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Lipschitz Estimates for thē∂-Equation
on the Minimal Ball

N. Viêt Anh & E. H. Youssf i

1. Introduction and Statement of the Main Results

The general theory of thē∂-equation on convex domains inCn is still incomplete.
It has been studied in several particular cases of smooth convex domains; see,
for example, the articles of Range [21], Diederich, Fornæss, and Wiegerinck [7],
Bruna and Castillo [3], Bonami and Charpentier [2], Cumenge [5], and Diederich,
Fischer, and Fornæss [6]. In these works, the regularity estimates for the∂̄-equation
depend intimately on the geometry of the boundary of the domain. For example, if
the domain is smooth convex of finite typem then the sharp gain of smoothness is
1/m (see [5; 6]). In proving these results, the boundary smoothness is used heav-
ily. The particular case of smooth strictly pseudoconvex domains corresponds to
the 1

2-regularity. This smoothness has been shown to hold even in the case of non-
smooth strictly pseudoconvex domains with, however, aC2-defining function (see
Henkin and Leiterer [12]).

On other hand, Fornæss and Sibony [8] constructed a smoothly bounded pseu-
doconvex domain that is strictly pseudoconvex except at one boundary point for
which (Lp, Lp)-estimates(p > 2) for ∂̄ fail.

In the present work we give an example of a convex circular and non–piecewise
smooth domain, with a defining function that is not differentiable, for which the
∂̄-equation possesses the Lipschitz1̃

2-estimate. We also give an explicit construc-
tion of the∂̄-solving operator. The domain in question is the minimal ball, which
is given by

B∗ := {z∈Cn : %(z) := |z|2 + |z • z| < 1},
wherez • w :=∑n

j=1 zjwj (see Hahn and Pflug [10]). Then the minimal ballB∗
is just the open unit ball with respect to the normN∗ := √%, as featured in sev-
eral recent works [13; 15; 16; 17; 18; 19; 20; 24; 25]. In particular, it is a non–Lu
Qi-Keng domain forn ≥ 4 and is neither homogeneous nor Reinhardt. In addi-
tion, B∗ has aB-regular boundary in the sense of Sibony [23] and Henkin and
Iordan [11].

SetV := {z ∈Cn \ {0} : z • z = 0}. The singular part of the boundary ofB∗ is
obviously the set∂B∗ ∩V. The regular part∂B∗ \V consists of all strictly pseudo-
convex points.

Received September 7, 2000. Revision received January 29, 2001.

299



300 N. Viêt Anh & E. H. Youssf i

In order to state our main results, we need some notation. Denote byA∞0,1(B∗)
the space of̄∂-closed(0,1)-forms defined onB∗ with L∞ coefficients, endowed
with the sup norm‖ · ‖∞. Next, consider the Lipschitz space

3 1̃
2
(B∗) :=

f : ‖f ‖∞ + sup
z,z+h∈B∗
0<|h|< 1

2

|f(z+ h)− f(z)|
|h|12 |log|h||

≡ ‖f ‖3 1̃
2

<∞

 .
Our main result is as follows.

Main Theorem. There exist a finite constantC and an explicitly defined linear
integral operator

T : A∞0,1(B∗)→ 3 1̃
2
(B∗)

satisfying∂̄Tf = f (in the sense of distributions) and ‖Tf ‖3 1̃
2

≤ C‖f ‖∞ for
everyf ∈A∞0,1(B∗).

We should point out that thē∂-solving operatorT has the form

(Tf )(z) =
∫
B∗
K[f ](z, ζ)

dζ ∧ dζ̄
|ζ • ζ| +

∫
∂B∗

S [f ](z, ζ)
dθ(ζ)

|ζ • ζ| ,

whereK[f ] andS [f ] are appropriate kernels associated withT . The measures
appearing in this formula are singular near those points where the defining func-
tion % is not differentiable.

This paper is organized as follows. We begin Section 2 by introducing an aux-
iliary complex manifoldM that is a ramified covering of degree 2 ofB∗ \{0}. The
corresponding covering mapπ will allow us to relate thē∂-equation of the mani-
foldM to that onB∗. The remainder of Section 2 is devoted to construction of the
kernels that are necessary for our study of the∂̄-equation on the manifoldM. The
integral estimates related to the integral operators appearing in this section will be
proved in Section 3. The construction of the∂̄-solving kernel onM is given by
Theorem 4.2 in Section 4, where we also prove (in Theorem 4.7) a nonisotropic
Lipschitz estimate for thē∂-equation onM. Finally, in Section 5 we apply the re-
sults of Section 4 to establish the main theorem.

In a forthcoming paper, we shall present further study of the∂̄-equation in a
more general class of convex domains.

Throughout this paper, the letterC denotes a finite constant, not necessarily the
same at each occurrence, that depends only on the dimensionn.

2. Integral Formulas on the Complex ManifoldM

Let n ≥ 2 and set

H = Hn := {z∈Cn+1 \ {0} : z • z = 0}.
LetB = Bn+1 be the unit ball ofCn+1. The complex manifoldM is defined by
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M =Mn := {z∈Cn+1 \ {0} : z • z = 0 and|z| < 1} = H ∩ B.
The manifoldM is not relatively compact inH owing to the singularity point 0.
The compact group SO(n + 1,R) acts transitively on∂M := {z ∈ H : |z| = 1}.
The Haar measure of this group induces a unique SO(n + 1,R)-invariant proba-
bility measureσ on ∂M (see Mengotti and Youssfi [16]). Finally, denote bydV
the surface measure onH.

Recall from Lemma 2.2 in [17] that the(n,0)-form on(C \ {0})n+1,

1

n+1

n+1∑
j=1

(−1)j−1

zj
dz1∧ · · · ∧ d̂zj ∧ · · · ∧ dzn+1,

induces by restriction an SO(n + 1,C)-invariant and holomorphic(n,0)-form α

onH.

Proposition 2.1. For all compactly supported continuous functionsf onH, we
have ∫

H
f(z) dV(z) =

(
i

2

)n ∫
H
f(z)|z|2α(z)∧ α(z).

Proof. Let ω := ( i2)∑n+1
k=1 dzk ∧ dz̄k. Then the canonical volume form onH is(

1
n!

)
ωn|H. Using the open chartUj := {z ∈H : zj 6= 0}, a little computing shows

that if z∈ Uj then, on then-fold tangent toH at z, we have

1

n!

(
2

i

)n
ωn|H = dz1∧ dz̄1∧ · · · ∧ d̂zj ∧ d̂ z̄j ∧ · · · ∧ dzn+1∧ dz̄n+1

+
∑
k 6=j

dz1∧ dz̄1∧ · · · ∧ d̂zk ∧ d̂ z̄k ∧ · · · ∧ dzn+1∧ dz̄n+1

= |z|
2

|zj |2dz1∧ dz̄1∧ · · · ∧ d̂zj ∧ d̂ z̄j ∧ · · · ∧ dzn+1∧ dz̄n+1

= |z|2α(z)∧ α(z).
This completes the proof.

In what follows we shall establish some integral formulas onM. To do so, we
shall approximateM by appropriate regular varieties that are complete intersec-
tions. Then we apply to each of these varieties the results of Berndtsson [1].

For 0< r < 1, let Br be the ball inCn+1 centered at 0 with radiusr and set
Mr := H ∩ Br . Let

s := (s1, . . . , sn+1) : B \ Br × B \ Br → Cn+1

be aC1 function that satisfies

|s(ζ, z)| ≤ C|ζ − z| and |s • (ζ − z)| ≥ C|ζ − z|2 (2.1)

uniformly for ζ ∈B \ Br and forz in any compact subset ofB \ Br . We shall use
the same symbols and sets :=∑n+1

k=1 sj dζj .
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Now we writez • z− ζ • ζ =∑n+1
k=1(ζj + zj )(zj − ζj ) and put

g :=
n+1∑
k=1

(ζj + zj )dζj .

