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On the Fundamental Groups at Infinity of the
Moduli Spaces of Compact Riemann Surfaces
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1. Introduction and Statement of the Result

In his seminal manuscriptEsquisse d’un programme(1984; now available in [LS]),
Grothendieck explains that the structure of the tower of all moduli spaces of curves
is somehow governed by its “first two levels” (“deux premiers étages”), that is,
the moduli spaces of dimensions 1 and 2. We refer to theEsquisseand to [L] for
more context and details about this statement. Let us only mention that, speaking
in terms of topology, Grothendieck was concerned more precisely with the orbi-
fold fundamental groups of the moduli spaces of curves; he explains that the above
“principle” is essentially equivalent to the fact that the orbifold fundamental group
of any moduli space of dimension> 2 is equal to its fundamental group at infin-
ity. We do not recall here the notion of orbifold fundamental group, which is due
to Thurston in a topological context, because we will be concerned only with the
ordinary topological fundamental group—that is, the fundamental groups of the
moduli spaces of curves viewed as manifolds, forgetting about their orbifold struc-
ture. In terms of analytic or algebraic geometry, this amounts to viewing them as
coarse and not as fine moduli spaces for curves.

Before we consider moduli spaces of curves in detail, let us make precise the
notion of fundamental group at infinity in a topological context. Note that it is
less easy (although feasible) to do it in terms of algebraic geometry, because a
quasiprojective variety cannot usually be exhausted by an increasing sequence of
projective subvarieties; nor is it easy to define tubular neighborhoods of closed sub-
varieties. So letM be a paracompact differentiable manifold and partially order
the compact submanifolds (possibly with boundary) ofM by inclusion. Their
complements define an obvious inverse system: ifK ⊂ K ′, we simply consider
the inclusionM \K ′ ⊂ M \K. We need a base point for our fundamental group
and exploit the fact that a fundamental group need not be based at a point but in
fact at any simply connected subset of the ambient manifold. Here abase point at
infinity, simply denoted by∗, is given by an open partU ⊂ M such that, for any
compact setK, there exists a compact setK ′ with K ⊂ K ′ andU \K ′ nonempty
andsimplyconnected. Letπ1 denote, as usual, the topological fundamental group
(functor).
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Definition (The fundamental group at infinity). LetM be a paracompact differ-
entiable manifold and assume there exists a base point at infinity∗ forM, defined
by an open setU. We define the topological fundamental group at infinity ofM

based at∗ as:

π∞1 (M, ∗) = lim←− π1(M \K,U \K),
where the inverse limit is over the cofinal family of compact subsetsK ofM such
thatU \K is simply connected, partially ordered by inclusion, and uses the natural
induced maps on the fundamental groups.

From now on we will often lightheartedly ignore the base points in the notation,
having done with the problem of base points at infinity as before. Let us very
briefly recall a few notions from the theory of Teichmüller and moduli spaces of
curves, essentially in order to fix notation. We refer to any standard textbook on
the subject (e.g. [IT]) for the necessary background information. For simplic-
ity we will mainly consider in this note the case of Riemann surfaces without
marked or deleted points, postponing to the closing remarks some observations
on the more general case. Yet in the intermediary steps, we will have to consider
surfaces with marked points anyway, so let us introduce the more general objects
right away. We will denote byTg,n the Teichmüller space of compact Riemann
surfaces of type(g, n), that is, those obtained from surfaces of genusg by mark-
ing n points. One may also consider, taking a hyperbolic rather than conformal
viewpoint, that the points are deleted, giving rise to surfaces with cusps. LetMg,n

