Michigan Math. J. 49 (2001)

On the Fundamental Groups at Infinity of the
Moduli Spaces of Compact Riemann Surfaces

GABINO GONZALEZ Di1EZ & PIERRE LOCHAK

1. Introduction and Statement of the Result

In his seminal manuscrifisquisse d’un programn{#84; now available in[LS]),
Grothendieck explains that the structure of the tower of all moduli spaces of curves
is somehow governed by its “first two levels” (“deux premiers étages”), that is,
the moduli spaces of dimensions 1 and 2. We refer tdegauisseand to [L] for

more context and details about this statement. Let us only mention that, speaking
in terms of topology, Grothendieck was concerned more precisely with the orbi-
fold fundamental groups of the moduli spaces of curves; he explains that the above
“principle” is essentially equivalent to the fact that the orbifold fundamental group
of any moduli space of dimension 2 is equal to its fundamental group at infin-

ity. We do not recall here the notion of orbifold fundamental group, which is due
to Thurston in a topological context, because we will be concerned only with the
ordinary topological fundamental group—that is, the fundamental groups of the
moduli spaces of curves viewed as manifolds, forgetting about their orbifold struc-
ture. In terms of analytic or algebraic geometry, this amounts to viewing them as
coarse and not as fine moduli spaces for curves.

Before we consider moduli spaces of curves in detail, let us make precise the
notion of fundamental group at infinity in a topological context. Note that it is
less easy (although feasible) to do it in terms of algebraic geometry, because a
guasiprojective variety cannot usually be exhausted by an increasing sequence of
projective subvarieties; nor is it easy to define tubular neighborhoods of closed sub-
varieties. So leiM be a paracompact differentiable manifold and partially order
the compact submanifolds (possibly with boundary)Mfby inclusion. Their
complements define an obvious inverse systenk if K’, we simply consider
the inclusionM \ K’ ¢ M \ K. We need a base point for our fundamental group
and exploit the fact that a fundamental group need not be based at a point but in
fact at any simply connected subset of the ambient manifold. Heas@&point at
infinity, simply denoted by, is given by an open patf ¢ M such that, for any
compact sekK, there exists a compact s€t with K ¢ K’ andU \ K’ honempty
andsimplyconnected. Let; denote, as usual, the topological fundamental group
(functor).
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DEeFINITION (The fundamental group atinfinity). L& be a paracompact differ-
entiable manifold and assume there exists a base point at infifotyM, defined
by an open set/. We define the topological fundamental group at infinityMof
based at as:

(M, %) = |i£”| (M \ K,U\ K),

where the inverse limit is over the cofinal family of compact subgets M such
thatU \ K is simply connected, partially ordered by inclusion, and uses the natural
induced maps on the fundamental groups.

From now on we will often lightheartedly ignore the base points in the notation,
having done with the problem of base points at infinity as before. Let us very
briefly recall a few notions from the theory of Teichmuller and moduli spaces of
curves, essentially in order to fix notation. We refer to any standard textbook on
the subject (e.g. [IT]) for the necessary background information. For simplic-
ity we will mainly consider in this note the case of Riemann surfaces without
marked or deleted points, postponing to the closing remarks some observations
on the more general case. Yet in the intermediary steps, we will have to consider
surfaces with marked points anyway, so let us introduce the more general objects
right away. We will denote by, , the Teichmiiller space of compact Riemann
surfaces of typég, n), that is, those obtained from surfaces of gegulry mark-

ing n points. One may also consider, taking a hyperbolic rather than conformal
viewpoint, that the points are deleted, giving rise to surfaces with cuspsvl.gt

be the fine moduli space of surfaces of tygen) obtained as the quotient @j ,,

by the (Teichmdiller) modular group (alias mapping class grdyp) More pre-
cisely, T, , acts properly and discontinuously @p, with quotientM, ,. Since

the action is not free, the latter space naturally inherits an orbifold structure (a
structure of stack in the algebraic context). One can also “forget” about the orbi-
fold structure, thus getting a bona fide (in general normal but singular) manifold
M, ,, which is a coarse moduli space for the surfaces of te:). In all this

the points or punctures are labeled dpd denotes the pure modular group, pre-
serving the marked points individually. One can now allow permutations of these
points and obtain the full grou, ,,;, which is an extension of the permutation
groups, by the pure group’, ,. We also get the corresponding spagdés [, =
Ton/Te i) @nd M, [,;. Note that there is no notion of permuting the punctures
at the level of the Teichmuller space and that this operation is not a mere orna-
ment when one is interested in torsion elements, as we will be. The effect may be
dramatic: typicallyl'y , is torsion-free, whereas, ,,; is generated by its torsion
elements. Finally we mention that we dregrom the notation when it is 0: we
write T, for I’y o, and so on.

