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Explicit Solutions to the
H-Surface Equation on Tori

Henry C. Wente

I. Introduction

A twice continuously differentiable mapx from� ⊂ R2 into R3 is a solution to
theH -surface equation if

1x = 2H(xu ∧ xv) on�. (1)

Here1x = xuu + xvv is the standard Laplacian onR2 and the wedge symbol de-
notes the usual cross product. We represent points in� by (u, v) or sometimes
w = u+ iv; points in the target space are represented byx = (x, y, z)∈R3.

It is important to observe that solutions to (1) remain solutions after a conformal
change of coordinates. Thus it makes sense to consider solutions to theH -surface
equations on a Riemann surface. This may be seen as follows. We set the Dirichlet
integral to be

D(x) =
∫∫

�

(|xu|2 + |xv|2) du dv (2)

and the oriented volume functional to be

V(x) = 1

3

∫∫
�

x · (xu ∧ xv) du dv. (3)

Observe thatD(x) is invariant under a conformal change of coordinates and that
V(x) is a parametric integral invariant under any smooth change of coordinates.
Solutions to (1) are extremals of theH -functional

EH(x) ≡ D(x)+ 4HV(x). (4)

To any solution of (1) is attached the Hopf differential

(xw · xw)dw2 = F(w)dw2. (5)

This is a holomorphic quadradic differential(Fw̄ = 0) and in local coordinates
F(w) = (|xu|2 − |xv|2) − 2i(xu · xv). A solutionx(u, v) of (1) represents a sur-
face of constant mean curvature (cmc surface) only whenF(w) ≡ 0. Solutions of
theH -surface equation have the same relationship to cmc surfaces as harmonic
maps to minimal surfaces.

In an earlier paper [6] and also more recently [7], the author took up the question
of solutions to (1) on annular domains that vanish on the boundary. By confor-
mal invariance one may assume that the domain is a standard annulus bounded
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by two concentric circles centered at the origin. We looked for rotationally sym-
metric solutions. Pulling back to the universal cover by the exponential map, we
search for solutions to (1) defined on the vertical strip3a = {(u, v) | −a ≤ u ≤
a} with x(u, v + 2π) = x(u, v) such thatx(u, v) vanishes on∂3. The region3a

conformally covers the annulus

�A = {w | 1/A < |w| < A}, A = ea.
Upon trying solutions of the form

x(u, v) = 〈f(u) cosv, f(u) sinv, g(u)〉 (6)

we find that the differential equation (1) becomes

f ′′ − f = −2Hfg ′, (7a)

g ′′ = 2Hff ′. (7b)

We focus on the caseH 6= 0 and so may rescale by settingH = −1. One inte-
gration of (7b) givesg ′ = Hf 2 + c for some constantc. Substitute this into (7a)
with H = −1 and we obtain

f ′′ − (1+ 2c)f + 2f 3 = 0. (8)

After one more integration we arrive at

f ′2 − (1+ 2c)f 2 + f 4 = 0, (9a)

g ′ = −f 2 + c. (9b)

Equation (9a) may be thought of as a 1-dimensional dynamical system with po-
tential energyW(f ) = −(1+ 2c)f 2+ f 4 and can be solved by quadratures (see
Figure 1). In earlier work we anayzed the situation when the total energy0 was
positive. In this case we choseL positive so thatW(L) = 0 and produced the so-
lution f(u) to (9a), wheref(u) is even inu with f(0) = L andf ′(0) = 0 and
wheref(u) is positive on the interval−a < u < a with f(−a) = f(a) = 0.
Here the period is given by

a = P(L, c) =
∫ π/2

0

dθ√−(1+ 2c)+ L2(1+ sin2 θ)
. (10)

One then obtainsg(u) by integrating (9b). We chooseg(0) = 0 so thatg(u) is
an odd function ofu. One wantsg(a) = 0 as well. Clearly the constantc must be
positive, and the conditiong(a) = 0 becomes

8(L, c) = cP(L, c)− I(L, c) = 0, (11a)

I(L, c) =
∫ π/2

0

L2 sin2 θ dθ√−(1+ 2c)+ L2(1+ sin2 θ)
. (11b)

At this point we observe that the Hopf differentialF(w) given by (5) becomes

F(w) = f ′2 + g ′2 − f 2 = 0 + c2 (12)

