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Valuative Arf Characteristic of Singularities

Antonio Campillo & Julio Castellanos

1. Introduction

The proof by Hironaka [5] of resolution of singularities of algebraic varieties over
fields of characteristic zero raised the problem of classifying singularities by look-
ing at the resolution process. Thus, equisingularity of plane curve singularities
was introduced and developed by Zariski in [15] by showing that the combina-
torics of the resolution processes is equivalent data to Puiseux invariants, that is,
the numerical data consisting of the Puiseux exponents of the branches and the in-
tersection multiplicities among pairs of branches. For space curves, it is known
that the combinatorics of the resolution processes is equivalent data to theArf char-
acteristic (see [5]). Arf closure lies between the singularity and its normalization,
and its definition can be given in terms of the set of valuations centered at the sin-
gularity. Notice that, since those valuations correspond one-to-one to branches of
the curve, the aforesaid set is finite and is canonically associated to the singularity.

In higher dimension the situation becomes much more complicated, as the reso-
lution of singularities is not unique at all. In this paper we define the Arf character-
istic for schemes of arbitrary dimensions. We define Arf closure relative to a finite
set of valuations centered at a singularity and study its algebraic-geometric proper-
ties. Using appropiate canonically defined sets of divisorial valuations, we define
thevaluative Arf characteristic of singularity(note that it is not related at all to the
well-knownArf invariantsof theZ2 quadratic form associated topologically with
the link of plane curve singularities). These invariants can be viewed as a gener-
alization of Puiseux characteristic to higher dimensions. Arf closure relative to a
single divisorial valuation was introduced in [2], showing that the corresponding
invariants describe the geometry of certain arcs on the singularity.

There are two natural sets of valuations canonically associated to a singularity.
First, one can associate the so-called essential valuations: those valuations that
appear explicitly at every resolution. For surface singularities one has a minimal
resolution, so that the essential valuations are nothing but the divisorial valuations
centered at the components of the exceptional divisor of the minimal resolution.
For dimension higher than two, essential valuations are not determined except in
a few cases (see e.g. [1]). A result by Nash of 1964 (recently published in [10])
shows that the set of essential valuations contains the set of valuations coming
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from the components of the space of arcs. The Nash conjecture states that both
sets are equal, but it is only established for a certain subclass of rational surface
singularities containing the minimal ones (see [11]). Thus, in practice, what one
has associated to a singularity is the set of valuations given by the components of
the space of arcs. For recent work on space of arcs, see [4] and [6].

Second, one can consider the set of Rees valuations of canonically associated
ideals to the singularity, such as, for instance, the Jacobian ideal. Rees valuations
of an ideal are nothing but the divisorial valuations given by the components of the
exceptional divisor of the normalized Nash blow-up of the ideal (the Nash blow-up
in the case of the Jacobian ideal). When the singularity is embedded in a smooth
space, the Jacobian ideal can be alternatively considered on that smooth space and
then the corresponding Arf characteristic can be better interpreted in geometric
terms. Thus, for isolated hypersurface singularities we will show how these in-
variants are finer than the polar invariants of the singularity introduced in [14]. For
general singularities one has a good theory of equisingularity due to Teissier [13],
which applies to families and which uses as invariants appropriate extensions of
the polar invariants.

This paper presents the algebraic-geometric theory of the Arf characteristic rel-
ative to finite sets of divisorial valuations. We first introduce the algebraic notion
of Arf closure and use it to define the Arf characteristic. Then we show how the
invariants can be interpreted in terms of the geometry of sets of arcs transversal to
corresponding divisors. For the case of valuations on smooth varieties, Arf invari-
ants can be related to the proximity relations among points obtained by blowing
up centers of the valuations under consideration. Finally, for Rees valuations asso-
ciated to a primary ideal on a smooth variety, we show that the Arf characteristic
is related to the geometry of the curves given as a complete intersection of hyper-
surfaces defined by general elements of the ideal.

Both authors thank the University of California at Santa Cruz for its hospitality
while this paper was being written.

2. Arf Closure with Respect to Discrete Valuations

LetK be a commutative field andv = {v1, . . . , vd} a set of pairwise different dis-
crete rank-1 valuations onK; letRvi = {x ∈K : vi(x) ≥ 0} andmvi = {x ∈K :
vi(x) > 0} be the corresponding valuation rings and their respective maximal
ideals.

ConsiderRv =⋂d
i=1Rvi and a subringB ⊂ Rv with quotient fieldK. For each

i (1≤ i ≤ d ), the center ofvi at Specv(B) is defined to be the prime idealpi =
mvi∩B ∈Spec(B).Thus, associated with the pair(B, v)we have the set SpecvB =
{p1, . . . , pd}, that is, the image of the natural mapping SpecMax(Rv)→ Spec(B),
which we will calledthe valuation spectrumof B. Note that #Spec(B) ≤ d and
that equality holds if and only if the centers inB are different. Also note that
pi is not the zero ideal for everyi, since otherwise one would haveQ(B) =
K ⊆ Rv.
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A subringC ⊂ Rv will be said to beArf with respect tov if it has the following
property:

(A) If z, z1, z2 ∈ C with z 6= 0 and if vj(zh) ≥ vj(z) for h = 1,2 andj =
1,2, . . . , d, thenz1z2z

−1∈C.
For a subringB ⊂ Rv with quotient fieldK, theArf closure ofB with respect

to v is defined to be the smallest Arf subring ofRv containingB. Let us denote by
R ′vB (or simplyB ′, if the reference to the valuations is obvious) the Arf closure
of B with respect tov.

