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Valuative Arf Characteristic of Singularities

ANTONIO CAMPILLO & JULIO CASTELLANOS

1. Introduction

The proof by Hironaka [5] of resolution of singularities of algebraic varieties over
fields of characteristic zero raised the problem of classifying singularities by look-
ing at the resolution process. Thus, equisingularity of plane curve singularities
was introduced and developed by Zariski in [15] by showing that the combina-
torics of the resolution processes is equivalent data to Puiseux invariants, that is,
the numerical data consisting of the Puiseux exponents of the branches and the in-
tersection multiplicities among pairs of branches. For space curves, it is known
that the combinatorics of the resolution processes is equivalent data to the Arf char-
acteristic (see [5]). Arf closure lies between the singularity and its normalization,
and its definition can be given in terms of the set of valuations centered at the sin-
gularity. Notice that, since those valuations correspond one-to-one to branches of
the curve, the aforesaid set is finite and is canonically associated to the singularity.

In higher dimension the situation becomes much more complicated, as the reso-
lution of singularities is not unique at all. In this paper we define the Arf character-
istic for schemes of arbitrary dimensions. We define Arf closure relative to a finite
set of valuations centered at a singularity and study its algebraic-geometric proper-
ties. Using appropiate canonically defined sets of divisorial valuations, we define
thevaluative Arf characteristic of singularitjnote that it is not related at all to the
well-knownArf invariantsof theZ, quadratic form associated topologically with
the link of plane curve singularities). These invariants can be viewed as a gener-
alization of Puiseux characteristic to higher dimensions. Arf closure relative to a
single divisorial valuation was introduced in [2], showing that the corresponding
invariants describe the geometry of certain arcs on the singularity.

There are two natural sets of valuations canonically associated to a singularity.
First, one can associate the so-called essential valuations: those valuations that
appear explicitly at every resolution. For surface singularities one has a minimal
resolution, so that the essential valuations are nothing but the divisorial valuations
centered at the components of the exceptional divisor of the minimal resolution.
For dimension higher than two, essential valuations are not determined except in
a few cases (see e.g. [1]). A result by Nash of 1964 (recently published in [10])
shows that the set of essential valuations contains the set of valuations coming
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from the components of the space of arcs. The Nash conjecture states that both
sets are equal, but it is only established for a certain subclass of rational surface
singularities containing the minimal ones (see [11]). Thus, in practice, what one
has associated to a singularity is the set of valuations given by the components of
the space of arcs. For recent work on space of arcs, see [4] and [6].

Second, one can consider the set of Rees valuations of canonically associated
ideals to the singularity, such as, for instance, the Jacobian ideal. Rees valuations
of an ideal are nothing but the divisorial valuations given by the components of the
exceptional divisor of the normalized Nash blow-up of the ideal (the Nash blow-up
in the case of the Jacobian ideal). When the singularity is embedded in a smooth
space, the Jacobian ideal can be alternatively considered on that smooth space and
then the corresponding Arf characteristic can be better interpreted in geometric
terms. Thus, for isolated hypersurface singularities we will show how these in-
variants are finer than the polar invariants of the singularity introduced in [14]. For
general singularities one has a good theory of equisingularity due to Teissier [13],
which applies to families and which uses as invariants appropriate extensions of
the polar invariants.

This paper presents the algebraic-geometric theory of the Arf characteristic rel-
ative to finite sets of divisorial valuations. We first introduce the algebraic notion
of Arf closure and use it to define the Arf characteristic. Then we show how the
invariants can be interpreted in terms of the geometry of sets of arcs transversal to
corresponding divisors. For the case of valuations on smooth varieties, Arf invari-
ants can be related to the proximity relations among points obtained by blowing
up centers of the valuations under consideration. Finally, for Rees valuations asso-
ciated to a primary ideal on a smooth variety, we show that the Arf characteristic
is related to the geometry of the curves given as a complete intersection of hyper-
surfaces defined by general elements of the ideal.

Both authors thank the University of California at Santa Cruz for its hospitality
while this paper was being written.

2. Arf Closure with Respect to Discrete Valuations

Let K be a commutative field and= {v, ..., v,} a set of pairwise different dis-
crete rank-1 valuations ok; let R,, = {x € K : v;(x) > 0} andm,, = {x € K :
v;(x) > 0} be the corresponding valuation rings and their respective maximal
ideals.

ConsiderR, = ﬂle R,, and a subringd C R, with quotient fieldK. For each
i A<i <d),the center ob; at Speg(B) is defined to be the prime idepl =
m,, N B € Spe¢B). Thus, associated with the paB, v) we have the set Spe® =
{p1, ..., pa}, thatis, the image of the natural mapping Speclday — SpecB),
which we will calledthe valuation spectrurof B. Note that #Spe®@) < 4 and
that equality holds if and only if the centers b are different. Also note that
p; is not the zero ideal for every since otherwise one would haw@(B) =
K C R,.
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A subringC c R, will be said to beArf with respect tor if it has the following
property:
(A) If z,z1,z2 € C with z # 0 and ifvj(z;) > vj(z) for h = 1,2 andj =
12, ....d, thenzizoz7 e C.