For ε > 0, consider the(n+1, n)-form

Kε
s := s ∧ (∂̄s)n−1∧ ∂̄Qε

[s • (ζ − z)] n , (2.2)

whereQε is the(1,0)-form given by

Qε := ζ • ζ

|ζ • ζ|2 + ε g. (2.3)

Consider the differential forms

ωk(ζ̄ ) := (−1)k−1dζ̄1∧ · · · ∧ d̂ζ̄k ∧ · · · ∧ dζ̄n+1 for 1≤ k ≤ n+1,

ω(ζ) := dζ1∧ · · · ∧ dζn+1.

Lemma 2.2. Let 0< r ≤ δ ≤ 1.

(1) If u∈ C1(B \ Br ) andz∈M \Mr , then

u(z) = C0 lim
ε→0

(∫
∂(B\Br )

uKε
s −

∫
B\Br

∂̄u ∧Kε
s

)
.

(2) If u∈ C(Bδ \ Br ), then

lim
ε→0

∫
Bδ\Br

εu(ζ)

(|ζ • ζ|2 + ε)2ω(ζ̄ )∧ ω(ζ) = C
∫
Mδ\Mr

u(ζ)α(ζ)∧ α(ζ).

(3) If u∈ C(∂Br ), then

lim
ε→0

∫
∂Br

εu(ζ)

(|ζ • ζ|2 + ε)2ωk(ζ̄ )∧ ω(ζ) = Cr
2n−3

∫
∂M
u(rζ)ζk dσ(ζ).

Proof. Part (1) of the lemma follows from formulas (23) and (26) in the proof of
Theorem 1 in [1].

Recall from equality (25) in [1] that

ε|ζ|2
(|ζ • ζ|2 + ε)2 → C dV asε→ 0

in the sense of distributions. This, when combined with Proposition 2.1, gives
part (2) of the lemma.

To prove part (3), we may assume without loss of generality thatr = 1.Applying
equality (3) in Proposition 16.4.4 of Rudin [22] yields that, for eachε > 0, we
have∫

∂B

εu(ζ)

(|ζ • ζ|2 + ε)2ωk(ζ̄ )∧ ω(ζ) = C
∫
∂B

εu(ζ)ζk

(|ζ • ζ|2 + ε)2 · [ζ̄y(ω(ζ̄ )∧ ω(ζ))].
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Note that the(2n + 1)-forms ε|ζ|2
(|ζ • ζ|2+ε)2 [ζ̄y(ω(ζ̄ ) ∧ ω(ζ))] are SO(n + 1,R)-

invariant. Using local coordinates and Lelong theory [9], we see that these forms
converge asε→ 0 to a(2n−1)-form on∂M that is clearly SO(n+1,R)-invariant.
Hence it induces a measure that is a constant times the measuredσ. The proof of
part (3) is thus complete.

Now let

Ks := s ∧ (∂̄s)n−1∧ g ∧ ∂(ζ • ζ)

[s • (ζ − z)] n . (2.4)

In view of (2.2) and (2.3), we see thatKs satisfies

Kε
s = Ks

ε

(|ζ • ζ|2 + ε)2 . (2.5)

We writeKs in the form

Ks = (−1)
n(n+1)

2

n+1∑
k=1

hk(ζ, z)ωk(ζ̄ )∧ ω(ζ), (2.6)

where thehk are the component functions ofKs with respect to the(n+1, n)-forms
ω1(ζ̄ )∧ ω(ζ), . . . , ωn+1(ζ̄ )∧ ω(ζ).

If f := ∑n+1
k=1fkdζ̄k is a (0,1)-form that is defined in a neighborhood ofM

(:= M ∪ ∂M) in B, then letf |M denote the pull-back off under the canonical
injection ofM in this neighborhood. Set

‖f ‖M,∞ := sup
ζ∈M

n+1∑
k=1

|fk(ζ)|.

Let ∂̄M be the∂̄-operator onM.

Proposition 2.3. Given a sections satisfying(2.1): Consider a functionu ∈
C1(M \Mr ) and a continuous(0,1)-form f := ∑n+1

k=1fkdζ̄k defined in a neigh-
borhood ofM \Mr that satisfy∂̄Mu = f |M onM \Mr . Lethk be the functions
defined in(2.6). Then, forz∈M \Mr ,

u(z) = C1

∫
∂M
u(ζ)

( n+1∑
k=1

ζkhk(ζ, z)

)
dσ(ζ)

− C1r
2n−3

∫
∂M
u(rζ)

( n+1∑
k=1

ζkhk(rζ, z)

)
dσ(ζ)

+ C2

∫
M\Mr

( n+1∑
k=1

fk(ζ)hk(ζ, z)

)
α(ζ)∧ α(ζ).

Proof. Consider aC1 extension ofu (which is also denoted byu) onB \ Br that
satisfies̄∂u = f onM \Mr . Suppose without loss of generality thatf = ∂̄u on
B \ Br . By Lemma 2.2(1), (2.5), and (2.6), we have that
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Cu(z) = lim
ε→0

{∫
∂(B\Br )

εu(ζ)

(|ζ • ζ|2 + ε)2
( n+1∑
k=1

hk(ζ, z)ωk(ζ̄ )∧ ω(ζ)
)

−
∫
B\Br

ε

(|ζ • ζ|2 + ε)2
( n+1∑
k=1

fk(ζ)hk(ζ, z)

)
ω(ζ̄ )∧ ω(ζ)

}
for z∈M\Mr . Proposition 2.3 now follows from parts (2) and (3) of Lemma 2.2.

The following result gives the Martinelli–Bochner formula onM.

Theorem 2.4. Let u be a bounded function inC1(M) andf := ∑n+1
k=1fkdζ̄k a

continuous(0,1)-form defined in a neighborhood ofM in B that satisfy∂̄Mu =
f |M and‖f ‖M,∞ <∞. Then, forz∈M,

u(z) = C1

∫
∂M

1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2
|z− ζ|2n u(ζ) dσ(ζ)

+ C2

∫
M

n+1∑
k=1

[(z̄k − ζ̄k)(z • ζ̄ + |ζ|2)
− (zk + ζk)z • (ζ − z)]
|z− ζ|2n fk(ζ)α(ζ)∧ α(ζ).

Proof. Consider the Martinelli–Bochner sectionsb(z, ζ) := ζ̄ − z̄. By (2.4) we
then have that

Kb = 1

|z− ζ|2n
[ n+1∑
j=1

(−z̄j + ζ̄j )dζj
]
∧
[ n+1∑
j=1

dζ̄j ∧ dζj
]n−1

∧
[ n+1∑
j,k=1

(zk + ζk)ζ̄j dζk ∧ dζ̄j
]

so that, by (2.6) and the facts that
∑

j 6=k ζ̄
2
j = −ζ̄ 2

k andz • z = 0, we obtain

hk(ζ, z) = (z̄k − ζ̄k)(z • ζ̄ + |ζ|2)− (zk + ζk)z • (ζ − z)
|z− ζ|2n . (2.7)

Therefore, a simple computation gives that

n+1∑
k=1

ζkhk(ζ, z) = −|z • ζ|2 + |z • ζ̄ |2 − |ζ|2(|ζ|2 + z • ζ̄ − z̄ • ζ)

|z− ζ|2n . (2.8)

Combining (2.7) and (2.8) with the hypothesis thatu is bounded and‖f ‖M,∞ <

∞, it is not hard to prove that

lim
r→0

r 2n−3
∫
∂M

∣∣∣∣u(rζ)( n+1∑
k=1

ζkhk(rζ, z)

)∣∣∣∣ dσ(ζ) = 0 (2.9)

and
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lim
r→0

∫
Mr

∣∣∣∣ n+1∑
k=1

fk(ζ)hk(ζ, z)

∣∣∣∣α(ζ)∧ α(ζ) . lim
r→0

∫
Mr

α(ζ)∧ α(ζ) = 0, (2.10)

where the latter equality holds by an application of [16, Lemma 2.1]. The theorem
now follows by combining Proposition 2.3 and (2.7)–(2.10).