The following result gives us the first properties ofB ′.

Theorem 2.1. GivenB,B ′ and v as just described, the following statements
hold.

(i) The mappingSpecvB ′ → SpecvB is bijective. Moreover, ifp andp′ are the
corresponding elements inSpecvB and SpecvB ′, thenk(p) = k(p′) (here
k(−)) stands for the residue field).

(ii) SpecvB
′ is the maximal spectrum forB ′ (in particular, the topology on

SpecvB ′ is the discrete one).

Proof. (i) Obviously, the map is onto, so we have to check the injectivity. Take
p∈SpecvB and consider the setH = {i : mvi ∩B = p}.We buildB ′ =⋃∞h=1Bh,

whereB0 = B andBh+1 is the subring ofRv consisting of the sum of elements of
typew = z1z2z

−1, with z, z1, z2 as in (A) and belonging toBh. It suffices to show
that, for everyh∈Z+,we havemvj ∩Bh = mvi ∩Bh if j, i ∈H. We prove this by
induction onh. The statement is obvious forh = 0. For the induction step, take
w = w1+· · ·+wr (withwt of the above type) and setw = w ′ +w ′′, wherew ′ is
the sum of thosez1z2z

−1 such thatvj(z) = vj(z1) = vj(z2) = 0 for somej ∈H.
Now, if j ∈H andvj(w) > 0 thenvj(w ′) > 0. By removing denominators inw ′
we obtain an expression inBh with vj -value greater than 0, so by the induction hy-
pothesis itsvi-value is greater than 0, too. Hence we can insert the denominators
and obtainvi(w ′) > 0. This shows thatmvj ∩ B ′h+1= mvi ∩ B ′h+1 as required.

Using the same kind of induction, it is easy to show that, for corresponding
p, p ′, both of the domains are related by the natural mappingB/p → B ′/p′ and
have the same residue field, sok(p) = k(p′).

(ii) First we consider the multiplicative setS = B−⋂d
i=1pi; then we haveB ′ =

(S−1B)′. This follows from the fact that ifs ∈ S thenvi(s) = 0 for i = 1, . . . , d,
sos−1 = 1 · 1 · s−1∈B ′. From the same argument, the units inB ′ are exactly the
elements inB ′ −⋂d

i=1p′i with p′i = mvi ∩ B ′, soB ′ has finitely many maximal
ideals—exactly those maximal ideals in the set SpecvB

′. Moreover, let us show
that, in fact, eachp′i is a maximal ideal. Consider the setL = {j : pj ⊆ pi}, and
takes ∈ (⋂j /∈L pj

)− pi andy ∈ (⋂j∈L pj
)

with y 6= 0. Note that, by replacings
by some power ofs,we can assumevj(y) ≤ vj(s) for j /∈L. Thus, for everyj we
havevj(s2+y) ≤ vj(s), so from (A) we gety(s2+y)−1= 1− s2(s2+y)−1∈B ′.
Now, sincevi(y(s2 + y)−1) > 0 andvj(y(s2 + y)−1) = 0 if j /∈L, we conclude
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thatp′i * p′j for j /∈ L; for j ∈ L, on the other hand,p′i ⊆ p′j impliespi = pj .

Thus,p ′i is maximal in SpecvB ′ and hence is a maximal ideal inB ′.

Remark 2.1. The theorem shows that, if we setp′i = mvi ∩ B ′ for i = 1, . . . , d,
thenpi = pj if and only if p′i = p′j, since the residue fields forpi andp′i are the
same. On the other hand, ifpi 6= pj thenp′i * p′j andp′j * p′i , although we may
havepi ⊂ pj . Thus, one concludes that Arf closure eliminates the specialization
relations between the centers.

The preceding remark will allow to us to separate subsets of valuations having the
same center. Later, we will see how—after sucessive blowing up of centers—one
derives a complete separation of the valuations of the considered set.

Takep∈SpecvB and consider the set of valuations

v(p) = {vi : mvi ∩ B = p}
and the correspondingRv(p).

First, we haveB ⊂ B ′ ⊂ R ′v(p)B andB ′p′ ⊂ Rv(p). We claim thatB ′p′ is Arf rel-
ative tov(p). From the claim one may conclude thatR ′v(p)B = R ′v(p)Bp ⊂ B ′p′ .
In fact, sincev(p) = {vi : mvi ∩ B ′ = p′} for the correspondingp, if H = {i :
vi ∈ v(p)} then we can takes∗ ∈ (⋂j /∈H p′j

) − p′. Now, if z1s
−1
1 , z2s

−1
2 , zs

−1 ∈
B ′p′ with vi(zh) ≥ vj(z) for i ∈ H andh = 1,2, then for someq ∈ Z+ we have
vj(z1(s

∗)q), vj(z2(s
∗)q) ≥ vj(z) for j = 1, . . . , d. Thus,z1(s

∗)qz2(s
∗)qz−1∈ B ′

and hence(z1s
−1
1 )(z2s

−1
2 )(zs

−1)−1∈B ′p′ as required.
Second, we haveB ′p′ ⊂ R ′v(p)B becauseR ′v(p)B is Arf with respect tov, so

B ′ ⊂ R ′v(p)B and henceB ′p′ ⊂ R ′v(p)B.
One concludes thatR ′v(p)B = B ′p′ . Moreover, the dataB ′ = R ′vB are equiva-

lent data toR ′v(p)B for all p ∈ SpecvB. This follows from the obvious fact that
B ′ =⋂B ′p′ .