For a subringB C R, with quotient fieldK, the Arf closure ofB with respect
tov is defined to be the smallest Arf subring®f containingB. Let us denote by
R B (or simply B’, if the reference to the valuations is obvious) the Arf closure
of B with respect tov.

The following result gives us the first propertiesBf

THeEOREM 2.1. Given B, B’ and v as just described, the following statements
hold.

(i) The mappingpeg B’ — Speg B is bijective. Moreover, ifp andp’ are the
corresponding elements Bpeg B and Speg B/, thenk(p) = k(p’) (here
k(—)) stands for the residue fie)d

(i) Speg, B’ is the maximal spectrum foB’ (in particular, the topology on
Speg B’ is the discrete one

Proof. (i) Obviously, the map is onto, so we have to check the injectivity. Take
p € Speg B and consider the séf = {i : m,,NB = p}. We buildB’ = |, By,
whereBy = B and B, is the subring oRR, consisting of the sum of elements of
typew = z1z0z 7% with z, z1, z» as in (A) and belonging t®;,. It suffices to show
that, for everyr € Z ,, we havem,, N B, = m,, N By, if j,i € H. We prove this by
induction oni. The statement is obvious far= 0. For the induction step, take

w = w1+ -+ w, (with w, of the above type) and set= w’ + w”, wherew’ is

the sum of thoseiz2z 71 such tha; (z) = v;(z1) = v;(z2) = 0 for some;j € H.
Now, if j € H andv;(w) > 0 thenv;(w’) > 0. By removing denominators i’

we obtain an expression B), with v;-value greater than 0, so by the induction hy-
pothesis ite;-value is greater than 0, too. Hence we can insert the denominators
and obtairw;(w’) > 0. This shows thain,, N B; ; = m,, N B;, as required.

Using the same kind of induction, it is easy to show that, for corresponding
p, p’, both of the domains are related by the natural map@ing — B’/p’ and
have the same residue field,’s@) = k(p’).

(ii) First we consider the multiplicative s§t= B — ﬂlepi; then we have3’ =
(S7IB)'. This follows from the fact that if € S thenv;(s) = 0fori =1,...,d,
sost=1.1.s571e B'. From the same argument, the unitsBhare exactly the
elements inB" — ﬂ;"zlp; with p; = m,, N B’, so B’ has finitely many maximal
ideals—exactly those maximal ideals in the set SpEc Moreover, let us show
that, in fact, eaclp; is a maximal ideal. Consider the set= {j : p; < p;}, and
takes € ({7, ;) —p: andy € (¢, b;) with y # 0. Note that, by replacing
by some power of, we can assumg (y) < v;(s) for j ¢ L. Thus, for everyj we
havev;(s2+y) < v;(s), so from (A) we get(s2+y) ™t =1—s2(s®+y) Le B".
Now, sincev;(y(s? + y) ™) > 0 andv;(y(s>+ y)™) = 0if j ¢ L, we conclude
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thatp, ¢ p; for j ¢ L; for j € L, on the other handy; < p} impliesp; = p;.
Thus,p; is maximal in SpegB’ and hence is a maximal ideal B1. O

REMARK 2.1.  The theorem shows that, if we g¢t=m,, N B"fori =1,...,d,
thenp; = p; if and only if p; = p’, since the residue fields f@; andp; are the
same. On the other hand,yif # p; thenp/ ¢ pj( andpj’. ¢ p!, although we may
havep; C p;. Thus, one concludes that Arf closure eliminates the specialization
relations between the centers.

The preceding remark will allow to us to separate subsets of valuations having the
same center. Later, we will see how—after sucessive blowing up of centers—one
derives a complete separation of the valuations of the considered set.

Takep € Speg B and consider the set of valuations

v(p) ={v; i m,, N B =p)}

and the correspondingy ).

First, we haveB C B’ C R} ,,BandB,, C Ry(y,. We claimthatB, is Arfrel-
ative tov(p). From the claim one may conclude th&§ ) B = R}, B, C B,,.
In fact, sincev(p) = {v; : m,, N B’ = p’} for the corresponding, if H = {i :
v; € V(p)} then we can take* € ([0, p}) — b’ Now, if z1s; %, 2255 " 2571 €
Bé, with v;(z;) > v;(z) fori € H andh = 1, 2, then for somey € Z we have
Vi (z1(s)9), vj(z2(s*)?) > vj(z) for j =1,...,d. Thus,z1(s*)9z2(s*)%z L e B’
and hencdzis; ) (2255 ") (zs ) € B}, as required.

Second, we havé8,, C R}, B becauseR|, B is Arf with respect tov, so
B' C Ry, B and henceB,, C R}, B.

