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1. Introduction and Preliminaries

In this paper we explore the structure of limit setsJ of infinite conformal iterated
function systems whose closure is a continuum (compact connected set). Under
a natural easily verifiable technical condition (always satisfied if the system is fi-
nite), we demonstrate the following dichotomy. Either the Hausdorff dimension
of J exceeds1or elsēJ is a proper compact segment of either a geometric circle or
a straight line ifd ≥ 3 or an analytic interval ifd = 2 (see Theorem 1.3). From the
viewpoint of conformal dynamics, this result can be thought of as a far-reaching
generalization of results originated in [S] and [B], which are formulated in the
plane case. The proofs contained there use the Riemann mapping theorem and
can be carried out only in the plane. The proof presented in our paper is different
and holds in any dimension. The reader is also encouraged to notice an analogy
between our result and a series of other papers (see e.g. [B; FU; MU1; Ma; P; R;
S; U1; UV; Z1; Z2]), which are aimed toward establishing a similar dichotomy.
However, to our knowledge, all these results—just as those in [B] and [S]—were
formulated in the plane and used the Riemann mapping theorem, except those in
[MU1]. The current result is, however, much stronger than that in [MU1]; in par-
ticular, with our present approach the main result of [MU1] can be strengthened as
described at the end of this section. Another corollary of our result is the follow-
ing: If a continuumC in Rd is the self-conformal set generated by finitely many
conformal mappings satisfying the open set condition, if the Hausdorff 1-measure
of C is finite, and if one of the mappings is a similarity, then the continuum is a
line segment. This holds in particular if all the maps are similarities, a result ob-
tained early on by Mattila [Ma].

To start the preliminaries, letI be a countable index set with at least two ele-
ments and letS = {φi : X → X : i ∈ I } be a collection of injective contractions
from X into X for which there exists 0< s < 1 such thatρ(φi(x), φi(y)) ≤
sρ(x, y) for everyi ∈ I and for every pair of pointsx, y ∈X. Thus, the system
S is uniformly contractive. Any such collectionS of contractions is called anit-
erated function system(IFS). We are especially interested in the properties of the
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limit set defined by such a system. We define this set as the image of the coding
space under a coding map as follows. LetI ∗ =⋃n≥1I

n, the space of finite words,
and forτ ∈ I n (n ≥ 1) let φτ = φτ1 B φτ2 B · · · B φτn . Let I∞ = {{τn}∞n=1} be the
set of all infinite sequences of elements ofI. If τ ∈ I ∗ ∪ I∞ and ifn ≥ 1 does not
exceed the length ofτ, then we denote byτ |n the wordτ1τ2 . . . τn. Since the di-
ameters of the compact setsφτ |n(X) (τ ∈ I∞, n ≥ 1) converge to zero and since
they form a descending family, the set

∞⋂
n=0

φτ |n(X)

is a singleton; therefore, denoting its only element byπ(τ), we define the coding
map

π : I∞ → X.

The main object in the theory of iterated function systems is the limit set defined
as

J = π(I∞) =
⋃
τ∈I∞

∞⋂
n=1

φτ |n(X).

Observe thatJ satisfies the natural invariance equality,J =⋃i∈I φi(J ). Notice
that if I is finite thenJ is compact and this property fails for infinite systems. Let
S(∞) be the set of limit points of all sequencesxi ∈ φi(X), i ∈ I ′,whereI ′ ranges
over all infinite subsets ofI. The following was proved in [MU2].

Proposition 1.1. If lim i∈I diam(φi(X)) = 0, thenJ̄ = J ∪⋃ω∈I∗ φω(S(∞)).
An iterated function systemS is said to beconformalif X ⊂ Rd for somed ≥ 1
and the following conditions are satisfied.

(1a) Open set condition (OSC):φi(IntX)∩φj(IntX) = ∅ for every pairi, j ∈ I,
i 6= j.

(1b) There exists an open connected setV such thatX ⊂ V ⊂ Rd and such that
all mapsφi (i ∈ I ) extend toC1 conformal diffeomorphisms ofV into V.
(Note: ford = 1, this just means that all the mapsφi, i ∈ I, areC1 mono-
tone diffeomorphisms; ford = 2, the wordsconformalmean holomorphic
or antiholomorphic; ford ≥ 3, the mapsφi, i ∈ I, are Möbius transforma-
tions. The proof of this last claim can be found e.g. in [BP], where it is called
Liouville’s theorem.)