This leads us to analyze the case in which SpecvB consists of only one idealp,
that is, where all the valuations have the same center inB. We also will assume
thatB is Noetherian and thatB/p is infinite; in particular, we can pick an element
x ∈ p such thatvj(x) = vj(p), j = 1, . . . , d. Blow upp to obtain a schemeX1 =
Blp Spec(B) and a proper mappingX1→ X = Spec(B); thus, the center of each
vj onX1 lies in the affine open set Spec(B[p/x]) of X1. We now consider the Arf
closureB ′1 of the subringB1 = B[p/x] of Rv. By property (A), it follows that
B ′1 does not depend on the choice ofx; therefore, it will be called the Arf closure
of X1 with respect toRv. In fact, it is nothing but the Arf closure of the localiza-
tion ofB1 at the complement of the union of the prime ideals in SpecvB1, and this
localization is nothing but the intersection of the local rings ofX1 at the centers of
the valuations.

Next, we will compare Arf closure forX andX1. First, let us analyze the struc-
ture of an Arf ringC relative tov.

We consider the semigroup of values

S(C) = {(v1(z), . . . , vd(z)) : z∈C, z 6= 0} ⊂ Nd .
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Now, for eachm ∈ S(C) we have a new ringC(m) defined as follows: Takez ∈
C such that(v1(z), . . . , vd(z)) = m; then

C(m) = {w ∈Rv : wz∈C}.
SinceC is Arf, it is easy to check thatC(m) is a subring ofRv that is Arf and does
not depend on the choice ofz.

Now, coming back to the preceding situation, for the Arf closureB ′ of B we
have that, ifn = (v1(x), . . . , vd(x)) is the minimum element inS(B ′)−{0}, then
consideringB ′(n) leads to the following.

Proposition 2.1. Arf closure and blowing up at the centers of the valuations
commute. That is,

B ′(n) = B ′1.
Proof. First,B ′(n) is Arf and containsB ′1. Now consider the set

C = [(B − p)+ xB ′1 ∪ xB ′1]T ,

whereT is the multiplicative closed set given byT = (B − p) + xB ′1. One has
thatC is an Arf ring, andB ⊂ C soB ′ ⊂ C. By construction,C(n) = B ′1, so
B ′(n) ⊂ B ′1.

3. Valuative Arf Characteristic

We now assume thatB is a Noetherian domain and thatB/p is infinite for every
p∈SpecvB. Consider the Arf closureB ′ of B relative tov.

The first invariant obtained from the Arf characteristic ofB ′ is thesemigroup
of valuesS(B ′) ⊂ Nd . To analyze the properties of this semigroup, consider the
setI = {1,2, . . . , d} and the partitionI =⋃H(p), whereH(p) = {i : vi ∈ v(p)}
andp∈SpecvB. The partition can be deduced from the semigroup, since it is the
partition associated to the equivalence relation

i ∼ j ⇐⇒ ∀a ∈ S(B ′), pri(a) = 0 iff prj(a) = 0.

Now, if d(p) = #H(p), then the semigroup of values ofR ′v(p)B = B ′p′ is con-
tained inNd(p) and the relation just displayed has only one equivalence class (we
will call these semigroupslocal). Moreover, after relabeling the indices, we have

S(B ′) =
∏

p∈SpecvB

S(B ′p′).

In fact, in order to check the nontrivial part of this equality, takeap ∈ Nd(p) and
x ∈B ′p′ such thatap is thev(p)-value ofx. Note thatx can be chosen to be inB ′

because the values of elements inB ′ − p′ are zero. Now, picky ∈ B with y ∈ p′
and such that, for anyq′ ∈ SpecvB ′, we havey ∈ q′ iff x /∈ q′ (this is possible
since the elements of SpecvB

′ are maximal ideals). Considerx ′ = x + y h for h
large enough; thenap is thev(p)-value ofx ′, and thev(q)-values ofx ′ are zero
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for q 6= p. Thus, every element in the product semigroup is the sum ofv-values
of elements of this form and hence belongs toS(B ′).

Note that the decomposition ofS(B ′) as a product of local semigroups is unique,
so the datumS(B ′) is equivalent to the set of local semigroupsS(B ′p′).

Observe also that the semigroups and local semigroups considered have theArf
property: for any a, b, c in the semigroup witha ≥ c andb ≥ c, we have that
a+b−c is in the semigroup. To each one of these local semigroups (or the classes
H(p)) we associate theresidue fieldk(p′) = B ′/p′.

Next, suppose that SpecvB consists of only one elementp. We can define the
valuen = min(S(B ′ − {0})) and the Arf ringB ′(n). Now everything can be re-
peated forB ′(n) instead ofB, and thus we have a partition ofH(p) into classes;
the semigroup ofB ′(n) is a product of local semigroups, and associated to each
factor we have a residue field. We remark that (i) the new residue fields are exten-
sions ofk(p) and (ii) the semigroup ofB ′(n) is easily deduced fromS(B ′), since
in general fora ∈ S(B ′) we have

S(B ′(a)) = {m∈Nd : m+ a ∈ S(B ′)}.
Going on recursively, we obtain a set of invariants consisting of the precedingres-
idue fields( field extensions ofk), each of which is associated with any valuen of
the semigroupS(B ′).