Let us now stick to the unmarked (or compact) case 0 for stating the re-
sults. As mentioned previously, marked surfaces reappear as intermediate objects
in the course of the proof (Section 2) and are briefly commented on again in the
closing section. By definitiomr;(M,) = I, where one considers the orbifold
fundamental group and assumes- 1 in order to deal with hyperbolic surfaces.
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One can actually also include = 0 becauseM, is a point (this is the Schon-
fliess theorem) and; >~ M, 1. For the coarse moduli spaces, Maclachlan [M]
proves that they are simply connected(M,) = {1} for g > 1 (in fact, one can
again include the casgs= 0, 1). This deals with the ordinary topological fun-
damental group, considering, as a manifold. In view of [A], this amounts to
saying thatl’, is generated by its torsion elements. Note that both results hold
in the algebraic context: if one considetd, as a Deligne—Mumford stack (see
[DMu]) over C (or overQ), its fundamental group is the profinite completion of
I,; whereas the coarse moduli spade, which is nothing else than, viewed
as a scheme, is simply connected. In [L] it is shown, confirming Grothendieck’s
prediction, thatr°(M,) ~ T, for g > 2. Note that the assertion is content-free
for ¢ = 0 and does not hold foF = 1 (even identifyingM; with M 1). To put
this result in context, it is best to state the result with marked points. Recall that
M, , has dimensiod (g, n) = 3g — 3+ n (assume g — 2+ n > 0, that s, the
surfaces are hyperbolic). With this in mind, it is shown in [L] that (M, ,) ~
Tyn (= m(M, ) if and only if d(g, n) > 2, which is indeed Grothendieck’s
prediction. This result is also valid if one does not label the marked points (re-
placen by [n] everywhere) and can be immediately transposed (as before) in the
algebraic context.

In this note we prove, at least for surfaces without marked points, a statement
that was left as a “plausible assertion” in [L]. In fact, we show the following.

THEOREM. 7{°(M,) = {1} (= m1(M,)) for g > 2andn{*(M,) ~ Z/5Z.

Section 2 is devoted to some geometrical properties that provide, much as in [L],
the crucial ingredients for the proof of the theorem. We recall and make precise
in passing some properties of the loci of curves with nontrivial automorphisms,
which may have some independent interest. In Section 3 we give the proof of the
theorem, including the determination of the fundamental group at infinity in the
case of genus 2; at the end, we briefly comment on the cases with marked points.

2. Some Geometry at Infinity on the
Moduli Spaces of Curves

We consider hyperbolic surfaces of fixed tyge n) (with 2¢g — 2+ n > 0) and
first recall some observations from [L]. Note that these purely geometric features
do not depend on whether we view the moduli spaces as being fine or coarse. First,
for e > O we define the sev;, , C M, , of points [X] € M, , representing sur-
facesX suchthatit has at least one geodesitith Iengthl(y) < ginthe Poincaré
metric. Fore < ¢’ there is an obvious inclusiaft; , C M'S and thus a natural
map between fundamental groups(M; ,) — nl(/\/la - As mentioned previ-
ously, one can replace the fine moctuM) by the coarse modu(iM ), which will
be used shortly.

By [Mu] (see also [B2]), the complements d¢(; , in M, , are compact
and form a cofinal sequence, that is, they exhaust the spégce. So one has
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m° (Mg ) = lim.om(Mg ). The same statement holds for coarse moduli
spaces Lep: Tgn — Mg, denote the canonical projection, and $g}, =
p~HM¢ ). One may show (see [L]) that:

(i) 7., is simply connected for any > 0; and

(i) there exists an absolute constaatsuch that, ife < ¢’ < &g, then TS
is a deformation retract of ?, ¢ and the retraction can be chosen tor!ge-
equwarlant thus producmg |n particular a diffeomorphism betweg, and
MS . From this one concludes that the sequence of group(s/\/lg 2))e=0
stab|I|zes fore < &o. In fact, one can picko = 3 In(1+ +/2). Again one
may replace fine with coarse moduli spaces.

We now turn more specifically to the case of coarse moduli spaces, which are
the subject of this note. By an elementary topological result [A], assertion (i) im-
plies (see again [L] for details) that(M; ,) = I, ,/G*, whereG* is the normal
subgroup ofl’, , generated by the s&t (T stands for “torsion”) of elements that
have a nonempty fixed point set when acting/gf). We thus have a decreasing
sequence of subgroup&¢),.o. By (ii), this sequence is stationary and wedgt
be the limit, so thaG = G*¢ for anye < gq. The following statement records
what we have so far.

PrROPOSITION 1. 71°(M, ) =Ty »/G, WhereG = G* for anye < .