One concludes thak|,,, B = B,,. Moreover, the dat’ = R, B are equiva-
lent drawta EoR(,(p)B for all p € Speg B. This follows from the obvious fact that
B = B,

This leads us to analyze the case in which Spggconsists of only one ideal
that is, where all the valuations have the same cent®:. iWe also will assume
that B is Noetherian and tha/p is infinite; in particular, we can pick an element
x e psuch thaw;(x) = v;j(p), j =1 ...,d. Blow upp to obtain a schem&; =
Bl, SpegB) and a proper mapping; — X = Spe¢B); thus, the center of each
v; on X lies in the affine open set Sp@&ip/x]) of X;. We now consider the Arf
closureB; of the subringB; = B[p/x] of R,. By property (A), it follows that
B; does not depend on the choicexoftherefore, it will be called the Arf closure
of X; with respect taR,. In fact, it is nothing but the Arf closure of the localiza-
tion of B, at the complement of the union of the prime ideals in Sgacand this
localization is nothing but the intersection of the local ringXpft the centers of
the valuations.

Next, we will compare Arf closure fok and X;. First, let us analyze the struc-
ture of an Arf ringC relative tov.

We consider the semigroup of values

S(C) = {(v1(z), ..., v4(z)) : z€C, z # 0} C N4,
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Now, for eachm € S(C) we have a new ring’ (m) defined as follows: Take €
C such that(vi(z), ..., v4(z)) = m; then

Cim)={weRy:wzeC}.

SinceC is Arf, it is easy to check thaf (m) is a subring ofR, that is Arf and does
not depend on the choice of

Now, coming back to the preceding situation, for the Arf closBfeof B we
have that, if: = (vi(x), ..., vg(x)) is the minimum element i§(B’) — {0}, then
consideringB’(n) leads to the following.

ProrosiTion 2.1. Arf closure and blowing up at the centers of the valuations
commute. Thatis,
B'(n) = Bj.

Proof. First, B'(n) is Arf and containsB;. Now consider the set
C =[(B—-1p)+xB;UxB{]r,

whereT is the multiplicative closed set given fy = (B — p) + xB;. One has
that C is an Arf ring, andB C C so B’ C C. By constructionC(n) = B;, SO
B'(n) C By. O

3. Valuative Arf Characteristic

We now assume tha is a Noetherian domain and thBfp is infinite for every
p € Speg B. Consider the Arf closur®’ of B relative tov.

The first invariant obtained from the Arf characteristicB®fis thesemigroup
of valuesS(B’) c N¢. To analyze the properties of this semigroup, consider the
setl ={1,2,...,d} and the partition = | J H(p), whereH(p) = {i : v; € v(p)}
andp € Speg B. The partition can be deduced from the semigroup, since it is the
partition associated to the equivalence relation

i~j < VaeS(B"), pri(a) =0 iff pri(a)=0.

Now, if d(p) = #H(p), then the semigroup of values &,,,B = B, is con-
tained inN“® and the relation just displayed has only one equivalence class (we
will call these semigroupkcal). Moreover, after relabeling the indices, we have

sBY= [] s®Bp.

peSpeg B

In fact, in order to check the nontrivial part of this equality, takes N** and
X € B‘;, such that,, is thev(p)-value ofx. Note thatr can be chosen to be B’
because the values of elementsBih— p’ are zero. Now, picky € B with y € p’
and such that, for any € Speg B’, we havey € ¢ iff x ¢ ¢ (this is possible
since the elements of SpeB’ are maximal ideals). Considef = x + y” for h
large enough; thea, is thev(p)-value ofx’, and thev(g)-values ofx’ are zero
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for q # p. Thus, every element in the product semigroup is the sumafiues
of elements of this form and hence belongs{®’).

Note that the decomposition 8t B") as a product of local semigroups is unique,
so the datun$(B’) is equivalent to the set of local semigromﬂsb“;,).

Observe also that the semigroups and local semigroups considered havk the
property. for anya, b, ¢ in the semigroup wittu > ¢ andb > ¢, we have that
a+b—cisinthe semigroup. To each one of these local semigroups (or the classes
H(p)) we associate theesidue fieldk(p’) = B'/p’.

Next, suppose that SpgB consists of only one elemept We can define the
valuen = min(S(B’ — {0})) and the Arf ringB’(n). Now everything can be re-
peated forB’(n) instead ofB, and thus we have a partition &f(p) into classes;
the semigroup oB’(n) is a product of local semigroups, and associated to each
factor we have a residue field. We remark that (i) the new residue fields are exten-
sions ofk(p) and (ii) the semigroup aB’(n) is easily deduced frorfi(B’), since
in general folz € S(B’) we have

S(B'(a)) ={meN’:m+aecS(B).