(making use of system (9)); hence, if0 is positive then the immersion fails to be
conformal.
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Figure 1 The Dirichlet Problem

Equations (11) determine a smooth 1-parameter family of solutionsc = c(L).
The pair(L, c(L)) approaches(1,0), and in this limit the conformal parameter
a = P(L, c) approaches+∞ and equation (9a) becomesf ′2−f 2+f 4 = 0. We
end up with the Mercator representation of the round sphere with〈f(u), g(u)〉 =
〈sechu,−tanhu〉. At the other extreme we haveP(L, c)→ 0, so that the confor-
mal type is a thin annulus. See [7] for a detailed discussion.

In Section II we continue our study of the system (9) and observe that, by set-
ting 0 to be negative, the possibility of immersed tori of rectangular conformal
type appears if one assumesc > −1/2. We analyze the situation completely.
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In Section III we consider immersed solutions of (1) on tori of nonrectangu-
lar conformal type. We give a variational argument to show that a solution of any
conformal type must exist and then exhibit the solutions explicitly using the Weier-
strassP-function.

At this point we note that those solutions to (1) defined on the annulus�A that
are vanishing on the boundary can be extended to maps onR2 − {0} by repeated
odd reflection. We have at hand already nontrivial solutions to (1) defined on any
rectangular torus. Other (trivial) solutions on any torus can be constructed using
the WeierstrassP-function, which gives a double cover ofS2 from a torus of any
conformal type when we identify the complex plane withS2 via stereographic
projection.

Recently Yuxin Ge [1] produced solutions to theH -surface equation on certain
Riemann surfaces by solving an appropriate variational problem. Let� ⊂ R2 be
a multiply connected domain bounded by circles that contains a “thick enough”
annulus. Ge shows the existence of solutions to theH -surface equation on� such
that on∂� we havez = xν = yν = 0, wherexν, yν are the normal derivatives
of x, y along∂�. By reflection he obtains solutions to (1) on a Riemann surface.
Presumably, if the Riemann surface is a rectangular torus then his solutions would
agree with those we construct in Section II. Also, there has been an interesting
paper by Koh [3] wherein is suggested an approach to obtaining solutions to the
H -surface equation on tori using saddle-point techniques. The analysis is still
incomplete.

Still open is the existence of nontrivial solutions to theH -surface equation with
zero boundry data on any multiply connected domain or on any Riemann surface.
A discussion of this may be found in Struwe [5].

II. The Construction for Rectangular Tori

First we state an existence theorem for solutions to theH -surface equation on any
torus of rectangular conformal type. Such a torus,Ta, can be represented in the
formR2/Ga, whereGa is the discrete lattice consisting of all points(2ma,2πn)
wherea is positive and(m, n)∈Z2. A fundamental domain forTa is then

3a = {(u, v) | −a ≤ u ≤ a, 0 ≤ v ≤ 2π}. (13)

We consider vector functions on the Sobolev spaceW1(Ta) with square inte-
grable first derivatives and denote byWs

1(Ta) the subspace ofW1(Ta) consisting of
rotationally symmetric functions having the form (6). For such functions we have∫∫

Ta

|x|2 du dv = 2π
∫ a

−a
(f 2 + g2) du, (14a)

D(x) = 2π
∫ a

−a
(f ′2 + g ′2 + f 2) du. (14b)

It follows that the spaceWs
1(Ta) can be identified with pairs of functions〈f, g〉,

each inW1([−a, a]), that have continuous periodic extensions toR with period
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2a. Note that iff, g ∈W1([−a, a]) thenf, g are absolutely continuous and so the
conditionsf(−a) = f(a) andg(−a) = g(a) are meaningful.

Furthermore, forx(u, v) = 〈f(u) cosv, f(u) sinv, g(u)〉 in Ws
1(Ta), the Di-

richlet integralD(x) is given by (14b) and the volume functionalV(x) becomes

V(x) = 2π
∫ a

−a
ff ′g du = −π

∫ a

−a
f 2g ′ du. (15)

Theorem 2.1. Consider the set of functions〈f, g〉 ∈ W1([−a, a]) also satis-
fying f(−a) = f(a), g(−a) = g(a), and

∫ a
−a g(u) du = 0. In this class of

functions that also satisfy the volume constraintV(x) = 1, there exists a mini-
mizerx0(u, v) = 〈f0(u) cosv, f0(u) sinv, g0(u)〉 of the Dirichlet integralD(x).
The pair〈f0, g0〉 will be solutions to the system(7) for some constantH and so
x0(u, v) is a solution to theH -surface equation on the torusTa.