In order to vindicate the description 6f given in [L] (see Proposition 2, which
follows), we bring in the relative Teichmuller and moduli spaces from [HM] and
[GH]. Leth e T, , be a nontrivial torsion element; we denote’hy, () the fixed
point set ofs, or equivalently of the finite cyclic grouph) it generates, acting

on 7, .. The elements of the modular group permute these relative Teichmiiller
spaces according to the familiar rulg( T, ,(h)) = T, .(fhf ™ for f € T
The stabilizer of7, ,(h) is thus the normalizer of the cyclic group) in Fg s
which we denote by, (k). The quotient], ,,(h)/T, ,(h) = /\;lg,n(h) is called

the relative moduli spaceAgain there is a fine and a coarse version, and by a
classical theorem of Cartan the underlying variety is normal. As a matter of fact,
if Mg .(h) = p(T,.(h)) denotes the image of the relative Teichmdiller space in
the moduli space, then one can show (see [GH]) Ib@t (h) is precisely the
normalization ofM, ,(h). In this setting the generating sEt introduced before
Proposition 1 can be described as

T = {/’l S ngn, Mg,n(h) N M;,n # Vj}

By a classical result of Nielsen, any elemér# T, ,, of finite order can be re-
alized as an automorphism of some Riemann surfaoétype (g, n). Let X' =
(X/{h))* denote the surface obtained by puncturing the quoiigtt) at the ram-
ification points of the covering — X/( ), and letX’ be of type(p, v). Then
(see [HM; GH]) one ha§, ,(h) =~ T, andMg «(h) is a finite cover ofM,, ,,.
As in [L], we call a torsion elememhaximalif its fixed point set is just a point—
that is, if 7, ,(h) has dimension zero, which is equivalent to saying iais a
thrice-punctured sphei@p, v) = (0, 3)).
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Now, since the order of an automorphism of a Riemann surface of given type
is bounded, one may use the elementary theory of coverings of Riemann surfaces
to find that there is only a finite number of surfaces having maximal automor-
phisms (i.e., whose underlying mapping classes are maximal). The lengths of
their geodesics are bounded from below by semg and so, for small enough
(indeed, fore < enmin), the setT'® doesnot contain any maximal element. The key
point of this section is that this accounts for the set of torsion elements that are ex-
cluded fromT? for ¢ small enough. In other words, our next goal is to prove the
following.

ProrosITION 2. For ¢ sufficiently small,T consists of the set aionmaximal
torsion elements. In particulag is the group generated by these elements.

In order to prove this we need two more geometric lemmas, leading to a geomet-
ric version (Proposition 3) of Proposition 2. For simplicity, we omit the subscript
(g, n) from the notation until the end of this section.

Lemma 1. For any giver, the family of subvarietieg (7 (1)) ser is locally fi-
nite. That is, for any point € 7, there is a neighborhood afthat meets only
finitely many of these subvarieties.

Proof. Sincel" acts properly discontinuously oh, there is an open sét con-
taining ¢ such thatU and f(U) are disjoint except for finitely many € I', say
ha, ..., h.. Now for any f,h € ' (h of finite order), f(T(h)) = T(fhf™b);
in other words, f(7(h)) is just the fixed point set of f ~. This implies that
UnN f(T(h)) C UN fhf XU), from which we infer that if this intersection is
nonempty therfif ~* = h; for somei € (1, ), and hencef (T (h)) = T(h;). O

LemMma 2. Foranyh e T of finite order, M (h) is a closed subvariety o%1.

Proof. We have to show that~X(M(h)) = User f(T(h)) is closed inT (p:
T — M the canonical projection). Lete 7 be in the closure op (M (h))
and let(z,,),, be a sequence of points pri(M(h)) converging tar. Applying
Lemma 1 and passing to a subsequence, we may assume that mlllibkng
to the same subvariety(7(h)) = T(fhf™1). But this last subvariety is well
known to be closed, which implies that actuallg f(7(h)) C p~X(M(h)) as
required. O

We are now prepared to deduce our next proposition.

ProrosiTION 3. If & is not a maximal torsion element if) then M (h) N M? #
¢ forall ¢ > 0.

Proof. The setsM \ M* are compact, as noted earlier (see [Mu] or [B1; B2]).
If the proposition did not hold theMM (k) would be a compact subvariety 8ff,
by Lemma 2. But the normalizatiof (#) of M is a finite cover of the moduli
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spaceM,, ,, where(p, v) is the type of the quotient surface (described previ-
ously) and this moduli space is not compact—exceppifv) = (0, 3), that is, if
h is maximal. O

The foregoing result, which can be rephrased by saying/tét) “extends to in-

finity” except if it has dimension 0, is the content of statement (i) in [L, p. 152].

It immediately implies the validity of Proposition 2; hence, using Propositions 1
and 2, in order to determine the fundamental groups at infinity of the coarse mod-
uli spaces we need only determine the subgroups of the modular groups generated
by the nonmaximal torsion elements.