We will refer the semigroupS(B ′) and those residue fields as thevaluative Arf
characteristic ofB (Arf characteristic) with respect tov or simply as thevaluative
Arf characteristic (Arf characteristic) ofB.

4. Arf Characteristic and Transversal Curves to Divisors

Next we will relate the Arf characteristic forB with respect tov with geometric
properties of successive blow-ups of Spec(B) = X. Consider the valuations ofv,
and blow up sucessively the centers of anyvi. That is, considerξα (α ∈60), the
centers of all thevi atX, and letXα1 be the blow-up ofX at ξα; for anyα ∈ 60

considerξβ1 (β ∈6α1), the centers ofvi atXα1, and letXβ2 be the blow-up ofXα1

at the centerξβ1; and so on. We have a forest of integral schemes and proper bi-
rational morphisms and centersξδh of vi atXδh, composed by trees, each of them
corresponding with any different center inX.

Then we can associate toB andv a weighted forest associated as just described.
VerticesPδh correspond with anyXδh, and edges connectXδh withXλh+1 if Xλh+1

comes fromXδh by blowing up the center of somevj . The weight at the vertex
Pδh is the pair (

(vi1(mXδh,ξδh ), . . . , vis (mXδh,ξδh )), k(ξδh)
)
.

We call this forestthe Arf forest ofB with respect tov. Then, by Section 3, the
Arf forest ofB is equivalent data to the Arf characteristic. In fact, at each vertex
the coordinates of the first weight are the nonzero coordinates of the elementm in
S(B ′) corresponding with the Arf closureB ′(m) (Proposition 2.1) of the blowing
up ofB in that vertex. Moreover, the tree in each vertex of weightm corresponds
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with the decomposition in local semigroups (see Section 3) ofS(B ′(m)). Finally,
the residual fields are obviously the same.

We remark that, since the center of any two valuations are different after a suffi-
cient number of blowing ups, it follows that branches of the Arf forest correspond
one-to-one with valuationsvi. Hence, for practical reasons the notation involving
centers in the branch corresponding to a fixed valuationvi will be denoted byξih,
mih, . . . rather thanξδh, mXδh, . . . as before, sinceδ is in fact determinated byi.

Then each branch of this forest corresponding with the valuationvi can be con-
sidered as the sequence

X←− Xi1←− Xi2←− · · · ←− Xih←− · · · .
If we look at that branch in the Arf forest, the coordinate of the first weight of the
hth point in the branch isvi(mXih,ξih ). This means, in particular, that the Arf bam-
boo associated toB and the single valuationvi with weights(vi(mXih,ξih ), k(ξih))

is nothing but the corresponding branch in the forest with weights depending only
onvi.

The geometric meaning of these Arf bamboos was studied in [2]. We review it
in the sequel.

Now, assume thatk is an algebraically closed field,X a separated integral alge-
braic scheme overk, andv = {v1, . . . , vd} a set of divisorial valuations of the func-
tion fieldk(X) overk (i.e., such thatvi(k) = 0) with center atX. Divisorial valu-
ationsv are those with tr· deg·Rv/mv = dim(X)−1 or, equivalently, those such
that there exists a projective modelX ′ for k(X) and a smooth and codimension-1
point ξ ′∈X ′ such thatRv = OX ′,ξ ′ .

Consider the centerξi ∈X of the valuationvi atX. That is, take an affine open
U ⊂ X such thatA = 0(U,OX) ⊂ Rvi and letξi ∈U be the point corresponding
to the prime idealpvi ∩A. Consider the semilocal ringB =⋂d

i=1OX,ξi . Then we
call the Arf closure ofB theArf closure ofX relative tov. If we choose an affine
openU ⊂ X such thatξi ∈ U for everyi, thenA ⊂ B and the Arf closure ofA
andB relative tov is the same. Also, ifX1 is the blow-up scheme of a Noetherian
ring at the common center of a set of valuations, then the Arf closure ofX1 with
respect to such a set of valuations agrees with the one considered in Section 2.

We have associated toB an Arf forest, which will be called theArf forest ofX
or thevaluative Arf characteristic ofX. The residue fieldsRvi/pvi of the valua-
tions are finitely generated extensions ofk(p). Since the valuations are pairwise
distinct, this implies that the setv is in one-to-one correspondence with the set of
branches in the forest and that the weights in the branch corresponding withvi are
(1, Rvi/mvi ) for a large enough point in the branch. Note that the Arf ring at these
points is trivial (coincides withRvi ), so the Arf forest can be assumed to be finite,
and each branch semigroupSi of S(X) has a conductor. In fact,Si is of type

Si = {ni0, ni0 + ni1, . . . , ni0 + ni1+ · · · + ni(r−1) +1+m, m∈N},
whereni0, ni1, . . . are the successive values ofn in the bamboo andnir is the first
integer of the sequence such thatnir = 1 (see [2]).
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Remark 4.1. If ξ is a singular point of a varietyX and ifX is equipped with a
finite setv = {v1, . . . , vd} of divisorial valuations centered onξ, then the semi-
groupS in the Arf characteristic ofX with respect tov becomes a new numerical
invariant for the singularity.