Remark 2.5. If u ∈ C1(M) is bounded, then Theorem 2.4 holds for the dilated
functionsur(z) := u(rz), 0 < r < 1. This shows that Theorem 2.4 remains true
if we assume only thatu∈ C1(M) is bounded and

lim
r→1−

∫
∂M
|u(ζ)− u(rζ)| dσ(ζ) = 0.

We recall from Youssfi’s work [25] that the Szegö projectionSM ofM is given by

SM[u](z) =
∫
∂M

1+ z • ζ̄

(1− z • ζ̄ )n
u(ζ) dσ(ζ) for z∈M. (2.11)

Following Charpentier [4], let

s0(ζ, z) := ζ̄ (1− ζ • z̄)− z̄(1− |ζ|2) and D(ζ, z) := s0(ζ, z) • (ζ − z).
Theorem 2.6. There are polynomialsPk(ζ, z) andQk(ζ, z), 1 ≤ k ≤ n + 1,
such that

Pk(z, z) = Qk(z, z) = 0 ∀z∈Cn+1

with the following property. Given a bounded functionu∈ C1(M) and a continu-
ous(0,1)-formf :=∑n+1

k=1fkdζ̄k defined in a neighborhood ofM inB that satisfy
∂̄Mu = f |M and‖f ‖M,∞ <∞, for z∈M we have

u(z) =
∫
M

n+1∑
k=1

(1− ζ • z̄)n−2

D(ζ, z)n
[(1− ζ • z̄)Pk(ζ, z)

+ (1− |ζ|2)Qk(ζ, z)]fk(ζ)α(ζ)∧ α(ζ)+ SM[u].

Proof. Consider aC1 extension ofu in B \{0}. By (2.4), the kernelK0 associated
with the sections0 is

K0 := 1

D(ζ, z)n

n+1∑
j=1

[ζ̄j (1− ζ • z̄)− z̄j (1− |ζ|2)]dζj

∧
{
(1− ζ • z̄)n−1

[ n+1∑
j=1

dζ̄j ∧ dζj
]n−1

+ (n−1)(1− ζ • z̄)n−2

[ n+1∑
j=1

dζ̄j ∧ dζj
]n−2

∧ ∂̄|ζ|2 ∧
( n+1∑
j=1

z̄j dζj

)}

∧
[ n+1∑
j,k=1

(zk + ζk)ζ̄j dζk ∧ dζ̄j
]
. (2.12)
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In view of (2.5), if we integrateuKε
0 over∂B then all terms containinḡ∂|ζ|2 van-

ish; moreover, we have that 1− |ζ|2 = 0 andD(ζ, z) = |1− z • ζ̄ |2 so that

lim
ε→0

∫
∂B
uKε

0

=
∫
∂B

εu(ζ)

(|ζ • ζ|2 + ε)2

·
{∑n+1

j=1 ζ̄j dζj ∧
[∑n+1

k=1 dζ̄k ∧ dζk
]n−1∧ [∑n+1

j,k=1(zk + ζk)ζ̄j dζk ∧ dζ̄j
]

(1− z • ζ̄ )n

}
.

Rewriting the differential form in braces as

(−1)
n(n+1)

2

n+1∑
k=1

hk(ζ, z)ωk(ζ̄ )∧ ω(ζ)

and then applying Lemma 2.2(3) to this, we obtain

C0 lim
ε→0

∫
∂B
uKε

0 = C3

∫
∂M

1+ z • ζ̄

(1− z • ζ̄ )n
u(ζ) dσ(ζ) = C3SM[u],

where the latter equality holds by (2.11).
If we setu ≡ 1 in Lemma 2.2(1), then the last equation implies thatC3 = 1.

Thus

C0 lim
ε→0

∫
∂B
uKε

0 = SM[u]. (2.13)

We now write the kernelK0 in the form of (2.6):

K0 = (−1)
n(n+1)

2

n+1∑
k=1

hk(ζ, z)ωk(ζ̄ )∧ ω(ζ).

We may assume (as in the proof of Proposition 2.3) thatf = ∂̄u onB \ {0}. Then
we set

I := ∂̄u ∧K0 =
n+1∑
k=1

fk(ζ)hk(ζ, z)ω(ζ̄ )∧ ω(ζ). (2.14)

Arguing as in the proof of (2.9)–(2.10), we see that

lim
r→0

r 2n−3
∫
∂M

∣∣∣∣u(rζ)( n+1∑
k=1

ζkhk(rζ, z)

)∣∣∣∣ dσ(ζ) = 0 (2.15)

and

lim
r→0

∫
Mr

∣∣∣∣ n+1∑
k=1

fk(ζ)hk(ζ, z)

∣∣∣∣α(ζ)∧ α(ζ) = 0. (2.16)

To finish the proof of the theorem, it suffices to prove the following lemma.

Lemma 2.7. The functionshk in formula(2.14)can be written in the form

hk(ζ, z) = (1− ζ • z̄)n−2

D(ζ, z)n
[(1− ζ • z̄)Pk(ζ, z)+ (1− |ζ|2)Qk(ζ, z)], (2.17)
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wherePk(ζ, z) andQk(ζ, z) are polynomials such that

Pk(z, z) = Qk(z, z) = 0 ∀z∈Cn+1.

The proof of this lemma will be given shortly.

Proof of Theorem 2.6 (cont.).Suppose that Lemma 2.7 has been proved. Com-
bining (2.13)–(2.16), we may then deduce from Proposition 2.3 that

u(z) = SM[u] +
∫
M

n+1∑
k=1

fk(ζ)hk(ζ, z)α(ζ)∧ α(ζ).

Applying Lemma 2.7 to the last equation, the theorem follows.

Proof of Lemma 2.7.In view of (2.12) and (2.14), we can writeI = I1+ I2,where

I1 := C
( n+1∑

l=1

fl(ζ)dζl

)

∧
{
(1− ζ • z̄)n−1

D(ζ, z)n

n+1∑
j=1

[ζ̄j (1− ζ • z̄)− z̄j (1− |ζ|2)]dζj

∧
[ n+1∑
p,k=1

(zk + ζk)ζ̄pdζk ∧ dζ̄p
]
∧
[ n+1∑
q=1

dζ̄q ∧ dζq
]n−1}

and

I2 := C
( n+1∑

l=1

fl(ζ)dζl

)

∧
{
(1− ζ • z̄)n−2

D(ζ, z)n

n+1∑
j=1

[ζ̄j (1− ζ • z̄)− z̄j (1− |ζ|2)]dζj

∧ ∂̄|ζ|2 ∧
[ n+1∑
r=1

z̄r dζr

]
∧
[ n+1∑
p,k=1

(zk + ζk)ζ̄pdζk ∧ dζ̄p
]

∧
[ n+1∑
q=1

dζ̄q ∧ dζq
]n−2}

.

A simple computation shows that

I1= C · (1− ζ • z̄)n−1

D(ζ, z)n

n+1∑
k=1

fk(ζ){[−ζ̄k(1− ζ • z̄)+ z̄k(1− |ζ|2)](z • ζ̄ + |ζ|2)
− (1− |ζ|2)(zk + ζk)z • (ζ − z)}ω(ζ̄ )∧ ω(ζ).

Therefore, the functionshk associated toI1 (in the same way as the ones associ-
ated toI in (2.14)) are in the form (2.17).

We now considerI2. Since the differential form in braces ofI2 is SO(n+1,R)-
invariant with respect to(z, ζ), we may suppose without loss of generality that
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ζ :=
(
t√
2
,
it√
2
,0, . . . ,0

)
∈M, where 0< t < 1.