(1c) Cone condition: There existα, l > 0 such that, for everyx ∈ ∂X ⊂ Rd ,
there exists an open cone Con(x, u, α) ⊂ Int(X) with vertexx, where the
symmetry axis is determined by a vectoru ∈ Rd of length l and a central
angle of Lebesgue measureα. Here Con(x, u, α) = {y : 0 < (y − x, u) ≤
cosα‖y − x‖ ≤ l}.

(1d) Bounded distortion property (BDP): There existsK ≥ 1 such that

|φ ′τ(y)| ≤ K|φ ′τ(x)|
for everyτ ∈ I ∗ and every pair of pointsx, y ∈V, where|φ ′τ(x)| denotes the
norm of the derivative.
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Under these assumptions, it was shown in [MU2] that the hypothesis of Proposition
1.1 holds and we can change the order of the union and intersection operations to
obtain

J = π(I∞) =
⋂
n≥1

⋃
|τ |=n

φτ(X).

In fact, throughout the whole paper we will need one additional condition, which
(cf. [MU2]) can be considered as a strengthening of the BDP.

(1e) There are two constantsL ≥ 1 andα > 0 such that∣∣|φ ′i(y)| − |φ ′i(x)|∣∣ ≤ L‖φ ′i‖|y − x|α
for everyi ∈ I and every pair of pointsx, y ∈V.

We remark that, in the cased ≥ 3, conditions (1d) and (1e) are always satisfied—
the latter withα = 1.

Let us first collect some geometric consequences of the BDP. For all wordsτ ∈
I ∗ and all convex subsetsC of V we have

diam(φτ(C)) ≤ ‖φ ′τ‖diam(C) (1.1)

and
diam(φτ(V )) ≤ D‖φ ′τ‖, (1.2)

where the norm‖ · ‖ is the supremum norm taken overV and whereD ≥ 1 is a
universal constant. Moreover,

diam(φτ(J )) ≥ D−1‖φ ′τ‖ (1.3)

and
φτ(B(x, r)) ⊃ B(φτ(x),K−1‖φ ′τ‖r) (1.4)

for everyx ∈X, every 0< r ≤ dist(X, ∂V ), and every wordτ ∈ I ∗.
Let us state now an important geometrical feature of conformal systems that is

related to the bounded distortion property. A detailed proof of this fact can be ob-
tained by a slight improvement of Lemma 6 in [MU1].

Lemma 1.2. For everyβ > 0 and every0 < α < β there exists anη > 0 such
that, for everyx ∈X, everyu∈Rd with ‖u‖ ≤ η, and everyω ∈ I ∗, we have

φω(Con(x, u, α)) ⊂ Con(φω(x),2φ
′
ω(x)u, β).

Let us now recall from [MU2] that a Borel probability measurem is said to bet-
conformalif m(J ) = 1 and if, for every Borel setA ⊂ X and everyi ∈ I,

m(φi(A)) =
∫
A

|φ ′i |t dm
and

m(φi(X) ∩ φj(X)) = 0

for every pairi, j ∈ I, i 6= j. It was proved in [MU2] that if at-conformal mea-
sure exists thent = h, the Hausdorff dimension of the limit setJS of S, and that
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this measure is unique. The systemS is calledregular if a conformal measure
exists. The main result of our paper is the following.

Theorem 1.3. If d ≥ 3, S = {φi}i∈I is a conformal IFS,J̄ is a (compact con-
nected) continuum, anddimH (S(∞)) < dimH (J ), then: either

(a) dimH (J ) > 1; or
(b) J̄ is a proper compact segment of either a geometric circle or a straight line.

In addition, if any one of the mapsφi is a similarity mapping thenJ̄ is a line
segment.

We note that the technical condition in Theorem 1.3 is necessary. Example 5.2 of
[MU2] shows that the dichotomy of Theorem1.3 fails in general if dimH (S(∞)) ≥
dimH (J ). We also mention that, once the first part of this theorem is proved, the
“in addition” part follows immediately from the proof of Lemma 2.5.

We would also like to remark that, in the cased = 2, for everyi ∈ I we have that
φii is a holomorphic map that is biholomorphically conjugate with the linear map
ψ(z) = xii + φ ′(xii)(z − xii) on some neighborhoodW of xii . Proceeding then
similarly as in the proof of Theorem 1.3, we could demonstrate the same statement
with the segment of the line or the circle replaced by an analytic arc.

