratures to fing). Integrations of (54b,c) then
give usd (1) andz(u). As in Section |1, we may rewrite (54a) in the form

P2+ W) =T, (55a)

W) = h?/r? — A+ 20)r? +r? (55b)

(see Figure 6).

We now exhibit the solution(x) to system (55) explicitly using the Weierstrass
P-function. We use the conventions for this function as expressed in [2].

Let P(w) be the WeierstrasB-function solving the differential equation

P2 =4P°% — g)P — g3, (56)

where the cubic equationz® — g,z — g3 = 0 with g, g3 real and the discrim-
inant A = g3 — 27¢2 positive, so that the cubic equation has three distinct real
rootse; > e» > ez and also 4° — gz — g3 = 4(z — e1)(z — e2)(z — e3). Then
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WA

W(r) = hYrt — (1 +2c)r* +r* =

L W(f)=T

=Y

N

Figure 6 Potential Function for Tori with Nonrectangular Conformal Type

P (w) will have two fundamental periods.2, 2w, wherew; > 0 andw,/i > 0.
In this caseP(w1) = e1, P(w2) = e3, andP (w1 + w>) = e. We have

(87)

/°° dx /‘33 dx
w1, = s wo = —_—
e VAx3—gox — g3 —0 /g3 + g2x — x3
Consider the functior?(w, + u). This is a real-valued function af with
P(wz) = ez andP (w2 + w1) = eo With e3 < e5, so thatP (w, + u) is a periodic
function ofu oscillating betweem, andes with a half-periotdh = w;.
Letd be any value greater than and set
r2(u) = d — P(wo + u). (58)
Substitute this into (56) to find
»  (4d® - g2d — g3) 2 4 82—12d4°
r'e— 2 —3dre+r ==

(59)

TueEOREM 3.2. The function (1) defined(see(59)) by r?(u) = d — P(w2 + u)
represents a solution to equatio(B4) precisely when

4h? = —(4d® — god — g3), (60a)
3d =1+ 2c, (60b)
AT = g, — 1242 (60c)

here we assume thags, g3 are real andA = g3 — 27g2 > 0. Setting
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4% — gz — g3 =4(z — e1)(z — e2)(z — )

with e; > e» > e3, we must choose, < d < ej.

Giventhetripled, g2, g3) Withe, < d < e1 andg,, g3 as before, we can deter-
mine constantgc, i, I') from systen{60). Also, starting with the tripléc, &, I')
we can find the tripl€d, g2, g3). In fact,

3d =1+ 2c, (61a)
g2 = AT +3d?), (61b)
g3 = 4(h% — 4Td — 243). (61c)

Proof. The relations (60) are found by comparing (54) and (59). From (58a) we
see that 4% — god — g3 < 0. Sinced > e,, we must have, < d < e;. O

Note. The conditionz # O restrictsd to lie in the intervale; < d < e;. By
choosing: = 0 we have eithed = e, ord = e;. In either case/ is a root of the
cubic 47° — g»d — g3 = 0 (see equation (60a)).

If d = e; = P(wz + w1) We obtainr?(u) = P(wz + w1) — P(wz + u) so that
r?(w1) = 0. We obtain those solutions to thié-surface equation that are defined
on annular domains and vanish on the boundary.#f e; = P(w1) thenr?(u) =
P(w1) — P(w2+u) and sa-?(u) ranges in the intervah — e> < r2(u) < e1—e3.
Sinceh = 0, we are back to the solutions discussed in Section II.

We derive the complete representationx@f, v) by integrating (54b,c), which
yields our final result as follows.

THEOREM 3.3. Letr?(u) = d — P(wz + u), whereP(w) is the Weierstras®-
function satisfying the conditions of Theorem 3.2. We then have

u dt
GO E e o
z2(u) = (d_zl)” +[ P(wz + 1) dt. (62b)
0

The solutionx («, v) given by(46) has basic periodsa, b) and (0, 2x), where
a = wp and

b=0(w)=h / ” du (63)
! o d—P(ws+u)
the closing condition fog () is
d—1 @1
0= ( 5 )w1+/ P(w2 + u)du. (64)
0

Proof. This is a direct consequence of taking the expressionZor) in (58) and
using the formulas (54). O
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Note. The anti-derivative o (w) is the¢-function¢ (u) with ¢'(u) = —P(u).
This allows (62b) to be rewritten as

d—-1
z(u) = ( 5 )u+§(wz)—§(wz+u); (65)
the closing condition (65) becomes
d—1
0=( 5 )w1+C(w2)—C(a)2+w1)- (66)
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