Going on recursively, we obtain a set of invariants consisting of the precezing
idue fieldq field extensions df), each of which is associated with any valuef
the semigrous (B’).

We will refer the semigroug (B’) and those residue fields as treduative Arf
characteristic ofB (Arf characteristic) with respect te or simply as thevaluative
Arf characteristic (Arf characteristic) oB.

4. Arf Characteristic and Transversal Curves to Divisors

Next we will relate the Arf characteristic fa8 with respect tos with geometric
properties of successive blow-ups of Sggr= X. Consider the valuations of
and blow up sucessively the centers of apyThat is, consideg, (a € Xp), the
centers of all they; at X, and letX,; be the blow-up ofX at&,; for anya € Xq
consideigg; (8 € X41), the centers ob; at X1, and letX g, be the blow-up o,
at the centeég;; and so on. We have a forest of integral schemes and proper bi-
rational morphisms and centeg of v; at Xs,, composed by trees, each of them
corresponding with any different centerXh

Then we can associate Bbandv a weighted forest associated as just described.
VerticesP;;, correspond with anys;,, and edges conne&ls, with X; ;.1 if Xy,11
comes fromXy, by blowing up the center of somg. The weight at the vertex
Py, is the pair

(Vi (Mg e - - Vi, (Mxy, 6)0), k(Esn)).

We call this foresthe Arf forest ofB with respect tov. Then, by Section 3, the
Arf forest of B is equivalent data to the Arf characteristic. In fact, at each vertex
the coordinates of the first weight are the nonzero coordinates of the elenirent
S(B’) corresponding with the Arf closurB’(m) (Proposition 2.1) of the blowing

up of B in that vertex. Moreover, the tree in each vertex of weigltorresponds
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with the decomposition in local semigroups (see Section 3)8f(m)). Finally,
the residual fields are obviously the same.

We remark that, since the center of any two valuations are different after a suffi-
cient number of blowing ups, it follows that branches of the Arf forest correspond
one-to-one with valuations;. Hence, for practical reasons the notation involving
centers in the branch corresponding to a fixed valuatjowill be denoted by;;,
myy, ... rather thargs;,, my,,, ... as before, sincé is in fact determinated by

Then each branch of this forest corresponding with the valuatican be con-
sidered as the sequence

X «— X «— Xip «— -+ —— Xijp «—— -

If we look at that branch in the Arf forest, the coordinate of the first weight of the
hth point in the branch is;(my,, ¢, ). This means, in particular, that the Arf bam-
boo associated tB and the single valuation; with weights(v;(myx,, &,). k(&)

is nothing but the corresponding branch in the forest with weights depending only
onv;.

The geometric meaning of these Arf bamboos was studied in [2]. We review it
in the sequel.

Now, assume thatis an algebraically closed field; a separated integral alge-
braic scheme ovér, andv = {vy, ..., v,} a set of divisorial valuations of the func-
tion field k(X)) overk (i.e., such that;(k) = 0) with center atX. Divisorial valu-
ationsv are those with trdeg- R, /m, = dim(X) — 1 or, equivalently, those such
that there exists a projective mod€! for k(X) and a smooth and codimension-1
point&’e X’ such thatRy = Ox .

Consider the centéy € X of the valuatiory; at X. That is, take an affine open
U C X such thatA = T'(U, Ox) C Ry, and let; € U be the point corresponding
to the prime ideap, N A. Consider the semilocal ring = (?_; Ox ;.. Then we
call the Arf closure ofB the Arf closure ofX relative tov. If we choose an affine
openU C X such that; € U for everyi, thenA c B and the Arf closure ofA
andB relative tov is the same. Also, iX; is the blow-up scheme of a Noetherian
ring at the common center of a set of valuations, then the Arf closubg efith
respect to such a set of valuations agrees with the one considered in Section 2.

We have associated #® an Arf forest, which will be called tharf forest of X
or thevaluative Arf characteristic oX. The residue field®,,/p,, of the valua-
tions are finitely generated extensionskof). Since the valuations are pairwise
distinct, this implies that the sgtis in one-to-one correspondence with the set of
branches in the forest and that the weights in the branch corresponding arth
(1, R,,/m,,) for alarge enough point in the branch. Note that the Arf ring at these
points is trivial (coincides witlR,, ), so the Arf forest can be assumed to be finite,
and each branch semigro§pof S(X) has a conductor. In facs; is of type

Si = {njo, nio +ni1, ..., njo+na+ - +njp—ny +1+m, meN},

wheren;g, nj, ... are the successive valuesmin the bamboo and;, is the first
integer of the sequence such that= 1 (see [2]).
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ReMaRrk 4.1. If & is a singular point of a variety and if X is equipped with a
finite setv = {v,, ..., vy} Of divisorial valuations centered dn then the semi-
groupsS in the Arf characteristic ok with respect tor becomes a new numerical
invariant for the singularity.