Proof. Let 〈fn, gn〉 be a minimizing sequence. The boundedness of the Dirichlet
integral along with the condition

∫ a
−a g(u) du = 0 implies that there is a subse-

quence inW1([−a, a]) converging weakly to a limit function〈f0, g0〉. The se-
quence〈fn, gn〉 is an equicontinuous family and so a subsequence (relabeled)
converges uniformly to〈f0, g0〉, which satisfies the periodicity condition and de-
termines a candidatex0(u, v) in Ws

1(Ta). We need only check thatV(x0) = 1.
However, the fact thatxn(u, v) converges weakly and uniformly tox0(u, v) is suf-
ficient to guarantee this.

The proof of Theorem 2.1 is similar to a result of Patnaik’s, who proved in [4] an
existence theorem for rotationally symmetricH -surfaces of annular type whose
boundary is a pair of coaxial circles. In this case the minimizers are conformal
cmc surfaces.

Observe that forH = 0 the system (7) givesf ′′ − f = 0 and sof(u) can-
not be periodic unlessf(u) ≡ 0. The minimizer of Theorem 2.1 hasH 6= 0. By
rescaling we may setH = −1.

We move on to (9b) and consider the graph ofW(f ) = −(1+ 2c)f 2+ f 4. We
assume that1+2c is positive. The graph has a local maximum at(0,0)and a global
minimum at

√
(1+ 2c)/2 and is increasing forf >

√
(1+ 2c)/2. It follows that,

for any choice of0 with−(1+ 2c)2/4< 0 < 0, there is a periodic solutionf(u)

to (9a) of total period 2a oscillating between a maximumfM with
√
(1+ 2c)/2<

fM <
√

1+ 2c and a minimumfm lying between 0 and
√
(1+ 2c)/2 (see Fig-

ure 2). Having picked such anf with f(0) = fM andf(±a) = fm, we integrate
(9b) to findg(u) where we may setg(0) = 0.

We wantg(u) to be periodic as well. This will happen ifg(a) = 0. Note that
g ′(0) = c − f 2

M < c − (1+2c
2

) = −1/2< 0 (see Figure 3).
An integration of (9a) gives an inverse representation off(u),

u =
∫ fM

F

df√
0 −W(f ), (16)

so that the period 2a is determined by
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Figure 2 The Torus Case

Figure 3
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a = P(c, 0) =
∫ fM

fm

df√
0 −W(f ) ; (17)

the expression for1g = g(a)− g(0) is

1g =
∫ a

0
(c − f 2) du =

∫ fM

fm

(c − f 2) df√
0 −W(f ) . (18)

Our goals are to determine(c, 0) so that1g = 0 and to estimateP(c, 0).
These integrals can be simplified. The valuesfm, fM are roots of the equations

0 −W(f ) = 0 + (1+ 2c)f 2 − f 4 = 0. Upon solving forf 2 we find that

f 2
m,M = B ± A, (19)

whereB = (1+2c)/2 and 0< A < B is obtained by settingA2 = 0+B2. Make
the change of variablef 2 = Ax + B and find

u =
∫ fM

F

df√
0 −W(f ) =

1

2

∫ 1

X

dx√
Ax + B√1− x 2

, F 2 = AX + B. (20)

The period then becomes

a = P(B,A) = 1

2

∫ 1

−1

dx√
Ax + B√1− x 2

. (21)

It is convenient to set

I(B,A) =
∫ fM

fm

f 2 df√
0 −W(f ) =

1

2

∫ 1

−1

√
Ax + B dx√

1− x 2
, (22)

which leads to

1g = 8(B,A) = cP(B,A)− I(B,A)

=
(
B − 1

2

)
P(B,A)− I(B,A) = −1

2

∫ 1

−1

(Ax +1/2) dx√
Ax + B√1− x 2

. (23)

The equation8(B,A) = 0 determines the solutions to theH -system equation
on rectangular tori. We are led to the following result.