We divideI2 into two piecesI21 andI22. Here

I21 := C
( n+1∑

l=1

fl(ζ)dζl

)

∧
{
(1− ζ • z̄)n−2

D(ζ, z)n

n+1∑
j=1

[ζ̄j (1− ζ • z̄)− z̄j (1− |ζ|2)]dζj

∧ ζ2dζ̄2 ∧
[ n+1∑
r=1

z̄r dζr

]
∧
[ n+1∑
p=1

(zp + ζp)ζ̄1dζp ∧ dζ̄1

]

∧
[ n+1∑
q=1

dζ̄q ∧ dζq
]n−2}

.

To obtainI22, it suffices to interchangeζ1 andζ2 in I21.

Observe thatI21 is theCn+1-canonical volume form multiplied by a function of
the form

(1− ζ • z̄)n−2

D(ζ, z)n

n+1∑
k=1

Rk(ζ, z)fk(ζ),

where theRk(ζ, z) are polynomials that we shall examine next. In what follows,
O(|z− ζ|) denotes any polynomialR(ζ, z) such thatR(z, z) = 0.

If k ∈ {1,2}, then it is easy to see thatRk(ζ, z) = 0.
If k /∈ {1,2}, thenζk = 0. In addition,Rk(ζ, z) has three components corre-

sponding to the casesj = k, r = k, andp = k.
Casej = k. In this case we already haveζ̄j = 0. The component correspond-

ing to this case equals

O[ζ̄j (1− ζ • z̄)− z̄j (1− |ζ|2)] = (1− |ζ|2)O(|z− ζ|).
Caser = k. Thenζ̄r = 0. The presence of̄zr implies that the component cor-

responding to this case equals

O[(z̄r − ζ̄r )(ζ̄j(1− ζ • z̄)− z̄j (1− |ζ|2))]
= (1− ζ • z̄)O(|z− ζ|)+ (1− |ζ|2)O(|z− ζ|).

Casep = k. Thenζp = 0. Because of the factorzp + ζp, it follows (as in the
previous case) that the corresponding component is of the form

(1− ζ • z̄)O(|z− ζ|)+ (1− |ζ|2)O(|z− ζ|).
We conclude that

Rk(ζ, z) = (1− ζ • z̄)O(|z− ζ|)+ (1− |ζ|2)O(|z− ζ|).
Therefore, the functionshk associated toI21 (in the same way as the ones associ-
ated toI in (2.14)) are in the form (2.17).
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Analogous argument shows that the same conclusion holds also forI22. Since
I = I1+ I21+ I22, the proof of the lemma is complete.

3. Integral Estimates

In this section we prove some estimates for integrals that are needed in the next
section.

Lemma 3.1. There exists a constantC such that, for allw ∈ ∂M and0< r < 1,∫
∂M

|ζ − w|12
|ζ − rw|2n dσ(ζ) < C(1− r)− 1

2 .

Proof. Since the group SO(n + 1,R) acts transitively on∂M, we may suppose
without loss of generality that

w = w0 :=
(

1√
2
,0, . . . ,0,

i√
2

)
.

Let ∂Bn be the unit sphere ofCn. Consider the mapF : H→ Cn defined by

F(w) = |w|(w1, . . . , wn)

|(w1, . . . , wn)| .
Observe thatF is locally diffeomorphic atw0 and thatF(∂M) ⊂ ∂Bn. In addi-
tion, F(rw) = rF(w) for r ∈ R+. Using the mapF, the desired estimate is an
easy consequence of the following one (see [22, pp. 360–361]):∫

∂Bn

|ζ − w|12
|ζ − rw|2n dσ(ζ) < C(1− r)− 1

2 for w ∈ ∂Bn.

Let

1(z,w, ζ) := (L1(z, ζ)− L1(w, ζ), . . . , Ln+1(z, ζ)− Ln+1(w, ζ)),

where

Lk(z, ζ) := (z̄k − ζ̄k)(z • ζ̄ + |ζ|2)− (zk + ζk)z • (ζ − z)
|z− ζ|2n .

Then1 has the following invariant property:

1(Az,Aw,Aζ) = A1(z,w, ζ) ∀A∈SO(n+1,R);
1(tz, tw, tζ) = t−(2n−3)1(z,w, ζ) ∀t ∈R+.

Lemma 3.2. Givent ∈R+, A∈SO(n+1,R), and a domain� ⊂ H, for z,w ∈
H we then have∫

tA(�)

‖1(tAz, tAw, ζ)‖α(ζ)∧ α(ζ) ≤ Ct
∫
�

‖1(z,w, ζ)‖α(ζ)∧ α(ζ).

Proof. The change of variableζ = tAζ̃ and the invariant properties stated previ-
ously give that
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‖1(tAz, tAw, ζ)‖α(ζ)∧ α(ζ) = t‖1(Az,Aw,Aζ̃)‖α(ζ̃)∧ α(ζ̃)
≤ t‖A‖ · ‖1(z,w, ζ̃)‖α(ζ̃)∧ α(ζ̃).

SinceA→ ‖A‖ is bounded, the lemma follows.

Lemma 3.3. Fix a pointw ∈ ∂M. Then there exists a constantC such that, for
all t ∈ (0,1) and all z∈H ∪ {0},∫

ζ∈H : |ζ|<1/t
‖1(z,w, ζ)‖α(ζ)∧ α(ζ) < C|z− w|(|ln t |z− w|| + 1).

Proof. We distinguish three cases.

Case 1:z = 0. Applying [16, Lemma 2.1], we see that∫
|ζ|≤√2/2

‖1(0, w, ζ)‖α(ζ)∧ α(ζ) ≤ C. (3.1)

It can be checked that∫
|ζ−w|≤√2/2

‖1(0, w, ζ)‖α(ζ)∧ α(ζ) ≤ C. (3.2)

If ζ ∈H satisfies|ζ| > √2/2 and|ζ−w| > √2/2, then we have|ζ| ≈ |sw−ζ| for
0 ≤ s ≤ 1. Therefore, applying the mean value theorem to the functionsLk(·, ζ)
yields

‖1(0, w, ζ)‖ ≤ C

|ζ|2n−2
.

Hence, by [16, Lemma 2.1],∫
|ζ|>√2/2,|ζ−w|>√2/2,|ζ|≤1/t

‖1(0, w, ζ)‖α(ζ)∧ α(ζ) .
∫
√

2/2≤|ζ|≤1/t

α(ζ)∧ α(ζ)
|ζ|2n−2

≤ C(|log|t || +1). (3.3)

The lemma now follows from (3.1), (3.2), and (3.3).
Let δ > 0 be sufficiently small so that anyz∈H : |z−w| < δ can be connected

tow by a smooth curveγz : [0,1]→ H with γz(0) = z, γz(1) = w, and|γ ′z(t)| ≤
3
2|z− w|.

Case 2: |z − w| ≥ δ. Choose someA ∈ SO(n + 1,R) such thatz = |z|Aw.
Then, applying Lemma 3.2 together with the result of case 1, we see that∫

ζ∈H : |ζ|<1/t
(‖1(0, z, ζ)‖ + ‖1(0, w, ζ)‖)α(ζ)∧ α(ζ)

. |z|(|log t |z|| +1)+ |log t | +1

< C|z− w|(|ln t |z− w|| +1).
Since

‖1(z,w, ζ)‖ ≤ ‖1(0, z, ζ)‖ + ‖1(0, w, ζ)‖,
the lemma follows in this case, too.
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Case 3:|z− w| ≤ δ. It can be checked that∫
|ζ−w|≤2|z−w|

‖1(z,w, ζ)‖α(ζ)∧ α(ζ)

.
∫
|ζ−z|≤3|z−w|

α(ζ)∧ α(ζ)
|z− ζ|2n−1

+
∫
|ζ−w|≤2|z−w|

α(ζ)∧ α(ζ)
|ζ − w|2n−1

≤ C|z− w|. (3.4)

If ζ ∈H satisfies|ζ − w| > 2|z − w|, then|γz(s)− ζ| ≈ |ζ − w| for 0 ≤ s ≤ 1.
This, combined with the mean value theorem, implies that

‖1(z,w, ζ)‖ ≤ C|z− w| 1+ |ζ|2
|ζ − w|2n . (3.5)

Now consider the following subsets ofH:

E1 := {2δ > |ζ − w| > 2|z− w|};
E2 := {|ζ − w| > 2δ, |ζ| ≤ 2};
E3 := {|ζ − w| > 2|z− w|,2< |ζ| ≤ 1/t}.