3. Nonmaximal Torsion Elements in the
Teichmdller Modular Groups

We turn to the proof of the theorem stated in Section 1. The gase2 is now

easy, using results in [McP]. Recall that we are reduced to showing thgt @,

the modular groupy, is generated by nonmaximal torsion elements (this is state-
ment (i) in [L, p. 152]). In [McP] it is shown thal, is generated by involutions
(elements of order 2) that fix two pointsgfis even and four points i§ is odd.

By the Riemann—Hurwitz formula, the genera of the respective quotients are thus
g/2 and(g — 1)/2. This is enough to ensure that these generators are not maxi-
mal, which finishes the proof of the fact that the coarse moduli spade simply
connected fog > 2.

We now turn to the casg = 2, more precisely to showing that;(M,) =
Z/5Z. The key point is that one can reali, as the quotient of 3 by the action
of the cyclic groupCs = Z/5Z acting via a (nontrivial) fifth root of unity by
¢ - (21, 22, 23) = (Cz1, C%20, £323) (see [Ig, p. 638]). This representation comes,
of course, from the facts that (a) any genus-2 curve is hyperelliptic and (b) the co-
ordinateg; play a role that is analogous to the classicébr A) modular function
in the genus-1 case.

The origin inC2 is the only fixed point of thes-action (corresponding to the
curve X, with equationy? = x® — 1) that has a cyclic automorphism group of
order 10 generated hysuch that (x, y) = (¢x, —y). Botht andr? are maximal
torsion elements of;, (see [S]). We now have the following lemma.

LeEmMA 3. LetG c TI'; be the subgroup generated by the sefrafiximal or noj
torsion elements that are not conjugate to eithesr 2. ThenG = G.

Proof. We have thatG c G by definition. In the converse direction we first ob-
serve (see[S]) that, apart frokp, there are exactly two other curves with maximal
automorphisms. The first one is the cuirewith equationy? = x8 — 1 and auto-
morphism group of order 24, generated by two elemgraado of order 6 and 4,
respectively. Denoting bgs a primitive sixth root of unity, we can take(x, y) =
(¢ex,y) ando(x,y) = (x7%ix~3y). The quotient ofX; by o is a sphere and
there are four ramification values, sas not maximal. By the same token,is
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found to be maximal, buz = y“y 2 and one finds that both* and y 2 are not
maximal; thereforey and hence the full automorphism groupXafis contained
inG.

The other curve iX, with equationy? = x(x*—1). It has automorphism group
of order 48 generated by the three elementsrder 8),8 (order 3), and (order 2)
with p = a8 (see [K] or [C]). One can again give explicit equations (see [C] for
a detailed study of the automorphism groups of curves of genus 2), but for our
purpose it is enough to observe that, because of their respective erderd s
cannot be maximal. This implies that the full automorphism groufofs con-
tained inG, completing the proof of the lemma. O

In order to prove the assertion in the theorem for the case of genus 2, let us in-
troduce the punctured spadé;, which is M, with the point corresponding to

the curveX, removed (i.e., the origin i€ in the representation of Igusa [lg]
recalled previously). Thus we have thit; ~ (C3\ {0})/Cs and alsoM}; =~
T,*/T2, where of coursé/,* denotes the Teichmuller space of genus 2 with the
fiber p~1(X,) deleted. Let us use these two representations to compute the fun-
damental group o3 in two ways. First, by standard covering theory applied
to Igusa’s representation, we find thai(M;) = Cs. On the other hand, since
p~X(Xo) is simply connected, the result of [A] implies that(M}) = Iy/G.
SinceG = G (by Lemma 2) we find indeed th& /G = Cs, thus finishing the
proof of the assertion of the theorem® (M) ~ m(M3) = Z/5Z. O

We note that the proof actually shows th&f (M») is generated by the mapping
classt?. It also shows that any set of generatorsKierconsisting of elements of
finite order must contain a conjugated, which is a little more precise than say-
ing thatT"; cannot be generated by nonmaximal torsion elements.

We close with a short comment on the case of surfaces with marked points. Let
(g, n) be a given type and l&, [, be the coarse moduli space of surfaces of that
type, where the points aretindividually labeled, so giving rise to the full group
1_‘g,[n] (= 7TZI.(-/\/LE{,[H]))-

The following result seems to hold:{° (M, 1)) = {1} for g > 2. This would
follow just as the assertion of the theorem for- 2 from the closing remark in
[Pa], which states thdt, [, (g > 2) is generated by involutions. These cannot
be maximal. In fact, ifs is such an involution for a Riemann surfagethen the
quotientS/(h) either has genus 0 or (if it has genus= 0) S is hyperelliptic and
h is the hyperelliptic involution. In the latter cagefixes 2g + 2 > 3 points (with
g the genus of) and is thus again not maximal.
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