Theorem 2.2. The equation8(B,A) = 0 from (23) with B = c + 1/2 and
A2 = 0 + B2 (0< A < B) determinesA as a function ofB, A = A(B), defined
for B > 1/2 with 1/2 < A(B) < B. AsB approaches1/2 the pair (B,A(B))
approaches(1/2,1/2), corresponding to the casec = 0 = 0. In this limit the
toral solutions converge to〈f(u), g(u)〉 = 〈sechu,−tanhu〉, which is the Mer-
cator representation of the unit sphere withx(−∞, v) = (0,0,1) = north pole
andx(+∞, v) = (0,0,−1) = south pole.Also, asB approaches1/2 the period
a = P(B,A(B)) approaches+∞. AsB →+∞, A(B) also becomes infinite and
lim P(B,A(B)) = 0.
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The family of toral solutions ranges over all conformal types. All of the solutions
haveH = −1. Denote byxB the solution corresponding to the pair(B,A(B)).
We havelim D(xB) = 8π asB → 1/2 and lim D(xB) = ∞ asB becomes infi-
nite. If we rescale by settingyB = tB xB, wheretB is chosen so thatV(yB) = 1,
then lim D(yB) = 8π asB → 1/2 and lim D(yB) = ∞ asB becomes infinite
(see Figure 4).

Figure 4

Finally, the generating curve forx(u, v) given by〈f(u), g(u)〉 with−a ≤ u ≤
a is an embedded curve withf(u) > 0, so that the corresponding immersed sur-
face is embedded. These surfaces are never conformal.

Proof. The proof follows from a sequence of assertions involving the integrals
(21)–(23).

1. ForA < 1/2 we haveAx + 1/2 > 0 for x ∈ [−1,1] and so8(B,A) < 0
using (23).

2. ForA = 1/2, 8(B,A) is still negative and forA = B = 1/2 we have
8(1/2,1/2) = −1. Otherwise,8(B,B) = +∞ whenB > 1/2 and equals−∞
for 0< B < 1/2.

3. 8(B,0) = −π/2
√
B < 0 and so, for everyB > 1/2, there existsA(B) with

8(B,A(B)) = 0.
4. We have

8A(B,A) = −1

4

∫ 1

−1

x√
Ax + B

dx√
1− x 2

− 1

4

∫ 1

−1

(B −1/2)x dx

(Ax + B)3/2
√

1− x 2
. (24)

Consequently, ifB > 1/2 and 0< A < B then we see that8A(B,A) is positive.
Thus the equation8(B,A) = 0 determinesA = A(B) defined forB > 1/2 with
1/2< A(B) < B, and limA(B) = 1/2 asB → 1/2.
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5. limB→+∞
√
B8(B,A) = −π/4 for any fixedA because

√
B8(B,A) = −

√
B

2

∫ 1

−1

(Ax +1/2)) dx√
Ax + B√1− x 2

→−1

4

∫ 1

−1

dx√
1− x 2

= −π
4
. (25)

It follows that limB→+∞A(B) = +∞.
6. LetB = kA wherek > 1. We have

lim
A→+∞

8(kA,A)√
A

= −1

2

∫ 1

−1

x dx√
x + k√1− x 2

> 0. (26)

It follows that, for anyλ (0< λ < 1), we have 0< A(B) < λB for B sufficiently
large. Observe thatA(B) has sublinear growth.

7. We now estimate the periodP(B,A(B)). Since8(B,A(B)) = 0 we may
use (23) to writeP(B,A(B)) = I(B,A(B))/(B −1/2). However,

I(B,A(B)) <
1

2

∫ 1

−1

√
A+ B dx√

1− x 2
<

√
B√
2

∫ 1

−1

dx√
1− x 2

= π
√
B√
2
. (27)

Thus,

P(B,A(B)) <
π√
2

√
B

(B −1/2)
, (28)

which shows that the limit ofP(B,A(B)) = 0 asB → +∞. We already know
lim P(B,A(B)) = P(1/2,1/2) = +∞ asB → 1/2. Our immersed tori range
over all conformal types.