Then∫
|ζ−w|>2|z−w|,|ζ|≤1/t

‖1(z,w, ζ)‖α(ζ)∧ α(ζ)

≤
3∑
k=1

∫
Ek

‖1(z,w, ζ)‖α(ζ)∧ α(ζ). (3.6)

The integral overE2 is clearly majorized byC|z− w|.
The estimate (3.5), combined with Lemma 2.1 in [16], shows that∫

E1

‖1(z,w, ζ)‖α(ζ)∧ α(ζ) . |z− w|
∫
E1

α(ζ)∧ α(ζ)
|ζ − w|2n

< C|z− w|(|log|z− w|| +1),

and ∫
E3

‖1(z,w, ζ)‖α(ζ)∧ α(ζ) . |z− w|
∫
E3

α(ζ)∧ α(ζ)
|ζ|2n−2

< C|z− w|(|log|t || +1).

Using the hypothesis that 0< t < 1 and putting the estimates just displayed
together with (3.4) and (3.6), the lemma follows also in this last case.

The next lemma gives a final integral estimate for‖1(z,w, ζ)‖.
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Lemma 3.4. There exists a constantC such that, for allz,w ∈M,∫
M
‖1(z,w, ζ)‖α(ζ)∧ α(ζ) ≤ C|z− w|(|log|z− w|| + 1).

Proof. Fixw0 ∈ ∂M. Choose someA∈SO(n+1,R) such thatw = |w|Aw0. We
first apply Lemma 3.2 and then Lemma 3.3 to obtain∫

M
‖1(z,w, ζ)‖α(ζ)∧ α(ζ)

. |w|
∫
ζ∈H,|ζ|≤1/|w|

∥∥∥∥1(A−1z

|w| , w0, ζ

)∥∥∥∥α(ζ)∧ α(ζ)
≤ C|z− w|(|log|z− w|| +1).

Lemma 3.5. Letf satisfy the hypothesis of Theorem 2.6. Forz∈M, define

uf (z) :=
∫
M

n+1∑
k=1

(1− ζ • z̄)n−2

D(ζ, z)n
[(1− ζ • z̄)Pk(ζ, z)

+ (1− |ζ|2)Qk(ζ, z)]fk(ζ)α(ζ)∧ α(ζ).
Then the dilated functionsuf (rz) converge uniformly touf (z) on∂M asr → 1−.

Proof. If 0(ζ, z) denotes either of the kernels

(1− ζ • z̄)n−1Pk(ζ, z)

D(ζ, z)n
or

(1− ζ • z̄)n−2(1− |ζ|2)Qk(ζ, z)

D(ζ, z)n
,

then it is enough to prove that∫
M
|0(ζ, rz)− 0(ζ, z)|α(ζ)∧ α(ζ) −−−→

r→1−
0 ∀z∈ ∂M. (3.7)

Forw ∈ H, let Tw be the complex tangent space toH atw and letπw be the or-
thogonal projection ofCn+1 ontoTw.

From the equalityD(ζ,w) = (1− |w|2)|ζ − w|2 + |w̄ • (ζ − w)|2, it follows
that there is a neighborhoodU of w in H such thatπw|U is biholomorphic and

D(ζ,w) ≈ D(πw(ζ), πw(w)) ∀ζ ∈ U . (3.8)

Moreover, it is easy to see that

1− ζ • w̄ = 1− πw(ζ) • πw(w),

(1− |w|2) 1
2 |ζ − w| . √D(ζ,w),
|ζ − w| . √|1− ζ • w̄|,
D(ζ,w) = |1− ζ • w̄|2 − (1− |ζ|2)(1− |w|2). (3.9)

The following estimate can be proved by the same method as in [2, Lemma I.5]:∫
ζ∈Bn,D(ζ,w)≤δ

|1− ζ • w̄|n− 3
2 [D(ζ,w)]−n+

1
2 dζ ∧ dζ̄ ≤ Cδ 1

4 , w ∈Bn. (3.10)
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Hereδ = C(1− |w|)2 anddζ ∧ dζ̄ denotes the Lebesgue measure on the unit ball
Bn of Cn.

SinceD(ζ,w) is a quasi-metric onM (see [2]), we can choose a constantC that
satisfiesD(ζ,w) ≈ D(ζ, z) if D(ζ, z) ≥ CD(z,w).

Now fix z∈ ∂M. For 0< r < 1, put δ := C(1− r)2 andw := rz. If D(ζ, z) ≥
CD(z,w) = δ thenD(ζ,w) ≈ D(ζ, z), which in turn gives that

|1− ζ • w̄| ≈ |1− ζ • z̄|. (3.11)

Thus, by (3.9),

|D(ζ,w)−D(ζ, z)| = |z− w|O(|1− ζ • z̄|). (3.12)

Estimate (3.7) will follow by combining the following estimates:

I :=
∫
ζ∈M,D(ζ,w)≤Cδ

|0(ζ,w)|α(ζ)∧ α(ζ) . δ 1
4 ,

II :=
∫
ζ∈M,D(ζ,z)≤δ

|0(ζ, z)|α(ζ)∧ α(ζ) . δ 1
8 ,

III :=
∫
ζ∈M,D(ζ,z)≥δ

|0(ζ, z)− 0(ζ,w)|α(ζ)∧ α(ζ) . δ 1
8 .

We now prove these estimates.
By Theorem 2.6 we have that

Pk(ζ,w) = O(|ζ − w|) and Qk(ζ,w) = O(|ζ − w|).
Observe that ifζ ∈M andD(ζ,w) ≤ δ, then the estimates given in [2, p. 68] show
that|1− ζ • w̄| ≈ 1− |w|2. This, combined with estimates (3.8)–(3.10), yields

I .
∫
ζ∈M,D(ζ,w)≤Cδ

|1− ζ • w̄|n− 3
2 [D(ζ,w)]−n+

1
2α(ζ)∧ α(ζ)

.
∫
ζ∈πw(M),D(πw(ζ),πw(w))≤Cδ

|1− πw(ζ) • πw(w)|n− 3
2

· [D(πw(ζ), πw(w))]−n+ 1
2 dVn(ζ)

. δ 1
4 .

SinceD(ζ, z) = |1− ζ • z̄|2, it follows that

II .
∫
|1−ζ • z̄|≤δ1/2

|1− ζ • z̄|−n− 1
2α(ζ)∧ α(ζ)

. δ 1
8

∫
M
|1− ζ • z̄|−n− 3

4α(ζ)∧ α(ζ) . δ 1
8 ,

where the latter inequality holds by an application of [16, Lemma 5.1].
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It now remains to majorizeIII. Using (3.11) and (3.12), we see that

III . |z− w|
(∫
|1−ζ • z̄|≥δ1/2

|1− ζ • z̄|n+ 1
2

D(ζ, z)n+1
α(ζ)∧ α(ζ)

)
. δ 1

8

∫
M
|1− ζ • z̄|−n− 3

4α(ζ)∧ α(ζ) . δ 1
8 .

The proof of the lemma is complete.

4. Lipschitz Estimates on the Complex ManifoldM

The following Hardy–Littlewood-type lemma is needed.