be the fine moduli space of surfaces of type(g, n) obtained as the quotient ofTg,n
by the (Teichmüller) modular group (alias mapping class group)0g,n. More pre-
cisely,0g,n acts properly and discontinuously onTg,n with quotientMg,n. Since
the action is not free, the latter space naturally inherits an orbifold structure (a
structure of stack in the algebraic context). One can also “forget” about the orbi-
fold structure, thus getting a bona fide (in general normal but singular) manifold
Mg,n, which is a coarse moduli space for the surfaces of type(g, n). In all this
the points or punctures are labeled and0g,n denotes the pure modular group, pre-
serving the marked points individually. One can now allow permutations of these
points and obtain the full group0g,[n], which is an extension of the permutation
groupSn by the pure group0g,n. We also get the corresponding spacesMg,[n] =
Tg,n/0g,[n] andMg,[n] . Note that there is no notion of permuting the punctures
at the level of the Teichmüller space and that this operation is not a mere orna-
ment when one is interested in torsion elements, as we will be. The effect may be
dramatic: typically00,n is torsion-free, whereas00,[n] is generated by its torsion
elements. Finally we mention that we dropn from the notation when it is 0: we
write 0g for 0g,0, and so on.

Let us now stick to the unmarked (or compact) casen = 0 for stating the re-
sults. As mentioned previously, marked surfaces reappear as intermediate objects
in the course of the proof (Section 2) and are briefly commented on again in the
closing section. By definitionπ1(Mg) = 0g, where one considers the orbifold
fundamental group and assumesg > 1 in order to deal with hyperbolic surfaces.
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One can actually also includeg = 0 becauseM0 is a point (this is the Schön-
fliess theorem) andM1 'M1,1. For the coarse moduli spaces, Maclachlan [M]
proves that they are simply connected:π1(Mg) = {1} for g > 1 (in fact, one can
again include the casesg = 0,1). This deals with the ordinary topological fun-
damental group, consideringMg as a manifold. In view of [A], this amounts to
saying that0g is generated by its torsion elements. Note that both results hold
in the algebraic context: if one considersMg as a Deligne–Mumford stack (see
[DMu]) over C (or overQ̄), its fundamental group is the profinite completion of
0g; whereas the coarse moduli spaceMg, which is nothing else thanMg viewed
as a scheme, is simply connected. In [L] it is shown, confirming Grothendieck’s
prediction, thatπ∞1 (Mg) ' 0g for g ≥ 2. Note that the assertion is content-free
for g = 0 and does not hold forg = 1 (even identifyingM1 withM1,1). To put
this result in context, it is best to state the result with marked points. Recall that
Mg,n has dimensiond(g, n) = 3g − 3+ n (assume 2g − 2+ n > 0, that is, the
surfaces are hyperbolic). With this in mind, it is shown in [L] thatπ∞1 (Mg,n) '
0g,n (= π1(Mg,n)) if and only if d(g, n) > 2, which is indeed Grothendieck’s
prediction. This result is also valid if one does not label the marked points (re-
placen by [n] everywhere) and can be immediately transposed (as before) in the
algebraic context.

In this note we prove, at least for surfaces without marked points, a statement
that was left as a “plausible assertion” in [L]. In fact, we show the following.

Theorem. π∞1 (Mg) = {1} (= π1(Mg)) for g > 2 andπ∞1 (M2) ' Z/5Z.

Section 2 is devoted to some geometrical properties that provide, much as in [L],
the crucial ingredients for the proof of the theorem. We recall and make precise
in passing some properties of the loci of curves with nontrivial automorphisms,
which may have some independent interest. In Section 3 we give the proof of the
theorem, including the determination of the fundamental group at infinity in the
case of genus 2; at the end, we briefly comment on the cases with marked points.

2. Some Geometry at Infinity on the
Moduli Spaces of Curves

We consider hyperbolic surfaces of fixed type(g, n) (with 2g − 2+ n > 0) and
first recall some observations from [L]. Note that these purely geometric features
do not depend on whether we view the moduli spaces as being fine or coarse. First,
for ε > 0 we define the setMε

g,n ⊂Mg,n of points [X] ∈Mg,n representing sur-
facesX such that it has at least one geodesicγ with lengthl(γ ) < ε in the Poincaré
metric. Forε ≤ ε ′ there is an obvious inclusionMε

g,n ⊂Mε ′
g,n and thus a natural

map between fundamental groups:π1(Mε
g,n)→ π1(Mε ′

g,n). As mentioned previ-
ously, one can replace the fine moduli(M) by the coarse moduli(M),which will
be used shortly.