8. LetxB be the immersion corresponding to the pair(B,A(B)). We claim that
lim D(xB) = +∞ asB becomes infinite.

Start now with the formula forD(x) given by (14b); making use of the identities
in system (9), one findsf ′2 + g ′2 + f 2 = (0 + c2)+ 2f 2. This leads to

D(xB) = 4π(0 + c2)P + 8πI, (29)

whereP andI are the integrals (21) and (22). Now use8 = cP − I = 0 to obtain

D(xB) = 4π [0 + c2 + 2c]P(B,A(B)); (30)

since−((1+2c)/2)2 < 0 < 0 it follows that0+c2+2c > −(c+1/2)2+c2+2c =
c −1/4= B − 3/4. We have

D(xB) > 4π(B − 3/4)P(B,A(B)) = 4π(B − 3/4)I(B, (A(B))

(B −1/2)
. (31)

However,

I(B,A(B)) = 1

2

∫ 1

−1

√
Ax + B dx√

1− x 2
>

1

2

∫ 1

0

√
B dx√

1− x 2
= π
√
B

4
. (32)

We finally get

D(xB) >
4π(B − 3/4)

(B −1/2)
· π
√
B

4
, (33)

showing thatD(xB)→+∞ asB becomes infinite.
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SinceH = −1 we haveD(xB) + 6HV(xB) = D(xB) − 6V(xB) = 0. We
now setyB = tB xB, wheretB > 0 is chosen so thatV(yB) = t 3BV(xB) = 1;
we find t 3B = 6/D(xB). This leads to the identityD(yB) = 62/3D(xB)

1/3 and so
lim D(yB) = +∞ asB →+∞ as well.

Observe next that, asB approaches 1/2, the pair(B,A(B)) must approach
(1/2,1/2). SinceB = (1+ 2c)/2 and0 = A2 − B2, we see that0 < 0 and the
pair (c, 0) approaches(0,0). It follows from (21) that the perioda = P(B,A)

becomes infinite while the generating pair〈f(u), g(u)〉 converges to the solution
of system (9) withc = 0 = 0. That is,f ′2 − f 2 + f 4 = 0 andg ′ = −f 2 with
initial conditionsf(0) = 1, f ′(0) = 0, g(0) = 0, andg ′(0) = −1. We find that
〈f(u), g(u)〉 = 〈sechu,−tanhu〉, which gives the Mercator representation of the
unit sphere.

Finally, we claim that the generating curve〈f(u), g(u)〉 for any one of these
tori is a simple closed curve. For 0≤ u ≤ a, we have thatf(u) is strictly de-
creasing fromfM to fm > 0 while g(u) is negative for 0< u < a with g(0) =
g(a) = 0. This assertion is clear (see Figure 5). The immersed surfacexB(u, v)

is also embedded.

Figure 5 The Generating Curves for Tori

Our family of toroidalH -surfaces converges to a round sphere asB → 1/2 with
the north pole at(0,0,1) and south pole at(0,0,−1). The toral surfaces resem-
ble a sphere from which two small disks near the poles have been removed and a
narrow tube inserted, connecting the two holes. In this limit the conformal type
hasa = P(B,A)→ +∞. We now investigate the shape of the toralH -surfaces
whenB becomes infinite. We have the following lemma.

Lemma 2.1. Let(Bn,An)be a sequence withAn→+∞and such thatBn/A2
n→

λ > 0 (i.e.,Bn = λA2
n + 1n, where1n/A

2
n → 0). Consider the corresponding
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pair of functions〈fn, gn〉 solving system(9) when restricted to the interval−a ≤
u ≤ a, so that the curve will not close up unless8(Bn,An) = 0. Asymptotically,
the pair of functions will satisfy the identity(

fn −
√
λAn

)2 + g2
n = 1/4λ. (34)

The generating curves describe a round circle with center
(√
λAn,0

)
and radius

1/2
√
λ.

Proof. We refer to equations (20)–(23), where we made the change of variable
f 2 = Ax+B orF 2 = AX+B with the functionX(u) determined by (20). From
(23) one may expressg in terms ofX by

g = −1

2

∫ 1

X

(Ax +1/2) dx√
Ax + B√1− x 2

, −1< X < 1. (35)

Now letA = An with Bn = λA2
n +1n, so that in the limit we find

4λg2 = 1−X2. (36)

Solving forf in terms ofX leads to

X = 1

A
(f 2 − B) =

(
f −√λA2 +1)(f +√λA2 +1)

A
. (37)

SinceBn = λA2
n + 1n and since by (20) we haveB − A < f 2 < B + A, it

follows that lim
(
fn +

√
λA2

n +1n

)
/An = 2

√
λ; this shows that

X2/4λ ∼= (fn(X)−√λAn)2. (38)

This, along with (36), leads to(
fn −
√
λAn

)2 + g2
n = 1/4λ. (39)

We now have the following result.