Lemma 4.1. For every0< α ≤ 1, there exists a constantC = C(α) with the fol-
lowing property. Supposeu is a differentiable function defined in a neighborhood
of M in B, and letK be some finite constant such that

|(gradu)(z)| ≤ K(1− |z|)α−1 for z∈M.
Then|u(z)− u(w)| ≤ CK|z− w|α for z,w ∈M.
Proof. Let a, b ∈ M with 0 < |a| ≤ |b| < 1, and setδ := |a − b| andc :=
(|a|/|b|)b ∈ ∂M|a|. Clearly |b − c| ≤ δ and|a − c| ≤ δ. We now distinguish the
casesδ ≤ 1− |b| andδ > 1− |b|.

In the first case, using that the group SO(n+1,R) acts transitively on∂M, we
see that there is a smooth curveγ (t) on ∂M|a| that satisfiesγ (0) = a, γ (1) = c,
and|γ ′(t)| ≤ C|a − c|.

The hypothesis implies that|(gradu)(z)| ≤ Kδα−1 on the line fromb to c and
on the curveγ (t). Hence

|u(b)− u(c)| + |u(a)− u(c)| ≤ CKδα,
showing that

|u(a)− u(b)| ≤ CK|a − b|α.
The caseδ > 1− |b| can be checked using the same argument as in [22, Lemma
6.4.8].

Consider the Lipschitz space

31
2
(M) :=

{
f ∈L∞(M) : ‖f ‖∞+ sup

z,z+h∈M
|f(z+ h)− f(z)|

|h|12
≡ ‖f ‖3 1

2

<∞
}
.

Theorem 4.2. Suppose thatu∈ C1(M) is bounded and thatf :=∑n+1
k=1fkdw̄k is

a continuous(0,1)-form defined in a neighborhood ofM inB such that‖f ‖M,∞ <
∞ and ∂̄Mu = f |M. DefineTf on ∂M by

(Tf )(ζ)

:=
∫
M

n+1∑
k=1

[
(1− w • ζ̄ )Pk(w, ζ)+ (1− |w|2)Qk(w, ζ)

(1− w̄ • ζ)n(1− w • ζ̄ )2

]
fk(w)α(w)∧ α(w).

Then the definition ofTf can be extended toM by setting
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(Tf )(z) := J1(z)+ J2(z), (4.1)
where

J1(z) := C1

∫
∂M

1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2
|z− ζ|2n (Tf )(ζ) dσ(ζ),

J2(z) := C2

∫
M

n+1∑
k=1

[(z̄k − w̄k)(z • w̄ + |w|2)− (zk + wk)z • (w − z)]
|z− w|2n

· fk(w)α(w)∧ α(w).
Moreover, the operatorTf satisfies:

(i) ∂̄MTf = f |M;
(ii) Tf ∈31

2
(M) and‖Tf ‖3 1

2

≤ C‖f ‖M,∞.
Proof. Define

g(z) :=
∫
M

n+1∑
k=1

[
(1− w • z̄)Pk(w, z)+ (1− |w|2)Qk(w, z)

(1− w̄ • z)n(1− w • z̄)2

]
fk(w)α(w)∧α(w)

for z in a neighborhood ofM in B.
Let uf be the function defined in Lemma 3.5. Then, applying Theorem 2.6 to

the functionu gives that

uf (z) := u(z)− SM[u](z) ∀z∈M. (4.2)

Note thatuf (ζ) = (Tf )(ζ) = g(ζ) for ζ ∈ ∂M.
By Lemma 3.5, we have that limr→1−

∫
∂M |uf (ζ) − uf (rζ)| dσ(ζ) = 0. There-

fore, in view of Remark 2.5, we can apply Theorem 2.4 to the functionuf .

Observe that (4.1) is just the Martinelli–Bochner formula. Hence, by virtue of
(4.2) and the hypothesis, we obtain

Tf = uf and ∂̄MTf = ∂̄Mu = f |M. (4.3)

In the proof of the theorem, the following lemmas will be needed.

Lemma 4.3.

‖g‖∞ ≤ C‖f ‖M,∞; (4.4)

|g(z)− g(w)| ≤ C‖f ‖M,∞|z− w|12 for z,w ∈M. (4.5)

Proof. We remark that|z−w|2 ≤ 2|1− z • w̄| and that, by Theorem 2.6, we have

Pk(w, z) = O(|w − z|) and Qk(w, z) = O(|w − z|) for z,w ∈B.
Therefore,

|g(z)| ≤ ‖f ‖M,∞
∫
M

[
O(|w − z|)
|1− w • z̄|n+1

+ (1− |w|
2)O(|w − z|)

|1− w • z̄|n+2

]
α(w)∧ α(w)

. ‖f ‖M,∞
∫
M

[
1

|1− w • z̄|n+ 1
2

+ (1− |w|2)
|1− w • z̄|n+ 3

2

]
α(w)∧ α(w)

for z∈M.



316 N. Viêt Anh & E. H. Youssf i

An application of [16, Lemma 5.1] shows that the latter integral is bounded. This
proves (4.4).

Next, we see that

|gradg(z)| . ‖f ‖M,∞
n+1∑
k=1

∫
M
α(w)∧ α(w)

·

 |1− w • z̄||Pk(w, z)| + (1− |w|2)|Qk(w, z)|
|1− w • z̄|n+3

+
|Pk(w, z)| + |1− w • z̄||gradz Pk(w, z)|

+ (1− |w|2)|gradz Qk(w, z)|
|1− w • z̄|n+2


.

Bearing in mind the preceding remark, an application of [16, Lemma 5.1] shows
that

|(gradg)(z)| ≤ C‖f ‖M,∞(1− |z|)− 1
2 for z∈M.

This fact, combined with Lemma 4.1, proves (4.5) and thereby completes the proof
of the lemma.

Lemma 4.4.

|J1(z)− J1(w)| ≤ C‖f ‖M,∞|z− w|12 for z,w ∈M.
Proof. Observe that forζ ∈ ∂M we have∣∣1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2∣∣ ≤ C|z− ζ|.
Thus ∣∣∣∣gradz

(
1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2

|z− ζ|2n
)∣∣∣∣ ≤ C|z− ζ|−2n. (4.6)

In addition, if we setu ≡ 1 in Theorem 2.4 then

C1

∫
∂M

1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2
|z− ζ|2n dσ(ζ) = 1.

Settingz := rw for w ∈ ∂M, this implies that

|(gradJ1)(z)| .
∫
∂M

∣∣∣∣gradz

(
1+ z • ζ̄ − z̄ • ζ − |z • ζ̄ |2 + |z • ζ|2

|z− ζ|2n
)∣∣∣∣

· |(Tf )(ζ)− (Tf )(w)| dσ(ζ).
SinceTf = g on ∂M, it follows from Lemma 4.3 that

|(Tf )(ζ)− (Tf )(w)| ≤ C‖f ‖M,∞|ζ − w|12 .
By (4.6), we now have

|(gradJ1)(z)| ≤ C‖f ‖M,∞
∫
∂M

|ζ − w|12
|ζ − rw|2n dσ(ζ),
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so that Lemma 3.1 yields

|(gradJ1)(z)| ≤ C‖f ‖M,∞(1− |z|)− 1
2 . (4.7)

This inequality, combined with Lemma 4.1, completes the proof of the lemma.

A combination of Lemma 3.4 and Lemma 4.4 with formula (4.1) gives that

|J2(z)− J2(w)| ≤ C‖f ‖M,∞|z− w|(|ln|z− w|| + 1) (4.8)

and
|(Tf )(z)− (Tf )(w)| ≤ C‖f ‖M,∞|z− w|12 for z,w ∈M. (4.9)

It now remains to prove the following.

Lemma 4.5.
‖Tf ‖∞ ≤ C‖f ‖M,∞.

Proof. On the one hand, by virtue of the formula forJ1 and in view of (4.4), we
have that

|J1(0)| ≤ C1

∫
∂M
|(Tf )(ζ)| dσ(ζ) ≤ C‖f ‖M,∞.