Our aim is to give a geometric interpretation for the valuative Arf characteristic
associated withX andv. First, we describe the 1-dimensional case. Assume that
X is a curve, that the valuationsvi correspond to branches ofX at certain closed
points (the centers), and, as before, that all the valuationsvi have the same cen-
ter—say, the closed pointP. The associated tree hasd branches corresponding
exactly to the tree of infinitely near points determined by the curveX. The weights
given by residue fields are trivial because all of them are isomorphic tok, and the
weights

(ni1, . . . , nis ) = (vi1(mij ), . . . , vis (mij ))

are the tuples of the multiplicities of the successive blowing ups of the branches of
the curveX. In [7] there is a complete description of Arf closure for 1-dimensional
rings.

Now consider a varietyX of dimension> 1. We will assume that, for anyvi ∈
v(p), the residue fieldRvi/mvi is a separably generated extension ofk(p). We can
reduce to the case of a unique centerξ. For any valuationvi, blow up the centerξ
of vi atX to obtainXi1 and a new centerξi1 for vi. Blowing up along the centers
of anyvi, we obtain a tree of birational morphisms withd branches

X←− Xi1←− Xi2←− · · · ←− Xiqi ,
whereqi is the least integer such that the centerξiqi is a smooth codimension-1
point ofXiq; thus,Rv = OXiq,ξiqi . To see thatqi exists, see [2].

Consider thek-subschemesWij ofXij corresponding to the centersξij . We have

X ←− Xi1 ←− Xi2 ←− · · · ←− Xiqi

∪ ∪ ∪ · · · ∪
W ←− Wi1 ←− Wi2 ←− · · · ←− Wiqi ,

whereWiq is a divisor definingvi.
In the sequel, we relate the Arf characteristic with the geometry of curves inX

whose strict transforms inXiqi are smooth and transversal toWiqi (see [2] for the
case of only one valuation).

Consider, for anyi (1 ≤ i ≤ d ), the Zariski open setUiqi ⊂ Xiqi of smooth
pointsPiqi ∈ Wiqi that are smooth inXiqi and such that all its imagesPij in Wij

(0 ≤ j ≤ qi) are smooth points ofWij . Now consider, for anyi, a smooth alge-
broid branchγiqi : Spec(k [[ t ]] ) ↪→ Xiqi with center atPiqi ∈Wiqi and transversal
toWiqi atPiqi . Then, for anyi, we have thatγiqi induces an algebroid branchγij
onXij given by

γiqi : Spec(k [[ t ]] ) ↪→ Xiqi → Xij

with centerPij in Xij . We call the sequenceγi = (γij )j=0, ...,qi a transversal arc
toWiqi atPiqi . Note thatγij is the strict transform ofγil in Xij for l ≤ j. If all the
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valuationsvi are centered at a common pointP, then the collection of branches
γ = {γi0}i=1, ...,d is atransversal curvein X atP ∈U =⋂d

i=1Ui ⊂ X.
Setevi(γij ) = IPij (γij,Wij ), the intersection multiplicity ofγij andWij atPij

and (by considering a local embedding) the integer given by

min{IPij (γij, H ), H ⊃ Wij, H a smooth hypersurface}.
Note that the intersection multiplicityIPij (γij,Wij ) is given by the order

ordt(γ
∗(IWij,Pij )),

whereIWij,Pij ⊂OWij,Pij is the ideal defining the germ of the subvarietyWij ⊂Xij .
The transversal arcγi is acompletely transversal arcif eachγij is transversal

to Wij at Pij ; likewise, a transversal curveγ is completely transversal if all its
branches are transversal, too. Note that, for any completely transversal branchγi,

the multiplicity sequenceevi(γi) = (evi(γij ))j=0, ...,qi consists of the multiplicities
of the branchesγij , which are strict transforms ofγi0.

Theorem 4.1. ConsiderX andv = {v1, . . . , vd} as before.

(i) For any i (1 ≤ i ≤ d), there is a nonempty open setViqi ⊂ Uiqi such that,
for anyPiqi ∈ Viqi and any transversal arcγi toWiqi at Piqi , the multiplicity
sequenceevi(γj ) is the sequence of the weights(vi(mXij,ξij ))j=0, ...,qi—that is,
the integersnij in the Arf tree of invariants.

(ii) For any set of points{P1q1, . . . , Pdqd } with Piqi ∈ Viqi , there exist completely
transversal curvesγ ⊂ X such that their resolution multiplicity tree is the tree
given by the Arf characteristic, forgetting the weights of the residue fields.

Proof. This follows from Theorem 3 (for the case of one valuation in [2]) and
from Section 1.

Consider a local embedding ofX in a smooth varietyZ, and letZij be the trans-
form of Z by the successive blowing ups along the support of the centers of the
valuationsvi. We define anormal completely transversal arc(toWiqi ) atPiqi to
be a completely transversal arcφi such that, for allj, φij is contained in a smooth
Hij ⊂ Zij transversal toWij at Pij and of a complementary dimension. In the
proof of the theorem in [2], one shows that normal completely transversal arcs
exist at any point ofViqi . Thus,normal completely transversal curvescan always
be constructed.