Our aim is to give a geometric interpretation for the valuative Arf characteristic
associated witlk andv. First, we describe the 1-dimensional case. Assume that
X is a curve, that the valuations correspond to branches &f at certain closed
points (the centers), and, as before, that all the valuatiphsive the same cen-
ter—say, the closed poirt. The associated tree hdsbranches corresponding
exactly to the tree of infinitely near points determined by the cixtv€he weights
given by residue fields are trivial because all of them are isomorpliicaad the
weights

(nig, -, ni) = (i (M), ..., v (my;))
are the tuples of the multiplicities of the successive blowing ups of the branches of
the curveX. In [7] there is a complete description of Arf closure for 1-dimensional
rings.

Now consider a variet¥ of dimension> 1. We will assume that, for any; €
V(p), the residue fiel®R,,/m,, is a separably generated extensiok@f). We can
reduce to the case of a unique cergteFor any valuation;, blow up the centef
of v; at X to obtainX;; and a new centej; for v;. Blowing up along the centers
of anyv;, we obtain a tree of birational morphisms witfbranches

X<—X,'1<—X52<—"'<_Xiq,-a

whereg; is the least integer such that the ceriigris a smooth codimension-1
point of X;,; thus,R, = Ok, ¢, - To see thay; exists, see [2].
Consider thé&-subschemeW;; of X;; corresponding to the centesis. We have

X <« Xil < X,‘z < - < XiCIi
U U U U
W «— Wil < Wi2 < o < ‘/Viq;»

whereW;, is a divisor defining;.

In the sequel, we relate the Arf characteristic with the geometry of curvgs in
whose strict transforms iX;,, are smooth and transversalig,, (see [2] for the
case of only one valuation).

Consider, for any (1 < i < d), the Zariski open selt/;;, C X;, of smooth
points P;,, € W, that are smooth iX;,, and such that all its image; in W;;
(0 < j < ¢;) are smooth points of;;. Now consider, for any, a smooth alge-
broid branchy;,, : Speck[[¢]]) — X, with center atP;,, € W;,, and transversal
to W;,, at P,,. Then, for anyi, we have thay;,, induces an algebroid brangfy
on X;; given by

Viqi: Spe(f(k[[t]]) — Xiq,' g Xij
with centerP;; in X;;. We call the sequencg = (y;j);=o,....q atransversal arc
to W;,, at P;,,. Note thaty;; is the strict transform of;; in X;; for! < j. If all the
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valuationsv; are centered at a common poiPt then the collection of branches
y = {yio}i=1, .. a 1S atransversal curvén X atP e U = ﬂf’le,- C X.

Sete,, (vij) = Ip,;(vij» Wij), the intersection multiplicity of,;; and W;; at P;;
and (by considering a local embedding) the integer given by

min{/p,(yij, H), H > W;;, H a smooth hypersurfage
Note that the intersection multiplicitiy, (y;;, W;;) is given by the order

Ordt(y*(IWij,P,','))v

whereZy, p,; C Ow,, p, is the ideal defining the germ of the subvariéity C X;;.
The transversal arg; is acompletely transversal an eachy;; is transversal

to W;; at P;;; likewise, a transversal curve is completely transversal if all its

branches are transversal, too. Note that, for any completely transversal pranch

the multiplicity sequence,,(y;) = (e, (vij))j=0,...,q; CONsists of the multiplicities

of the brancheg;;, which are strict transforms of,o.

THEOREM 4.1. ConsiderX andv = {vy, ..., vy} as before.

(i) Foranyi (1 <i < d), there is a nonempty open sét, C Uy, such that,
for any P, € Vi, and any transversal arg; to W;,, at P, the multiplicity
sequence,,(y;) is the sequence of the weiglits(my,; ¢, )) =0,
the integersy;; in the Arf tree of invariants.

(i) For any set of point$ Py, ..., Pay,} With P, € V;,,, there exist completely
transversal curveg C X such that their resolution multiplicity tree is the tree
given by the Arf characteristic, forgetting the weights of the residue fields.

ceey

Proof. This follows from Theorem 3 (for the case of one valuation in [2]) and
from Section 1. O

Consider a local embedding &f in a smooth varietyZ, and letZ;; be the trans-
form of Z by the successive blowing ups along the support of the centers of the
valuationsv;. We define anormal completely transversal afto W;,,) at P;,, to

be a completely transversal afgsuch that, for allj, ¢,; is contained in a smooth

H;; C Z;; transversal td¥;; at P;; and of a complementary dimension. In the
proof of the theorem in [2], one shows that normal completely transversal arcs
exist at any point o¥;,,. Thus,normal completely transversal curvean always

be constructed.

To illustrate the construction in Theorem 4.1, we can describe the situation in
which the valuations are precisely those that have a fixed codimension-1 (not nec-
essarily smooth) center given by Then eaclk(p;) is a finite separable extension
of k(p). For eachi, the degree; = [k(p;) : k(p)] is just the number of points
Py, € Wy, relative to the valuation;, mapping to the sam®& € W. Hence at
P we haver; arcs with identical behavior, that is, with the same multiplicity se-
guence and resolution tree.