Theorem 2.3. Consider the family of toroidalH -surfaces(H = −1) deter-
mined by the condition8(B,A) = 0. We claim thatlim B/A2(B) = λ = 1/2 as
B becomes infinite. It follows that the generating curve for the immersed torus is
asymptotically the round circle(

f −√B )2 + g2 = 1/2 (40)

with center
(√
B,0

)
and radius1/

√
2.

Proof. The proof is based on the following estimate. LetB = λA2 with8(B,A)
given by (23). We claim

lim
A→∞A8(λA

2, A) = (1− 2λ)π

8λ3/2
. (41)

From this it follows that ifA = A(B) is determined by8(B,A) = 0 thenB/A2→
λ = 1/2 and so the theorem follows from Lemma 2.1.
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We can write8(λA2, A) as the sum

8(λA2, A)

= I1+ I2

= 1

2

∫ 1

−1

x dx√
λ+ (x/A)√1− x 2

− 1

4A

∫ 1

−1

dx√
λ+ (x/A)√1− x 2

. (42)

From the binomial expansion we have

(λ+ (x/A))−1/2 = 1√
λ

[
1− x

2λA
+O(1/A2)

]
. (43)

This leads to

I1 = 1

4λ3/2A

∫ 1

−1

x 2 dx√
1− x 2

+O(1/A2) (44a)

I2 = − 1

4
√
λA

∫ 1

−1

dx√
1− x 2

+O(1/A2), (44b)

giving us

8(λA2, A) = π

8Aλ3/2
(1− 2λ)+O(1/A2). (45)

Remarks. Another special class of surfaces contained in the family are the De-
launey surfaces. These occur exactly when the immersion is conformal and is
determined by the condition0 + c2 = 0 from (12). From the identitiesA2 =
0 +B2 andB = c+1/2 this condition can be rewritten asA2 = B −1/4, so the
factorλ = 1. From Lemma 2.1, the limit curves are circles

(
f − √B )2 + g2 =

1/4 with radiusr = 1/2 as it should be.
Since0 + c2 = 0 we must have0 < 0. Now−(1+ 2c)2/4= −(c + 1/2)2 =
−c2 − c −1/4< 0 = −c2 < 0, which can only happen ifc > −1/4. We find:

c = −1/4, the cylinderf(u) ≡ 1/2;
−1/4< c < 0, unduloids;

c = 0 = 0, the unit sphere;

c > 0, nodoids.

Finally, our family of surfaces also includes surfaces of revolution with Gauss
curvatureK = −1. For some members of the family this will occur precisely
whenf ′(a) = g ′(a) = 0, so that the generating curve will contain a cusp. This
will occur whenfm = √c, leading toB − A = f 2

m = c = B − 1/2 and hence
A = 1/2. This is equivalent to0 + c(c +1) = 0.

III. Immersions of Nonrectangular Type

Suppose theH -surface of revolution about thez-axis has a generating function
〈x(u), y(u), z(u)〉, not necessarily a planar curve. The surface representation then
takes the form
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x(u, v) = 〈x(u) cosv − y(u) sinv, x(u) sinv + y(u) cosv, z(u)〉. (46)

The immersion will have periods〈2a,2b〉 and〈0,2π〉 when

x(u+ 2a) cos 2b − y(u+ 2a) sin 2b = x(u), (47a)

y(u+ 2a) sin 2b + y(u+ 2a) cos 2b = y(u). (47b)

The vector functionx(u, v) in (44) will be a solution to theH -surface equation
(1) if

x ′′ − x = 2H(−xz ′), (48a)

y ′′ − y = 2H(−yz ′), (48b)

z ′′ = 2H(xx ′ + yy ′). (48c)

An integration of (48c) givesz ′ = c +H(x 2 + y2), leading to the system

x ′′ = (1− 2cH )x − 2H 2(x 2 + y2)x, (49a)

y ′′ = (1− 2cH )y − 2H 2(x 2 + y2)y, (49b)

z ′ = c +H(x 2 + y2). (49c)

We now show that, for every choice of periods〈2a,2b〉 and〈0,2π〉 with a >
0, there is a solutionx(u, v) to theH -surface equation with these periods and hav-
ing the form (46).