To illustrate the construction in Theorem 4.1, we can describe the situation in
which the valuations are precisely those that have a fixed codimension-1 (not nec-
essarily smooth) center given byp. Then eachk(pi ) is a finite separable extension
of k(p). For eachi, the degreeri = [k(pi ) : k(p)] is just the number of points
Piqi ∈ Wiqi , relative to the valuationvi, mapping to the sameP ∈ W. Hence at
P we haveri arcs with identical behavior, that is, with the same multiplicity se-
quence and resolution tree.

Moreover, if we intersectX locally at P with a complementary transversal
smooth spaceH ⊂ Z then we obtain a normal completely transversal curveγ =⋃d,ri
i=1,s=1γis, with γi1, . . . , γiri passing through the same points of the resolution
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tree and having the same multiplicity sequence. The same result holds for curves
obtained in a similar way by transversal sections to the centers of the valuationvi
at the general pointspij .

Remark 4.2. Theorem 4.1 shows how the valuative Arf characteristic is nothing
but an algebraic way to look at the geometry of curves having as branches trans-
versal curves to divisorial centers of the considered valuations (one such branch
for each valuation).

We conclude this section by remarking that, in practice, one sometimes has—
rather than a set of valuations—a valuativecycle: data of type

∑r
i=1 aivi, where

theai are integers. Assume that the cycle is effective (i.e., that one hasai > 0
for every i). Then, the valuative Arf characteristic with respect to the setv =
{vi, . . . , vd}, plus the information that each valuationvi is “counted” ai times,
is nothing but a way of looking at the geometry of curves that have as branches
transversal curves to divisorial centers of the considered valuations with exactly
ai such branches for each valuationvi. One can consider completely transversal
or normal completely transversal branches.

In other words,valuative Arf characteristic relative to effective divisorial cycles
can be defined and geometrically interpreted.

A curve withd (resp., with
∑d

i=1 ai) branches as in Remark 3.1 is called a trans-
versal curve to the set of valuationsv (resp., divisorial cycle

∑d
i=1 aivi). One can

also talk about completely transversal or normal completely transversal curves to
v (resp.,

∑d
i=1 aivi).

5. Arf Characteristic and Proximity

From now on we assume that the place of the ringB is taken by a regular ring,
which we will denote byA. In this case, the centers of the valuations of the set
v = {v1, . . . , vd}, after successive blow-ups at previous centers, are regular points
of the schemes to which they belong. These local rings at these centers correspond
to regular local subrings of the quotient fieldK of A. The order functions with
respect to the maximal ideals of those regular local rings are new divisorial valu-
ations, and they form a set of valuationsv ′ that contains (properly, in general) the
setv. Moreover, the set of valuationsv ′ keep the forest structure of the set of val-
uation centers, so it also respects the proximity relations among such centers (for
the notion of proximity, see e.g. [3]).

In this section, we will show how the Arf characteristic relative tov ′ amounts
to information of the proximity relations.

As before, and taking into account Remark1.1, we canreduce to the case in
which the centers of all the valuations are equal; hence, the ringA can be assumed
to be local regular and the center its maximal ideal. Assume also that dim(A) =
n ≥ 2, and denote by≺ the domination relation between local rings. One hasA ≺
Rvi . For everyi, there exists a chain of regular local rings

A = Ai0 ≺ Ai1 ≺ · · · ≺ Aiqi ,
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whereAiqi = Rvi andAij+1 is the blowing up ofAij following the valuationvi;
that is,

Aij+1= OBlmij (Aij ),ξij
,

wheremij is the maximal ideal ofAij andξji is the center ofvi at Blmij
(Aij ).

The local ringsAij are said to be theinfinitely near pointsof A following the
setv. One has dim(Aij ) ≤ n, and the set{Aij } is the vertex set of a tree withd
branches whose edges join verticesAij andAij+1; note that some of theAij can
coincide for different values of the indices. This tree is called thetree of infinitely
near pointsassociated toA andv. For the sake of simplicity, we will also relabel
the indices in the tree, so that a typical vertex will be denoted byAα, with mα

the maximal ideal of the regular local ringAα, vα themα-adic valuation,Rvα the
corresponding valuation ring, andξα the center ofvα at Blmα

(Aα).

Definition 5.1. Consider two infinitely near pointsAα = Aij andAβ = Ash,
whereAα ≺ Aβ. ThenAβ is said to beproximatetoAα, and we writeAβ → Aα
if one has a chain

Aα = Aij = Asj ≺ Asj+1 ≺ · · · ≺ Ash = Aβ
such thatmsjAsj+1 = t aAsj+1, with a > 0 andt a regular parameter ofAsj+1

whose strict transform atAsh = Aβ belongs tomβ. In other words,Aβ is proxi-
mate toAα if and only if the ringAβ is contained in the valuation ringRvα given
by thevα-adic order.

Note that eachAih+1 is proximate toAih and that eachAβ is proximate to at mostn
points. When all theAα aren-dimensional (i.e., the centersξα are closed points),
one recovers the usual proximity relation among infinitely near points (see [3]). In
the geometric situation, as in the preceding section,Aβ → Aα if the locusV(mβ)

is contained in the strict transform of the exceptional divisor created by the blow-
ing up ofmα in Aα.

We now definethe proximity matrixassociated with the tree,P = (aαβ), to be
them×mmatrix given byaαα = 1, aαβ = −1 if Aβ is proximate toAα andaαβ =
0 otherwise.

One has the following result.

Proposition 5.1. The matrixP−1 = (bαβ) has positive entries. Moreover, one
hasbαβ = ordAβ(mα) if Aα ≺ Aβ andbαβ = 0 otherwise.