Moreover, if we interseci locally at P with a complementary transversal
smooth spacél/ C Z then we obtain a normal completely transversal cyre
Uf;riszl vis, With y;1, ..., v, passing through the same points of the resolution
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tree and having the same multiplicity sequence. The same result holds for curves
obtained in a similar way by transversal sections to the centers of the valuation
at the general points; .

REMaRk 4.2. Theorem 4.1 shows how the valuative Arf characteristic is nothing
but an algebraic way to look at the geometry of curves having as branches trans-
versal curves to divisorial centers of the considered valuations (one such branch
for each valuation).

We conclude this section by remarking that, in practice, one sometimes has—
rather than a set of valuations—a valuatiyele data of typed _; a;v;, where
thea; are integers. Assume that the cycle is effective (i.e., that onehas0
for everyi). Then,the valuative Arf characteristic with respect to the set
{vi, ..., vq}, plus the information that each valuatian is “counted” a; times,
is nothing but a way of looking at the geometry of curves that have as branches
transversal curves to divisorial centers of the considered valuations with exactly
a; such branches for each valuatien. One can consider completely transversal
or normal completely transversal branches.

In other wordsyaluative Arf characteristic relative to effective divisorial cycles
can be defined and geometrically interpreted.

A curve withd (resp., withy"¢_, a;) branches as in Remark 3.1 is called a trans-
versal curve to the set of valuatiomgresp., divisorial cycle;:f:l a;v;). One can
also talk about completely transversal or normal completely transversal curves to

v (resp., Y, aivp).

5. Arf Characteristic and Proximity

From now on we assume that the place of the #his taken by a regular ring,
which we will denote byA. In this case, the centers of the valuations of the set
v = {vy, ..., vg}, after successive blow-ups at previous centers, are regular points
of the schemes to which they belong. These local rings at these centers correspond
to regular local subrings of the quotient fiekd of A. The order functions with
respect to the maximal ideals of those regular local rings are new divisorial valu-
ations, and they form a set of valuatiorighat contains (properly, in general) the
setv. Moreover, the set of valuations keep the forest structure of the set of val-
uation centers, so it also respects the proximity relations among such centers (for
the notion of proximity, see e.g. [3]).

In this section, we will show how the Arf characteristic relativertmmounts
to information of the proximity relations.

As before, and taking into account Remadrk, we carreduce to the case in
which the centers of all the valuations are equal; hence, theAritan be assumed
to be local regular and the center its maximal ideal. Assume also th&tglim
n > 2, and denote by the domination relation between local rings. One Ahas
R,,. For everyi, there exists a chain of regular local rings

AZA,‘Q-<A,'1-<-~-<A[qi,
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whereA;,, = R,, andA;;1 is the blowing up of4;; following the valuation;;
that is,
Ajj1= OBl (4,8

wherem;; is the maximal ideal ofA;; andg;; is the center ob; at Bl (A;).

The local ringsA;; are said to be thafinitely near pointsof A following the
setv. One has dimd;;) < n, and the sefA;;} is the vertex set of a tree with
branches whose edges join verticks and A;;11; note that some of thd;; can
coincide for different values of the indices. This tree is calledt&e of infinitely
near pointsassociated ta andv. For the sake of simplicity, we will also relabel
the indices in the tree, so that a typical vertex will be denotedi pywith m,,
the maximal ideal of the regular local ring,, v, them,-adic valuationR,, the
corresponding valuation ring, ad the center ob,, at Bl (A,).

DeriNiTION 5.1, Consider two infinitely near points, = A;; andAg = Ay,
whereA, < Ag. ThenAg is said to beproximateto A, , and we writeAg — A,
if one has a chain

Ag = Ajj = Ayj < Ayjp1 <o < Agy = Ap

such thatm,; A1 = t“Agj+1, With a > 0 andr a regular parameter of;1
whose strict transform &, = Az belongs tamg. In other words Ag is proxi-
mate toA, if and only if the ringA is contained in the valuation ring,, given
by thev,-adic order.

Note that eacl ;1 is proximate to4 ;;, and that eacld 4 is proximate to at most
points. When all thei, aren-dimensional (i.e., the centefs are closed points),
one recovers the usual proximity relation among infinitely near points (see [3]). In
the geometric situation, as in the preceding sectign,—> A, if the locusV (mg)
is contained in the strict transform of the exceptional divisor created by the blow-
ing up ofm, in A,.

We now definghe proximity matrixassociated with the tre®, = (aqs), to be
them x m matrix given bya,, =1, aq = —1if Ag is proximate tod, andaqs =
0 otherwise.

One has the following result.