As in Section II we denote the flat torusT(a, b) asR2/G(a, b),whereG(a, b) is
the discrete translation group with fundamental periods(2a,2b) and(0,2π). We
form the Sobolev spacesW1(T (a, b)) andWs

1(T (a, b)), where the latter space are
those periodic functions of the form (46) satisfying the periodicity conditions (47).
A fundamental domain3(a, b) is the parallelogram inR2 with vertices(−a,−b),
(a, b), (−a,−b + 2π), and(a, b + 2π). A direct calculation gives

D(x) = 2π
∫ a

−a
[(x ′2 + y ′2 + z ′2] + (x 2 + y2)] du, (50a)

V(x) = 2π
∫ a

−a
z(xx ′ + yy ′) du = −π

∫ a

−a
z ′(x 2 + y2) du. (50b)

Theorem 3.1. For each(a, b) wherea is positive, there exists a memberx0 of
the spaceWs

1(T (a, b)) that is a minimizer of the Dirichlet integralD(x), subject
to the volume constraintV(x) = 1. Such a minimizer is obtained from a generat-
ing curve〈x0(u), y0(u), z0(u)〉, which is a solution to the system(48) for some
H 6= 0; hence,x0(u, v) solves theH -surface equation.

Proof. In the classW 2
1 (T (a, b)), the Dirichlet integral and volume functional are

given by the single variable integrals (48). The argument now proceeds exactly as
in the proof of Theorem 2.1 of Section II. Observe that, forH = 0, the only peri-
odic solution is whenx(u) = y(u) = 0.

Since the solution in Theorem 3.1 hasH 6= 0, we can rescale so thatH = −1,
which we now do. Our goal is to exhibit the solution to the system (48) whenH =
−1. In this case the system (48) is
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x ′′ = (1+ 2c)x − 2(x 2 + y2)x, (51a)

y ′′ = (1+ 2c)y − 2(x 2 + y2)y, (51b)

z ′ = c − (x 2 + y2). (51c)

We seek solutions to this system satisfying the periodicity conditions (47). The
equations (51a,b) can be interpreted as the equations of planar motion of a particle
acted upon by a central force. Upon introduction of polar coordinatesx = r cosθ
andy = r sinθ, system (51) becomes

〈x ′′, y ′′ 〉 = ((1+ 2c)r − 2r 3)ur , (52a)

z ′ = c − r 2, (52b)

whereur = 〈x/r, y/r〉 is the outward-pointing unit radial vector. We search for
solutionsr = r(u) andθ = θ(u). In polar coordinates one finds

D(x) = 2π
∫ a

−a
(r ′2 + r 2θ ′2 + r 2 + z ′2) du, (53a)

V(x) = 2π
∫ a

−a
zrr ′ du = −π

∫ a

−a
z ′r 2 du. (53b)

We have conservation of angular momentum, and in polar coordinates the system
(52) becomes

r ′2 + h2/r 2 − (1+ 2c)r 2 + r 4 = 0, (54a)

r 2θ ′ = h, (54b)

z ′ = c − r 2. (54c)

The solution to the system depends on three constants(c, h, 0). Forh = 0 there
is no angular momentum and we are back in the framework of Section II. Other-
wise we can solve (54a) by quadratures to findr(u). Integrations of (54b,c) then
give usθ(u) andz(u). As in Section II, we may rewrite (54a) in the form

r ′2 +W(r) = 0, (55a)

W(r) = h2/r 2 − (1+ 2c)r 2 + r 4 (55b)

(see Figure 6).
We now exhibit the solutionr(u) to system (55) explicitly using the Weierstrass
P-function. We use the conventions for this function as expressed in [2].