By [Mu] (see also [B2]), the complements ofMε
g,n in Mg,n are compact

and form a cofinal sequence, that is, they exhaust the spaceMg,n. So one has
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π∞1 (Mg,n) = lim ε→0 π1(Mε
g,n). The same statement holds for coarse moduli

spaces. Letp : Tg,n → Mg,n denote the canonical projection, and setT ε
g,n =

p−1(Mε
g,n). One may show (see [L]) that:

(i) T ε
g,n is simply connected for anyε > 0; and

(ii) there exists an absolute constantε0 such that, ifε ≤ ε ′ < ε0, thenT ε
g,n

is a deformation retract ofT ε ′
g,n and the retraction can be chosen to be0g,n-

equivariant, thus producing in particular a diffeomorphism betweenMε
g,n and

Mε ′
g,n. From this one concludes that the sequence of groups(π1(Mε

g,n))ε>0

stabilizes forε < ε0. In fact, one can pickε0 = 1
3 ln

(
1+√2

)
. Again one

may replace fine with coarse moduli spaces.

We now turn more specifically to the case of coarse moduli spaces, which are
the subject of this note. By an elementary topological result [A], assertion (i) im-
plies (see again [L] for details) thatπ1(M

ε
g,n) = 0g,n/Gε, whereGε is the normal

subgroup of0g,n generated by the setT ε (T stands for “torsion”) of elements that
have a nonempty fixed point set when acting onT ε

g,n. We thus have a decreasing
sequence of subgroups(Gε)ε>0. By (ii), this sequence is stationary and we letG

be the limit, so thatG = Gε for any ε < ε0. The following statement records
what we have so far.

Proposition 1. π∞1 (Mg,n) = 0g,n/G, whereG = Gε for anyε < ε0.

In order to vindicate the description ofG given in [L] (see Proposition 2, which
follows), we bring in the relative Teichmüller and moduli spaces from [HM] and
[GH]. Let h∈0g,n be a nontrivial torsion element; we denote byTg,n(h) the fixed
point set ofh, or equivalently of the finite cyclic group〈h〉 it generates, acting
on Tg,n. The elements of the modular group permute these relative Teichmüller
spaces according to the familiar rule:f(Tg,n(h)) = Tg,n(fhf −1) for f ∈ 0g,n.
The stabilizer ofTg,n(h) is thus the normalizer of the cyclic group〈h〉 in 0g,n,
which we denote by0g,n(h). The quotientTg,n(h)/0g,n(h) = M̃g,n(h) is called
the relative moduli space.Again there is a fine and a coarse version, and by a
classical theorem of Cartan the underlying variety is normal. As a matter of fact,
if Mg,n(h) = p(Tg,n(h)) denotes the image of the relative Teichmüller space in
the moduli space, then one can show (see [GH]) thatM̃g,n(h) is precisely the
normalization ofMg,n(h). In this setting the generating setT ε introduced before
Proposition 1 can be described as

T ε = {h∈0g,n,Mg,n(h) ∩Mε
g,n 6= ∅}.

By a classical result of Nielsen, any elementh ∈ 0g,n of finite order can be re-
alized as an automorphism of some Riemann surfaceX of type(g, n). LetX ′ =
(X/〈h〉)∗ denote the surface obtained by puncturing the quotientX/〈h〉 at the ram-
ification points of the coveringX → X/〈h〉, and letX ′ be of type(p, ν). Then
(see [HM; GH]) one hasTg,n(h) ' Tp,ν andM̃g,n(h) is a finite cover ofMp,ν .

As in [L], we call a torsion elementmaximalif its fixed point set is just a point—
that is, if Tg,n(h) has dimension zero, which is equivalent to saying thatX ′ is a
thrice-punctured sphere((p, ν) = (0,3)).
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Now, since the order of an automorphism of a Riemann surface of given type
is bounded, one may use the elementary theory of coverings of Riemann surfaces
to find that there is only a finite number of surfaces having maximal automor-
phisms (i.e., whose underlying mapping classes are maximal). The lengths of
their geodesics are bounded from below by someεmin and so, forε small enough
(indeed, forε < εmin), the setT ε doesnot contain any maximal element. The key
point of this section is that this accounts for the set of torsion elements that are ex-
cluded fromT ε for ε small enough. In other words, our next goal is to prove the
following.