Proof. ConsiderAγ connected toAα in the tree of infinitely near points, withAγ
proximate toAα = Aγ1, . . . , Aγr . AnyAγj lives in the branch betweenAα andAγ .
Then we havemαAβ = (t a1

1 · · · t arr )Aβ, where thetj are part of a regular system
of parameters andaj = ordAβ(mγj ). In fact, the blowing up ofAα principalizes
the maximal idealmα and yields a principal ideal of type(t a1

1 )Aα1, wheret1 is a
regular parameter; therefore, successive blow-ups at points proximate toAα lift
the principal ideal(t a1

1 )Aα1 to one of type(t a1
1 · · · t arr )Aβ. Now everyAδ in the

branch betweenAγj andAβ is proximate toAγj, and we havebγj β = ordAβ(mγj ) =∑
Aδ→Aγj ordAβ(mδ). Then an easy argument shows that the matrix(bαβ) is noth-

ing but the inverse of the proximity matrixP.
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Associated with the valuationsv1, . . . , vd andA, one has the tree of the valuative
Arf characteristic ofA. Coming back to the original notation, such valuative Arf
invariants consist, in this case, of a tree withd branches and weights(nj, k(pij )),
wherenj = (n1j, . . . , ndj ) andnij = vi(pij ). TheAij represent the multiplicity
sequences{ni1, . . . , niqi } of the branches of a space curve having Arf tree as reso-
lution tree.

Theorem 5.1. The proximity matrix for the tree of the infinitely near points as-
sociated with the set of valuationsv can be obtained from the valuative Arf char-
acteristic associated to it.

Proof. For any valuationvi, if nij = nij+1 + · · · + nih then it follows that
Aij+1, . . . , Aih are proximate toAij, so we get the matrixP. Then we recover
P−1 and the numbers ordAβ(mα) for all pairs(α, β).

Note that thenij are the nonzero entries of the columns given by the last points of
the branches, that is, the valuationsvi for all i. Hence, from the proximity matrix
we can obtain the values of the weights for the Arf tree.

The Arf closure with respect to valuations of the tree does not add new infor-
mation; it follows from Arf closure of the top valuations in the tree.

Remark 5.1. Notice that proximity relations are difficult to write down and, in
practice, cannot be handled whenA is not a regular ring. The difficulties arise be-
cause, in general, the blowing up of each center creates several valuations (more
precisely, a valuation cycle) instead of a single one. Only for rational surface sin-
gularities are the proximity relations understood and described (see [12]).

6. Arf Characteristic and Generic Complete
Intersection Curves

As in the preceding section, we will keep the hypothesis of regularity on the ring
A. LetA be a regular local ring of dimensionn ≥ 2, m its maximal ideal, andI
anm-primary idealA. Consider the normalized blow-up

π : Y = BlI (A)→ X = Spec(A),

whereBlI (A) is the normalization of the scheme Proj
(⊕

n≥0 I
n/In+1

)
. Then one

hasIOY = OY (−D), whereD =∑d
i=1biEi (bi > 0) is a Cartier divisor such

that the codimension-1 componentsEi have exceptional support. Recall that the
divisorial valuationsv1, . . . , vd centered respectively atE1, . . . , Ed are nothing but
the Rees valuations associated toI. Notice thatbi = vi(I ).

Consider the setv = {v1, . . . , vd} of Rees valuations associated toI. Let
σ : Z→ X be the composition of blow-ups at the successive centers of the valua-
tions ofv. That is,σ is the composition of blow-ups at the subvarieties having the
ξα as generic points, taking as many blow-ups as necessary to separate the centers
of all vi and, for eachvi, to get a codimension-1smooth center (see Section 4). The
divisorial part of the ideal sheafIOZ is a Cartier divisor of typeD ′ =∑α bαEα,
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whereEα is the strict transform atZ of the exceptional divisor of the blowing up
πα of ξα andaα = vα(I ) for everyα. If α is the index corresponding to the couple
(qi, i), thenbα = vα(I ) = vi(I ) = bi.

Another way to look at the divisorD ′ is by means of the proximity notion. In
fact, if we denote byE∗α the total transform atZ of the exceptional divisor of the
blow-upπα (i.e., the Cartier divisor given bymαOZ = OZ(−E∗α )), then from the
definition of proximity it follows that

Eα = E∗α −
∑
β→α

E∗β

for everyα. Now one hasD ′ =∑α mαEα, wheremα = bα −∑α→γ bγ .
The last equality shows thatmα = vα(I α), whereI α is the weak tranform ofI

at the local ringAα; by “weak transform” we mean the ideal obtained fromIAα
by taking off its divisorial part (see [8]).

Notice that, according to Theorem 5.1, the proximity relation is given by the Arf
closure relative tov. We have the expresions

bα =
∑
β

bαβmβ,

where(bαβ) is the inverse of the proximity matrix whose entries are the weights
of the Arf tree. If the indexβ corresponds to a valuation that is one of thevj, then
bβ is nothing but the integerbj and so the preceding formula gives a geometrical
interpretation of the multiplicitiesbj in the divisorD.