On the other hand, by virtue of the formula forJ2 we have

|J2(0)| ≤ (n+1)C2

(∫
M

α(w)∧ α(w)
|w|2n−3

)
‖f ‖M,∞ ≤ C‖f ‖M,∞,

where the latter inequality holds by an application of [16, Lemma 2.1]. Therefore,

|(Tf )(0)| ≤ |J1(0)| + |J2(0)| ≤ C‖f ‖M,∞.
This, combined with (4.9), implies that

|(Tf )(z)| ≤ |(Tf )(0)| + |(Tf )(z)− (Tf )(0)| ≤ C‖f ‖M,∞.
The proof of Lemma 4.5 is therefore finished.

Finally, the proof of Theorem 4.2 follows from (4.3), (4.9) and Lemma 4.5.

Remark 4.6. The solutionTf is the one characterized bȳ∂Tf = f with Tf
orthogonal to holomorphic functions, where the orthogonality is in terms of inte-
gration taken on∂M. In other words,Tf is the solution of̄∂u = f that has smallest
L2(σ)-norm.

Using the notation of Krantz [14], we denote byC2
1(B) the family ofC2-admissible

curves inB (with respect to the radial projection fromB\{0} onto∂B). LetC2
1(M)

be those curves ofC2
1(B) that lie inM. Let01

2,1̃
be the following nonisotropic Lip-

schitz space of functions onM:

01
2,1̃

:=
{
f : ‖f ‖3 1

2
(M) + sup

γ∈C2
1(M)
‖f B γ ‖31̃([0,1]) ≡ ‖f ‖0 1

2
,1̃
<∞

}
.
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Theorem 4.7. There exists a finite constantC such that, for all(0,1)-formsf
satisfying the hypothesis of Theorem 4.2,

‖Tf ‖0 1
2
,1̃
≤ C‖f ‖M,∞.

Proof. For w ∈ ∂M and 0< r0 < 1, let B(w, r0) denote the ball centered at
(1− r0)w with radiusr0. Note thatB(w, r0) is contained inB and is internally
tangent (to first order) to∂M atw.

We shall use the notation in the proof of Lemma 3.5. Because the group
SO(n+1,R) acts transitively on∂M, there is a small enoughr0 such that, for all
w ∈ ∂M, πw is biholomorphic from a neighborhood ofB(w, r0) ∩M in H onto
its image inTw. PutDw := πw(B(w, r0) ∩M).

Let γ ∈ C2
1(M) be close to∂M; say, dist(γ, ∂M) < r0/2. We shall see that, for

the proof of the main theorem, it is sufficient to check suchγ.

Let w := γ (0)/|γ (0)| ∈ ∂M. Note thatπw(γ (0)) = γ (0). Then there is a
curve γ̃ ∈ C2

1(Dw) with γ (0) = γ̃ (0) and |γ (t) − γ̃ (t)| ≤ Ct 2 (0 ≤ t ≤ 1).
This assertion follows from the fact that the complex tangent spaces to∂Dw and
∂B(w, r0) ∩H atw are the same.

We estimate

|(Tf )(γ (h))− (Tf )(γ (0))| ≤ |(Tf )(γ (h))− (Tf B π−1
w )(γ̃ (h))|

+ |(Tf B π−1
w )(γ̃ (h))− (Tf B π−1

w )(γ̃ (0))|
≡ T1+ T2. (4.10)

Since
|γ (h)− (π−1

w )(γ̃ (h))| ≤ C|γ (h)− γ̃ (h)| ≤ Ch2,

applying Theorem 4.2 yields

T1 ≤ C‖f ‖M,∞h. (4.11)

On the one hand, sinceπw is an orthogonal projection, it is not hard to show
that

‖(πw)∗(f |M)‖L∞(Dw) ≤ C‖f ‖M,∞ <∞. (4.12)

On the other hand, by Theorem 4.2 we have

∂̄(Tf B π−1
w ) = (πw)∗(f |M) onDw (4.13)

and
‖Tf B π−1

w ‖3 1
2
(Dw) ≤ C‖Tf ‖3 1

2
(M) ≤ C‖f ‖M,∞. (4.14)

Observe thatDw is a smooth, strictly pseudoconvex Euclidian domain and that
DAw = A(Dw) for all A∈SO(n+1,R); we may thus apply Theorem 8.2 of [14].
It then follows from (4.13) that there exists a constantC independant ofw such
that

‖Tf B π−1
w ‖0 1

2
,1̃(Dw)

≤ C(‖Tf B π−1
w ‖3 1

2
(Dw) + ‖(πw)∗(f |M)‖L∞(Dw)).

This, combined with (4.12) and (4.14), implies that
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T2 ≤ ‖Tf B π−1
w ‖0 1

2
,1̃(Dw)

|h||log|h|| ≤ C‖f ‖M,∞|h||log|h||.
Combining estimates (4.10) and (4.11) with the one just displayed, the proof of
Theorem 4.7 is complete.

5. Proof of the Main Theorem

Consider the proper mapπ : M→ B∗ \ {0} defined by

π(z1, . . . , zn, zn+1) := (z1, . . . , zn).

Let θ be the Lebesgue surface measure on∂B∗ \V and denote bydz ∧ dz̄ the
canonical volume form ofCn.

We recall from [24] and [17] that

dσ(ζ, ζn+1) = Cπ∗
(
dθ(ζ)

|ζ • ζ|
)

for (ζ, ζn+1)∈ ∂M (5.1)

and

[α(z)∧ α(z)](z, zn+1) = Cπ∗
(
dz ∧ dz̄
|z • z|

)
for (z, zn+1)∈M. (5.2)

Proposition 5.1. Suppose thatf is a ∂̄-closed(0,1)-form of classC1 defined in
a neighborhood ofB∗. Then the solutionT(π∗f ) given by Theorem 4.2 satisfies

(T (π∗f ))(z, zn+1) = (T (π∗f ))(z,−zn+1) ∀(z, zn+1)∈M.
Proof. Suppose thatf ∈ C1

0,1(rB∗) for somer > 1. SincerB∗ is pseudoconvex,
there exists au∈ C1(B∗) such that̄∂u = f in B∗. Then it follows from (4.3) that

T(π∗f )(z) = uπ∗f = (π∗u)(z)− SM[π∗u](z) ∀z∈M. (5.3)

In view of formulas (2.11) and (5.1), it can be checked that

SM[π∗u](z, zn+1) = SM[π∗u](z,−zn+1) ∀z∈M.
This, combined with equality (5.3), completes the proof.

We are now in position to prove the main theorem.
First we assume thatf is a ∂̄-closed(0,1)-form of classC1 defined in a neigh-

borhood ofB∗. The general case will be treated later.
In view of Proposition 5.1, we can define

(Tf )(z) := T(π∗f )(z, zn+1) ∀(z, zn+1)∈M. (5.4)

Combining Theorem 4.2 and Proposition 5.1, we see that the solution operatorTf

satisfies

∂̄Tf = f in B∗;
‖Tf ‖∞ ≤ C‖f ‖∞;

|(Tf )(z)− (Tf )(w)| ≤ C‖f ‖∞
(
|z− w| + min

ε∈{−1,1}|
√
z • z+ ε√w • w|

)1
2

∀z,w ∈B∗.
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Let z,w ∈ B∗. Then there existzn+1 ∈ C andwn+1 ∈ C such that(z, zn+1) ∈M,
(w,wn+1)∈M, and|zn+1− wn+1| ≤ |zn+1+ wn+1|.

Using the latter estimate, we obtain

|zn+1− wn+1| ≤ |z2
n+1− w2

n+1|
1
2 = |z • z− w • w|12 ≤ C|z− w|12 .