Proposition 2. For ε sufficiently small,T ε consists of the set ofnonmaximal
torsion elements. In particular,G is the group generated by these elements.

In order to prove this we need two more geometric lemmas, leading to a geomet-
ric version (Proposition 3) of Proposition 2. For simplicity, we omit the subscript
(g, n) from the notation until the end of this section.

Lemma 1. For any givenh, the family of subvarietiesf(T (h))f∈0 is locally fi-
nite. That is, for any pointt ∈ T , there is a neighborhood oft that meets only
finitely many of these subvarieties.

Proof. Since0 acts properly discontinuously onT , there is an open setU con-
taining t such thatU andf(U) are disjoint except for finitely manyf ∈ 0, say
h1, . . . , hr . Now for anyf, h ∈ 0 (h of finite order),f(T (h)) = T (fhf −1);
in other words,f(T (h)) is just the fixed point set offhf −1. This implies that
U ∩ f(T (h)) ⊂ U ∩ fhf −1(U), from which we infer that if this intersection is
nonempty thenfhf −1= hi for somei ∈ (1, r), and hencef(T (h)) = T (hi).
Lemma 2. For anyh∈0 of finite order,M(h) is a closed subvariety ofM.

Proof. We have to show thatp−1(M(h)) = ⋃
f∈0 f(T (h)) is closed inT (p:

T → M the canonical projection). Lett ∈ T be in the closure ofp−1(M(h))

and let(tm)m be a sequence of points inp−1(M(h)) converging tot. Applying
Lemma 1 and passing to a subsequence, we may assume that all thetm belong
to the same subvarietyf(T (h)) = T (fhf −1). But this last subvariety is well
known to be closed, which implies that actuallyt ∈ f(T (h)) ⊂ p−1(M(h)) as
required.

We are now prepared to deduce our next proposition.

Proposition 3. If h is not a maximal torsion element in0, thenM(h)∩Mε 6=
∅ for all ε > 0.

Proof. The setsM \Mε are compact, as noted earlier (see [Mu] or [B1; B2]).
If the proposition did not hold thenM(h) would be a compact subvariety ofM,

by Lemma 2. But the normalizatioñM(h) ofM is a finite cover of the moduli
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spaceMp,ν, where(p, ν) is the type of the quotient surface (described previ-
ously) and this moduli space is not compact—except if(p, ν) = (0,3), that is, if
h is maximal.

The foregoing result, which can be rephrased by saying thatM(h) “extends to in-
finity” except if it has dimension 0, is the content of statement (i) in [L, p. 152].
It immediately implies the validity of Proposition 2; hence, using Propositions 1
and 2, in order to determine the fundamental groups at infinity of the coarse mod-
uli spaces we need only determine the subgroups of the modular groups generated
by the nonmaximal torsion elements.

3. Nonmaximal Torsion Elements in the
Teichmüller Modular Groups

We turn to the proof of the theorem stated in Section 1. The caseg > 2 is now
easy, using results in [McP]. Recall that we are reduced to showing that, forg > 2,
the modular group0g is generated by nonmaximal torsion elements (this is state-
ment (ii) in [L, p. 152]). In [McP] it is shown that0g is generated by involutions
(elements of order 2) that fix two points ifg is even and four points ifg is odd.
By the Riemann–Hurwitz formula, the genera of the respective quotients are thus
g/2 and(g − 1)/2. This is enough to ensure that these generators are not maxi-
mal, which finishes the proof of the fact that the coarse moduli spaceMg is simply
connected forg > 2.

We now turn to the caseg = 2, more precisely to showing thatπ1(M2) =
Z/5Z. The key point is that one can realizeM2 as the quotient ofC3 by the action
of the cyclic groupC5 = Z/5Z acting via a (nontrivial) fifth root of unityζ by
ζ · (z1, z2, z3) = (ζz1, ζ

2z2, ζ
3z3) (see [Ig, p. 638]). This representation comes,

of course, from the facts that (a) any genus-2 curve is hyperelliptic and (b) the co-
ordinateszi play a role that is analogous to the classicalj (or λ)modular function
in the genus-1 case.