Because the setS(∞) is empty in the finite case, from Theorem 1.3 we may
immediately deduce the following.

Corollary 1.4. If d ≥ 2, S = {φi}i∈I is a finite conformal IFS, and̄J is a con-
tinuum, then: either

(a) dimH (J ) > 1; or
(b) J̄ is a proper compact segment of either a geometric circle or a straight line.

In addition, if any one of the mapsφi is a similarity mapping thenJ̄ is a line
segment.

We note that the methods of this paper can be used to strengthen the theorem [MU1,
p. 88], which concerns conformal repellers, by replacing the words “smooth Jor-
dan curve” by “geometric circle” ifd ≥ 3 or by “a real-analytic Jordan curve” if
d = 2.

2. Proof of Theorem 1.3

The proof of this theorem will consist of several steps. First of all we assume in the
sequel that the assumptions of Theorem 1.3 are satisfied and dimH (J ) = 1. Our
goal is to show that then item (b) is satisfied. Since dimH (S(∞)) < dimH (J ) =
1 andJ̄ is a continuum, we conclude using Proposition 1.1 thatH1(J ) > 0. It
therefore follows from [MU2, Thm. 4.16] that the systemS is regular. Letm
be the corresponding 1-conformal measure. By [MU2, Lemma 4.2] and since
dimH (S(∞)) < dimH (J ) = 1, the 1-dimensional Hausdorff measureH1 on J̄ is
absolutely continuous with respect tom anddH1/dm is uniformly bounded away
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from infinity. Hence,J̄ is a continuum whoseH1 measure is finite. The following
fact then follows from [EH] and [W].

Lemma 2.1. J̄ is a locally arcwise connected continuum.

Givenx ∈Rd , θ ∈PRd , andγ > 0, we put

Con(x, θ, γ ) = Con(x, η, γ ) ∪ Con(x,−η, γ ),
whereη ∈Rd is a representative ofθ ∈ PRd . We recall that a setY has a tangent
in the directionθ ∈PRd at a pointx ∈ Y if, for everyγ > 0,

lim
r→0

H1
(
Y ∩ (B(x, r) \ Con(x, θ, γ ))

)
r

= 0.

We will consider only tangents of 1-sets (the preceding setJ̄ ; this definition co-
incides with the definition given in [Fa, p. 31]). Following [MU1], we say that a
setY has astrong tangentin the directionθ ∈ PRd at a pointx provided that, for
each 0< β ≤ 1, there is somer > 0 such thatY ∩ B(x, r) ⊂ Con(x, θ, β). In
[MU1] we proved the following.

Theorem 2.2. If Y is locally arcwise connected at a pointx and ifY has a tan-
gentθ at x, thenY has strong tangentθ at x.

We call a pointτ ∈ I∞ transitiveif ω(τ) = I∞, whereω(τ) is theω-limit set of
τ under the shift transformationσ : I∞ → I∞. We denote the set of these points
by I∞t and put

Jt = π(I∞t ).
We call theJt the set of transitive points ofJ and notice that, for everyτ ∈ I∞t ,
the set{π(σ nτ) : n ≥ 0} is dense inJ (or in J̄, if this is the space under consid-
eration).

Lemma 2.3. If J̄ has a strong tangent at a pointx = π(τ), τ ∈ I∞, thenJ̄ has
a strong tangent at every pointπ(ω(τ)).

Proof. Suppose on the contrary thatJ̄ does not have a strong tangent at some point
y ∈π(ω(τ)). Let θ ∈PRd be the tangent direction of̄J atx and let{nk}∞k=1 be an
increasing sequence of positive integers such that limk→∞ π(σ nk τ ) = y. Passing
to a subsequence, we may assume that

lim
k→∞

(
φ−1
ω|nk

)′
(x)∣∣(φ−1

ω|nk

)′
(x)
∣∣θ = ξ

for someξ ∈ PRd . SinceJ̄ does not have a strong tangent aty, it follows that
there exists 0< β ≤ 1 such that, for everyr > 0,

J̄ ∩ B(y, r) \ J̄ ∩ Con(y, ξ, β) 6= ∅.
Then
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J̄ ∩ B(π(σ nk τ ), r) \ J̄ ∩ Con(π(σ nk τ ), ξk, β/2) 6= ∅ (2.1)

for all k large enough, where

ξk =
(
φ−1
ω|nk

)′
(x)∣∣(φ−1

ω|nk

)′
(x)
∣∣θ.