ProposITION 5.1. The matrixP~! = (bap) has positive entries. Moreover, one
hasb,s = ordy,(m,) if A, < Ag andb,s = O otherwise.

Proof. ConsiderA, connected ta4,, in the tree of infinitely near points, with,,
proximate toA, = A,,, .. Ayr Any A, lives in the branch betweefy, andA, .
Then we haven,Ag = (z‘l < tir)Ag, where ther; are part of a regular system
of parameters and; = ords,(m,,). In fact, the blowing up ofA, principalizes
the maximal |deain and yields a principal ideal of typ@;*) A1, wherer; is a
regular parameter; therefore, successive blow-ups at points proximatg lifh
the principal ideal#;*)A 1 to one of type(;* - - -177)Ag. Now everyA; in the
branch between,, andA is proximate to4,,, and we have,, s = ordAﬂ(my,) =
ZA5—>A orda, (m;). Then an easy argument shows that the matriy) is noth-

ing but the inverse of the proximity matriR. O
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Associated with the valuations, ..., v; andA, one has the tree of the valuative
Arf characteristic ofA. Coming back to the original notation, such valuative Arf
invariants consist, in this case, of a tree withranches and weights, k(p;;)),
wheren; = (nyj, ..., ngj) andn;; = v;(p;;). The A;; represent the multiplicity
sequence$;y, ..., ny, } of the branches of a space curve having Arf tree as reso-
lution tree.

THEOREM 5.1. The proximity matrix for the tree of the infinitely near points as-
sociated with the set of valuationscan be obtained from the valuative Arf char-
acteristic associated to it.

Proof. For any valuationw;, if n; = n;jy1 + --- + ny then it follows that
Aijt1, ..., Ay are proximate tod;;, so we get the matri’. Then we recover
P~1and the numbers oxd(m,,) for all pairs(c, B). O

Note that the:;; are the nonzero entries of the columns given by the last points of
the branches, that is, the valuatiandor all i. Hence, from the proximity matrix
we can obtain the values of the weights for the Arf tree.

The Arf closure with respect to valuations of the tree does not add new infor-
mation; it follows from Arf closure of the top valuations in the tree.

ReMaRrk 5.1.  Notice that proximity relations are difficult to write down and, in
practice, cannot be handled whens not a regular ring. The difficulties arise be-
cause, in general, the blowing up of each center creates several valuations (more
precisely, a valuation cycle) instead of a single one. Only for rational surface sin-
gularities are the proximity relations understood and described (see [12]).

6. Arf Characteristic and Generic Complete
Intersection Curves

As in the preceding section, we will keep the hypothesis of regularity on the ring
A. Let A be aregular local ring of dimension> 2, m its maximal ideal, and
anm-primary idealA. Consider the normalized blow-up

7Y =BI;(A) - X = SpecA),

whereBI, (A) is the normalization of the scheme Ri@, ., /"/I"**). Then one
has/Oy = Oy(—D), whereD = ZlebiE,» (b; > 0) is a Cartier divisor such
that the codimension-1 componerishave exceptional support. Recall that the
divisorial valuations, ..., v; centered respectively &k, ..., E, are nothing but
the Rees valuations associated tdNotice thath;, = v;(1).

Consider the sev = {v4,..., vy} Of Rees valuations associated fo Let
o Z — X be the composition of blow-ups at the successive centers of the valua-
tions ofv. Thatis,o is the composition of blow-ups at the subvarieties having the
&, as generic points, taking as many blow-ups as necessary to separate the centers
of all v; and, for eachy;, to get a codimension-1 smooth center (see Section 4). The
divisorial part of the ideal shedfD, is a Cartier divisor of typed’' = )", by E,,
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whereE, is the strict transform aZ of the exceptional divisor of the blowing up
. of &, anda, = v, (1) for everyw. If « is the index corresponding to the couple
(qi, 1), thenby = v (1) = vi(I) = b;.

Another way to look at the divisab’ is by means of the proximity notion. In
fact, if we denote by the total transform aZ of the exceptional divisor of the
blow-upr, (i.e., the Cartier divisor given byi, Oz = Oz(—E})), then from the
definition of proximity it follows that

E, = E* Z E*
B—a

for everya. Now one haD’' = Y m,E,, wherem, = b, Za_w b,.

The last equality shows that, = v, (1%), wherel® is the weak tranform of
at the local ringA ,; by “weak transform” we mean the ideal obtained frém,
by taking off its divisorial part (see [8]).

Notice that, according to Theorem 5.1, the proximity relation is given by the Arf
closure relative ta. We have the expresions

ba = Zbaﬁmﬂa
B

where(byg) is the inverse of the proximity matrix whose entries are the weights
of the Arf tree. If the inde)8 corresponds to a valuation that is one of thethen

bg is nothing but the integer; and so the preceding formula gives a geometrical
interpretation of the multiplicities; in the divisorD.