LetP(ω) be the WeierstrassP-function solving the differential equation

P ′2 = 4P3− g2P − g3, (56)

where the cubic equation 4z3 − g2z − g3 = 0 with g2, g3 real and the discrim-
inant1 = g3

2 − 27g2
3 positive, so that the cubic equation has three distinct real

rootse1 > e2 > e3 and also 4z3 − g2z − g3 = 4(z − e1)(z − e2)(z − e3). Then



Explicit Solutions to theH-Surface Equation on Tori 515

Figure 6 Potential Function for Tori with Nonrectangular Conformal Type

P(ω) will have two fundamental periods 2ω1,2ω2, whereω1 > 0 andω2/i > 0.
In this caseP(ω1) = e1, P(ω2) = e3, andP(ω1+ ω2) = e2. We have

ω1=
∫ ∞
e1

dx√
4x3− g2x − g3

, ω2 =
∫ e3

−∞
dx√

g3+ g2x − x3
. (57)

Consider the functionP(ω2 + u). This is a real-valued function ofu with
P(ω2) = e3 andP(ω2+ ω1) = e2 with e3 < e2, so thatP(ω2+ u) is a periodic
function ofu oscillating betweene2 ande3 with a half-perioda = ω1.

Let d be any value greater thane2 and set

r 2(u) = d − P(ω2 + u). (58)

Substitute this into (56) to find

r ′2 − (4d
3− g2d − g3)

4r 2
− 3dr 2 + r 4 = g2 −12d2

4
. (59)

Theorem 3.2. The functionr(u) defined(see(59)) by r 2(u) = d − P(ω2 + u)
represents a solution to equations(54)precisely when

4h2 = −(4d3− g2d − g3), (60a)

3d = 1+ 2c, (60b)

40 = g2 − 12d2; (60c)

here we assume thatg2, g3 are real and1 = g3
2 − 27g2

3 > 0. Setting
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4z3− g2z− g3 = 4(z− e1)(z− e2)(z− ez)
with e1 > e2 > e3, we must choosee2 < d < e1.

Given the triple(d, g2, g3)withe2 < d < e1 andg2, g3 as before, we can deter-
mine constants(c, h, 0) from system(60). Also, starting with the triple(c, h, 0)
we can find the triple(d, g2, g3). In fact,

3d = 1+ 2c, (61a)

g2 = 4(0 + 3d2), (61b)

g3 = 4(h2 − 40d − 2d3). (61c)

Proof. The relations (60) are found by comparing (54) and (59). From (58a) we
see that 4d3− g2d − g3 < 0. Sinced > e2, we must havee2 < d < e1.

Note. The conditionh 6= 0 restrictsd to lie in the intervale2 < d < e1. By
choosingh = 0 we have eitherd = e2 or d = e1. In either case,d is a root of the
cubic 4d3− g2d − g3 = 0 (see equation (60a)).

If d = e2 = P(ω2+ ω1) we obtainr 2(u) = P(ω2+ ω1)− P(ω2+ u) so that
r 2(ω1) = 0. We obtain those solutions to theH -surface equation that are defined
on annular domains and vanish on the boundary. Ifd = e1= P(ω1) thenr 2(u) =
P(ω1)−P(ω2+u) and sor 2(u) ranges in the intervale1− e2 ≤ r 2(u) < e1− e3.

Sinceh = 0, we are back to the solutions discussed in Section II.

We derive the complete representation ofx(u, v) by integrating (54b,c), which
yields our final result as follows.

Theorem 3.3. Let r 2(u) = d − P(ω2 + u), whereP(ω) is the WeierstrassP-
function satisfying the conditions of Theorem 3.2. We then have

θ(u) = h
∫ u

0

dt

d − P(ω2 + t) , (62a)

z(u) = (d − 1)u

2
+
∫ u

0
P(ω2 + t) dt. (62b)

The solutionx(u, v) given by(46) has basic periods〈a, b〉 and 〈0,2π〉, where
a = ω1 and

b = θ(ω1) = h
∫ ω1

0

du

d − P(ω2 + u) ; (63)

the closing condition forz(u) is

0= (d − 1)

2
ω1+

∫ ω1

0
P(ω2 + u) du. (64)

Proof. This is a direct consequence of taking the expression forr 2(u) in (58) and
using the formulas (54).
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Note. The anti-derivative ofP(ω) is theζ-functionζ(u) with ζ ′(u) = −P(u).
This allows (62b) to be rewritten as

z(u) = (d −1)

2
u+ ζ(ω2)− ζ(ω2 + u); (65)

the closing condition (65) becomes

0= (d −1)

2
ω1+ ζ(ω2)− ζ(ω2 + ω1). (66)
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