The origin inC3 is the only fixed point of theC5-action (corresponding to the
curveX0 with equationy2 = x5 − 1) that has a cyclic automorphism group of
order 10 generated byτ such thatτ(x, y) = (ζx,−y). Bothτ andτ 2 are maximal
torsion elements of02 (see [S]). We now have the following lemma.

Lemma 3. LetG̃ ⊂ 02 be the subgroup generated by the set of(maximal or not)
torsion elements that are not conjugate to eitherτ or τ 2. ThenG̃ = G.
Proof. We have thatG ⊂ G̃ by definition. In the converse direction we first ob-
serve (see [S]) that, apart fromX0, there are exactly two other curves with maximal
automorphisms. The first one is the curveX1 with equationy2 = x6−1 and auto-
morphism group of order 24, generated by two elementsγ andσ of order 6 and 4,
respectively. Denoting byζ6 a primitive sixth root of unity, we can takeγ (x, y) =
(ζ6x, y) andσ(x, y) = (x−1, ix−3y). The quotient ofX1 by σ is a sphere and
there are four ramification values, soσ is not maximal. By the same token,γ is
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found to be maximal, butγ = γ 4γ 3 and one finds that bothγ 4 andγ 3 are not
maximal; therefore,γ and hence the full automorphism group ofX1 is contained
in G.

The other curve isX2 with equationy2 = x(x4−1). It has automorphism group
of order 48 generated by the three elementsρ (order 8),β (order 3), andα (order 2)
with ρ = αβ (see [K] or [C]). One can again give explicit equations (see [C] for
a detailed study of the automorphism groups of curves of genus 2), but for our
purpose it is enough to observe that, because of their respective orders,α andβ
cannot be maximal. This implies that the full automorphism group ofX2 is con-
tained inG, completing the proof of the lemma.

In order to prove the assertion in the theorem for the case of genus 2, let us in-
troduce the punctured spaceM ∗2, which isM2 with the point corresponding to
the curveX0 removed (i.e., the origin inC3 in the representation of Igusa [Ig]
recalled previously). Thus we have thatM ∗2 ' (C3 \ {0})/C5 and alsoM ∗2 '
T ∗2 /02, where of courseT ∗2 denotes the Teichmüller space of genus 2 with the
fiberp−1(X0) deleted. Let us use these two representations to compute the fun-
damental group ofM ∗2 in two ways. First, by standard covering theory applied
to Igusa’s representation, we find thatπ1(M

∗
2 ) = C5. On the other hand, since

p−1(X0) is simply connected, the result of [A] implies thatπ1(M
∗
2 ) = 02/G̃.

SinceG̃ = G (by Lemma 2) we find indeed that02/G = C5, thus finishing the
proof of the assertion of the theorem:π∞1 (M2) ' π1(M

∗
2 ) = Z/5Z.

We note that the proof actually shows thatπ∞1 (M2) is generated by the mapping
classτ 2. It also shows that any set of generators for02 consisting of elements of
finite order must contain a conjugate ofτ 2,which is a little more precise than say-
ing that02 cannot be generated by nonmaximal torsion elements.

We close with a short comment on the case of surfaces with marked points. Let
(g, n) be a given type and letMg,[n] be the coarse moduli space of surfaces of that
type, where the points arenot individually labeled, so giving rise to the full group
0g,[n] (= π1(Mg,[n])).

The following result seems to hold:π∞1 (Mg,[n]) = {1} for g > 2. This would
follow just as the assertion of the theorem forg > 2 from the closing remark in
[Pa], which states that0g,[n] (g > 2) is generated by involutions. These cannot
be maximal. In fact, ifh is such an involution for a Riemann surfaceS, then the
quotientS/〈h〉 either has genus> 0 or (if it has genus= 0) S is hyperelliptic and
h is the hyperelliptic involution. In the latter case,h fixes 2g+2> 3 points (with
g the genus ofS) and is thus again not maximal.
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