Next, assume that the local ringis a localization of &-algebra of finite type,
wherek is a field. SinceD is a Cartier divisor and since the shéaf(—D) is gen-
erated by global sections, one has a well-defined intersection nmbetV > 0
for eachl-dimensional irreducible subvariety f Take general elemenys, .
fu—1in I and consider the hypersurfadésn X (glven by the equationg) as WeII
as their strict transforms; in Y. Note thatr*f; = F; + D. Consider the curve§
andcC given, respectively, bgil N---NF,jandFN---NE,_1 (scheme-theoretic
intersections).

ProrosITION 6.1. Assume that the characteristiclfs zero. Then, for a general
choice offy, ..., f,_1in I, it follows that
() (-=D)" Y. E;=F,---F,_,-E; = C - E; for eachi;
(i) C is the strict transform of at Y
(i) each pointQ in C N E;, for eachi, does not belong to any othé%, (h #
i), and bothC and E; are smooth and transversal @; and
(iv) (=D)"1.E; > 0fori.

Proof. Because the, ..., f,—1 are general elements, one helg; = 1:"; + D for
everyj. Thus,

(=D)" B = (Fy—n*f) - (Fy1—7n*fu1) Ei = F1--- Fy1-E + S,

wheresS is a sum of terms of the form
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(*fj) - (Ei - C);
hereC is a(n — 2)-cycle. Since the cycle clags - C has a representativewith
support contained itx;, by the projection formula one has

(*fj) - (E;i - C) = (n"fj) -c = fj-w'c=0.

ThusS = 0, which proves (i).

To prove (ii), (iii), and (iv), take a minimal reduction of the idddgDd, p. 112]—
that is, an ideal/l C I generated by a regular sequence and such that the integral
closure of/ and! are the same (thategral closureof an ideall is the set of ele-
mentsx € A satisfying an equality of type™” +a;x™ 1+ ... +a, = 0 for some
m > 1and such that, € I' for everyl). Then the normalized blow-up dfandJ
are the same, and one has a factorization of the map

Bl;(A) — Bl (A) = X.

By the the choice of, the supporE of the exceptional divisor ofy is irreducible
and isomorphic to the projective spd@é‘l. Moreover, since is the normaliza-
tion map, itinduces surjective finite morphisms E; — E for every exceptional
componentt; of 7. Now assume that the generic choicefef..., f,_1 means
that they are a part of a regular sequence generating siicfiteen, by definition
of blow-up and the choice af, it follows that the intersectiol, N - -- N 5,:1
Where@ is the strict transform of; at Bl;(A), is a smooth branch and is transver-
sal toE at a general point af. Sinceo; is finite, it now follows thatC has exactly
dedo;) branches that are smooth and transversd;tat dedo;) general points
of E;. Since dego;) > 0, itis clear that—D)"*- E; = E; - C = dego;) > 0.
This shows (ii), (iii), and (iv).

CoroLLARY 6.1. With assumptions and notation as before, the complete inter-
section curve oft — 1 hypersurfaces given by general equations in the ideal
a transversal curve to the divisorial cycje_; a,v;, wherea; = (—D)" 1. E;.

REMARK 6.1. The valuative Arf characteristic relative to the divisorial cycle
described in Corollary 6.1 represents the geometry of the complete intersection
curves of general elements bf

Finally, we discuss the relation between the valuative Arf characteristic relative to
the Rees valuations of the Jacobian ideal of an isolated hypersurface singularity
and the polar invariants of Teissier [14]. Assume that the hypersuHasegiven

in local coordinates by the equation

flxa, ... x) =0,

and consider the Jacobianiddat (f, fy, ..., fx,) inthe smooth ambient space.
Then, a curveC that is a complete intersection of— 1 hypersurfaces given by
general elements of is nothing but a generic polar curve f&r. The polar invari-
ants for f = 0 are the rational numbers given by

(T, H)/m(T'),
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whereT is a branch ofC, m(-) denotes the multiplicity, and(-, -) denotes the
intersection multiplicity.

Now, consider the Rees valuations= {vs, ..., vy} of J and the corresponding
Arf invariants relative to the divisorial cycle in Corollary 6.1. One then concludes
thatthese invariants represent the geometry of the generic polar ciliwes, the
information provided by this valuative Arf characteristic is much more complete
than the information provided by the polar invariants. In fact, note that the values
m(T") are nothing but the weights at the root of the Arf tree. On the other hand, the
intersection multiplicity/ (I, H)/m(I") can be computed by Noether’s formula as

I(T,H) =Y m(T;) ord(H),
i=0

wherel; and H; are theith strict transforms of” and H; (respectively) by the
successive blow-ups of the centers of the valuations.

Notice that, in order to obtain the polar invariants, we need only one transver-
sal branch of the polar curve for each divisor. So, for the purpose of recovering
polar invariants, it is enough to consider the Arf characteristic relative to the set
instead of the invariants relative to the divisorial cycle. O
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