Hence
|z− w| + |zn+1− wn+1| ≤ C|z− w|12 . (5.5)

On the other hand, we have

|wn+1| = |wn+1− zn+1+ wn+1+ zn+1|
2

≤ |zn+1+ wn+1|.
This implies that

|wn+1||zn+1− wn+1| ≤ |z2
n+1− w2

n+1| ≤ C|z− w|.
Therefore,

|w̄1(z1− w1)+ · · · + w̄n+1(zn+1− wn+1)| ≤ C|z− w|,
|w1(z1− w1)+ · · · + wn+1(zn+1− wn+1)| ≤ |z− w|.

(5.6)

We consider two cases.

Case 1:N∗(z) ≤ 1− r0/4, N∗(w) ≤ 1− r0/4. Herer0 is the number appearing
in the proof of Theorem 4.7.

In view of estimate (4.7) and Lemma 4.1, it is clear that

|J1(a)− J1(b)| ≤ C‖f ‖∞|a − b| ∀a, b ∈M1−r0/4.

Combining the latter estimate with (4.8) and formula (4.1), we see that

|(Tf )(z)− (Tf )(w)|
≤ C‖f ‖∞(|z− w| + |zn+1− wn+1|)|log(|z− w| + |zn+1− wn+1|)|.

Hence, by virtue of (5.5),

|(Tf )(z)− (Tf )(w)| ≤ C‖f ‖∞|z− w|12 |log|z− w||.
This completes case 1.

Case 2:N∗(w) > 1− r0/4. We may assume without loss of generality that
|z− w| < r0/8. ThusN∗(z) > 1− r0/2.

Let T ′(w,wn+1)
denote the complex tangent space to∂B|(w,wn+1)| at (w,wn+1).

Then, by virtue of (5.6), we obtain

dist((z, zn+1), T
′
(w,wn+1)

) = |w̄1(z1− w1)+ · · · + w̄n+1(zn+1− wn+1)|
|(w,wn+1)|

≤ C|z− w|,

dist((z, zn+1), T(w,wn+1)) =
|w1(z1− w1)+ · · · + wn+1(zn+1− wn+1)|

|(w,wn+1)|
≤ C|z− w|.

(5.7)
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Since (w̄, w̄n+1) is normal toT(w,wn+1), (w,wn+1) is normal toT ′(w,wn+1)
, and

(w,wn+1) is orthogonal to(w̄, w̄n+1), a geometric argument shows that

[dist((z, zn+1), T(w,wn+1) ∩ T ′(w,wn+1)
)]2 = [dist((z, zn+1), T(w,wn+1))]

2

+ [dist((z, zn+1), T
′
(w,wn+1)

)]2.

This, combined with (5.7), yields that

dist((z, zn+1), T(w,wn+1) ∩ T ′(w,wn+1)
) ≤ C|z− w|. (5.8)

Let v ∈ T(w,wn+1) ∩ T ′(w,wn+1)
such that

|(z, zn+1)− v| = dist((z, zn+1), T(w,wn+1) ∩ T ′(w,wn+1)
). (5.9)

Then there exists a curveγ ∈ C2
1(M) such that

γ (0) = (w,wn+1),

|γ (2|v − (w,wn+1)|)− v| ≤ C|v − (w,wn+1)|2.
(5.10)

We estimate

|(Tf )(z)− (Tf )(w)| ≤ |T(π∗f )(z, zn+1)− T(π∗f )(v)|
+ |T(π∗f )(v)− T(π∗f )(γ (2|v − (w,wn+1)|)|
+ |T(π∗f )(γ (2|v − (w,wn+1)|)− T(π∗f )(γ (0))|
= I + II + III .

Using the estimates (5.5) and (5.8)–(5.10) and then applying Theorem 4.2, we im-
mediately majorize I and II byC‖f ‖∞|z− w|12 .

Applying Theorem 4.7 yields that

III ≤ C‖f ‖∞|v − (w,wn+1)||log|v − (w,wn+1)||
≤ C‖f ‖∞|(z, zn+1)− (w,wn+1)||log|(z, zn+1)− (w,wn+1)||
≤ C‖f ‖∞|z− w|12 |log|z− w||.

Hence,
|(Tf )(z)− (Tf )(w)| ≤ C‖f ‖∞|z− w|12 |log|z− w||.

This completes case 2.
It remains now to treat the general case. If merelyf ∈ A∞0,1(B∗) then we can

regularizef by convolution with aC∞0 function of sufficiently small support. Then
the same limiting argument as in [22, pp. 361–362] shows that the conclusion of
the theorem also holds for suchf. The proof of the theorem is complete.

We conclude this article with some remarks.

Remark 5.2. Making use of formulas (5.1), (5.2), (5.4), and (4.1), we can write
down explicitly the solution operatorTf. In this case,Tf has the form stated in
Section 1. We can also obtain another expression forTf by applying (5.2) touπ∗f .
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Remark 5.3. In view of Remark 4.6 and formulas (5.1) and (5.4), we have the fol-
lowing characterization:Tf is the solution of̄∂u = f that has smallestL2

(
dθ(ζ)

|ζ • ζ|
)
-

norm.

Remark 5.4. We do not know whether the Lipschitz1̃
2-estimate can be improved

to Lipschitz 1
2 .
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convex domains with real-analytic boundary,Math. Ann. 269 (1984), 527–539.

[4] P. Charpentier,Formules explicites pour les solutions minimales de l’équation
∂̄u = f dans la boule et dans le polydisque deCn, Ann. Inst. Fourier (Grenoble)
30 (1980),121–154.

[5] A. Cumenge,Estimées Lipschitz optimales dans les convexes de type fini,C. R.
Acad. Sci. Paris Sér. I Math. 325 (1997), 1077–1080.

[6] K. Diederich, B. Fischer, and J. E. Fornæss,Hölder estimates on convex domains
of finite type,Math. Z. 232 (1999), 43–61.

[7] K. Diederich, J. E. Fornæss, and J. Wiegerinck,Sharp Hölder estimates for̄∂ on
ellipsoids,Manuscripta Math. 56 (1986), 399–417.

[8] J. E. Fornæss and N. Sibony,On Lp-estimates for̄∂, Proc. Sympos. Pure Math.,
52, pp. 129–163, Amer. Math. Soc., Providence, RI, 1991.

[9] L. Gruman and P. Lelong,Entire functions of several complex variables,Grund-
lehren Math. Wiss., 282, Springer-Verlag, Berlin, 1986.

[10] K. T. Hahn and P. Pflug,On a minimal complex norm that extends the real
Euclidian norm,Monatsh. Math. 105 (1988), 107–112.

[11] G. Henkin and A. Iordan,Compactness of the Neumann operator for hyperconvex
domains with non-smoothB-regular boundary,Math. Ann. 307 (1997),151–168.

[12] G. Henkin and J. Leiterer,Andreotti–Grauert theory by integral formula,Progr.
Math., 74, Birkhäuser, Boston, 1988.

[13] K. T. Kim, Automorphism groups of certain domains inCn with singular bound-
ary, Pacific J. Math. 151 (1991), 54–64.

[14] S. G. Krantz,Estimates for integral kernels of mixed type, fractional integration
operators, and optimal estimates for the∂̄ operator,Manuscripta Math. 30
(1979), 21–52.

[15] G. Mengotti,Duality theorems for certain analytic spaces on the minimal ball,
Arch. Math. (Basel) 75 (2000), 389–394.

[16] G. Mengotti and E. H. Youssfi,The weighted Bergman projection and related
theory on the minimal ball,Bull. Sci. Math. 123 (1999), 501–525.

[17] K. Oeljeklaus, P. Pflug, and E. H. Youssfi,The Bergman kernel of the minimal
ball and applications,Ann. Inst. Fourier (Grenoble) 47 (1997), 915–928.

[18] K. Oeljeklaus and E. H. Youssfi,Proper holomorphic mappings and related
automorphism groups,J. Geom. Anal. 7 (1997), 623–636.
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