But in view of Lemma 1.2 applied toφ−1
ω|nk
, we see that

φω|nk

(
B(π(σ nk τ ), r) \ Con(π(τ), ξk, β/2)

)
⊂ B(x, r∥∥φ ′ω|nk

∥∥) \ Con

(
x,

φ ′ω|nk
(π(σ nk τ ))∣∣φ ′ω|nk
(π(σ nk τ ))

∣∣ξk, β4
)

= B(x, r∥∥φ ′ω|nk

∥∥) \ Con(x, θ, β/4)

holds for all r > 0 small enough. In view of (2.1),̄J ∩ φω|nk

(
B(π(σ nk τ ), r) \

Con(π(σ nk τ ), ξk, β/2)
) 6= ∅ and so we conclude that, for everyk large enough,

J̄ ∩ (B(x, r∥∥φ ′ω|nk

∥∥) \ Con(x, θ, β/4)
) 6= ∅. Since limk→∞

∥∥φ ′ω|nk

∥∥ = 0, this im-
plies thatθ is not the strong density direction ofJ̄ atx. This contradiction finishes
the proof.

Corollary 2.4. The continuumJ̄ has a strong tangent at every point.

Proof. SinceH1(J̄ ) <∞, in view of [Fa, Cor. 3.15] we see that̄J has a tangent
atH1-a.e. point inJ̄ and hence at a set of points of positivem measure. Since
m(Jt ) = 1, there must exist at least one transitive pointx in J having a tangent
of J. By Theorem 2.2 and Lemma 2.1,̄J has a strong tangent atx; it then fol-
lows from Lemma 2.3 that̄J has a strong tangent at every point. The proof is
complete.

Now, the following lemma finishes the proof.

Lemma 2.5. Suppose thatφ : Rd → Rd , d ≥ 3, is a conformal diffeomorphism
that has an attracting fixed pointa (φ(a) = a, |φ ′(a)| < 1). Suppose that a
compact connected setM has a strong tangent ata, that φ(M) ⊂ M, and that
lim n→∞ φn(x) = a for all x ∈M. ThenM is a segment of aφ-invariant line or
circle. If φ is affine(φ(∞) = ∞), then the former possibility holds.

Proof. Sincea is an attracting fixed point ofφ, there exists a radiusr > 0 so
small thatφ−1(Rd \ B(a, r)) ⊂ Rd \ B(a, r), whereRd is the Alexandrov com-
pactification ofRd achieved by adding the point at infinity. SinceRd \ B(a, r) is
a topological closed ball, it follows (in view of the Brouwer fixed point theorem)
that there exists a fixed pointb of φ−1 inRd \B(a, r). Henceb is also a fixed point
of φ andb 6= a. Then the map

ψ = ib,1 B φ B ib,1
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(ib,1 equals identity ifb = ∞) fixes∞, which means that this map is affine, and
w = ib,1(a) is an attracting fixed point ofψ. In additionψ(M̃ ) ⊂ M̃, whereM̃ =
ib,1(M), w ∈ M̃, andM̃ has a strong tangent atw. Let l be the line throughw de-
termined by the strongly tangent direction ofM̃ atw. Sinceψ(w) = w, since
ψ(l) is a straight line throughw, and sinceψ(M̃ ) ⊂ M̃, we conclude thatψ(l) =
l. Suppose now that̃M is not contained inl. Considerx ∈ M̃ \ l. Then, for every
n ≥ 0,

ψ n(x)∈ψ(M̃ ) \ ψ(l) ⊂ M̃ \ l;
since the mapψ is conformal and affine, we have

∠(ψ n(x)− w, l) = ∠(ψ n(x − w),ψ n(l)) = ∠(x − w, l).
Since limn→∞ ψn(x) = w, we therefore conclude thatl is not a strongly tangent
line of M̃ atw. This contradiction shows that̃M ⊂ l. SinceM̃ is also a contin-
uum, it is a segment ofl. We are done.

Indeed, to conclude the proof of Theorem 1.3 it suffices to pick an arbitrary index
i ∈ I (affine if it exists) and to putφ = φi, M = J̄, anda = xi, the only attracting
fixed point ofφi belonging toJ.
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