Next, assume that the local ringA is a localization of ak-algebra of finite type,
wherek is a field. SinceD is a Cartier divisor and since the sheafOY (−D) is gen-
erated by global sections, one has a well-defined intersection number(−D)lV ≥ 0
for eachl-dimensional irreducible subvariety ofY. Take general elementsf1, . . . ,

fn−1 in I and consider the hypersurfacesFj inX (given by the equationsfj ) as well
as their strict transforms̃Fj in Y. Note thatπ∗fj = F̃j +D. Consider the curves̃C
andC given, respectively, bỹF1∩· · ·∩ F̃n−1 andF1∩· · ·∩Fn−1 (scheme-theoretic
intersections).

Proposition 6.1. Assume that the characteristic ofk is zero. Then, for a general
choice off1, . . . , fn−1 in I, it follows that:

(i) (−D)n−1 · Ei = F̃1 · · · F̃n−1 · Ei = C̃ · Ei for eachi;
(ii) C̃ is the strict transform ofC at Y ;

(iii) each pointQ in C̃ ∩ Ei, for eachi, does not belong to any otherEh (h 6=
i), and bothC̃ andEi are smooth and transversal toQ; and

(iv) (−D)n−1 · Ei > 0 for i.

Proof. Because thef1, . . . , fn−1 are general elements, one hasπ∗fj = F̃j +D for
everyj. Thus,

(−D)n−1 · Ei = (F̃1− π∗f1) · · · (F̃n−1− π∗fn−1) · Ei = F̃1 · · · F̃d−1 · Ei + S,
whereS is a sum of terms of the form
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(π∗fj ) · (Ei · C);
hereC is a(n− 2)-cycle. Since the cycle classEi ·C has a representativec with
support contained inEi, by the projection formula one has

(π∗fj ) · (Ei · C) = (π∗fj ) · c = fj · π∗c = 0.

ThusS = 0, which proves (i).
To prove (ii), (iii), and (iv), take a minimal reduction of the idealI [9, p. 112]—

that is, an idealJ ⊂ I generated by a regular sequence and such that the integral
closure ofJ andI are the same (theintegral closureof an idealI is the set of ele-
mentsx ∈A satisfying an equality of typexm+ a1x

m−1+ · · · + am = 0 for some
m ≥ 1 and such thatal ∈ I l for everyl ). Then the normalized blow-up ofI andJ
are the same, and one has a factorization of the mapπ :

BlI (A) −→ BlJ(A)
π0−→ X.

By the the choice ofJ, the supportE of the exceptional divisor ofπ0 is irreducible
and isomorphic to the projective spacePm−1

k . Moreover, sinceσ is the normaliza-
tion map, it induces surjective finite morphismsσi : Ei → E for every exceptional
componentEi of π. Now assume that the generic choice off1, . . . , fn−1 means
that they are a part of a regular sequence generating such aJ. Then, by definition
of blow-up and the choice ofJ, it follows that the intersection̂G1 ∩ · · · ∩ Ĝn−1,

whereĜi is the strict transform offi at BlJ(A), is a smooth branch and is transver-
sal toE at a general point ofE. Sinceσi is finite, it now follows thatĈ has exactly
deg(σi) branches that are smooth and transversal toEi at deg(σi) general points
of Ei. Since deg(σi) > 0, it is clear that(−D)n−1 · Ei = Ei · Ĉ = deg(σi) > 0.
This shows (ii), (iii), and (iv).

Corollary 6.1. With assumptions and notation as before, the complete inter-
section curve ofn − 1 hypersurfaces given by general equations in the idealI is
a transversal curve to the divisorial cycle

∑r
i=1 aivi, whereai = (−D)n−1 · Ei.

Remark 6.1. The valuative Arf characteristic relative to the divisorial cycle
described in Corollary 6.1 represents the geometry of the complete intersection
curves of general elements ofI.

Finally, we discuss the relation between the valuative Arf characteristic relative to
the Rees valuations of the Jacobian ideal of an isolated hypersurface singularity
and the polar invariants of Teissier [14]. Assume that the hypersurfaceH is given
in local coordinates by the equation

f(x1, . . . , xn) = 0,

and consider the Jacobian idealJ = (f, fx1, . . . , fxn) in the smooth ambient space.
Then, a curveC that is a complete intersection ofn − 1 hypersurfaces given by
general elements ofJ is nothing but a generic polar curve forH. The polar invari-
ants forf = 0 are the rational numbers given by

I(0,H )/m(0),
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where0 is a branch ofC, m(·) denotes the multiplicity, andI(·, ·) denotes the
intersection multiplicity.

Now, consider the Rees valuationsv = {v1, . . . , vd} of J and the corresponding
Arf invariants relative to the divisorial cycle in Corollary 6.1. One then concludes
thatthese invariants represent the geometry of the generic polar curve.Thus, the
information provided by this valuative Arf characteristic is much more complete
than the information provided by the polar invariants. In fact, note that the values
m(0) are nothing but the weights at the root of the Arf tree. On the other hand, the
intersection multiplicityI(0,H )/m(0) can be computed by Noether’s formula as

I(0,H ) =
r∑
i=0

m(0i)ord(Hi),

where0i andHi are theith strict transforms of0 andHi (respectively) by the
successive blow-ups of the centers of the valuations.

Notice that, in order to obtain the polar invariants, we need only one transver-
sal branch of the polar curve for each divisor. So, for the purpose of recovering
polar invariants, it is enough to consider the Arf characteristic relative to the setv
instead of the invariants relative to the divisorial cycle.
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