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1. Introduction

There is an extensive theory, due initially to Patterson and Sullivan, intertwining
the isometric, conformal, and ergodic properties of Kleinian groups. Our purpose
here is to begin to expand this theory to the setting of quasiconformal groups.
In particular, we wish to explore the connection between the Hausdorff dimen-
sion of limit sets of quasiconformal groups and the exponent of convergence of
the Poincaré series. It is well known that, for a large class of finitely generated
Kleinian groups, the Hausdorff dimension of the limit set is the exponent of con-
vergence [BiJo; S2]. We are concerned with the facet of Patterson–Sullivan the-
ory that relates the exponent of convergence to the Hausdorff dimension of the
limit set, and our techniques are primarily from the analytic theory of quasicon-
formal mappings. We will, however, directly apply techniques and results from
Patterson–Sullivan theory in the sequel to this paper [BT].

The Poincaré series of a Kleinian group has been the object of much refined
study; see, for example, [BiJo; Mc; Pa; S1; S2; Tu].

Because a quasiconformal group no longer acts isometrically on hyperbolic
space, it is to be expected that the whole of Patterson–Sullivan theory does not
generalize directly to quasiconformal groups. Thus our purpose in this paper is
twofold: we record positive results and then provide counterexamples that demon-
strate ways in which the Patterson–Sullivan theory fails for discrete quasiconfor-
mal groups.

The central part of the paper consists of Sections 4 and 5, where we provide ex-
amples to demonstrate differences between the quasiconformal and the conformal
case. We find thatthe exponent of convergence can be strictly greater than the
Hausdorff dimension of the conical limit set(Example 4.1) and thatthe Hausdorff
dimension can “jump up” in the limit on convergent sequences of quasiconformal
groups(see Example 4.2). For convergent sequences of Kleinian groups, the Haus-
dorff dimension of the limit set is lower semicontinuous (see [BiJo] and [Mc]). We
also provide an example (Example 4.3) of adiscrete quasiconformal group whose
limit set consists entirely of conical limit points; however, the group has the prop-
erty that the Hausdorff measure of the limit set at the critical dimension has zero
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mass.This example helps to motivate our second paper on the subject [BT], in
which we extend our analysis by constructing an analog of the Patterson–Sullivan
measure on limit sets of quasiconformal groups and then use this measure to ana-
lyze the local properties of limit sets.

The paper proceeds as follows: Section 2 contains the basic definitions and re-
sults that we will need from both discrete group theory and the theory of quasi-
conformal mappings. Section 3 will show that the calculation of the exponent
of convergence does not depend on the choice of extension of a quasiconformal
group. Section 4 and Section 5 contain the construction of counterexamples with
which we contrast and compare various properties of Hausdorff dimension on limit
sets of quasiconformal groups and convergence groups to Möbius groups.

Acknowledgments. We would like to thank Fred Gehring and Juha Heinonen
for enjoyable and productive conversations concerning the subject matter of this
paper. We thank the referee for useful suggestions, especially for providing us
with a more elegant synopsis of a proof of Lemma 3.1.

2. Basics

We recall that aK-quasiconformal groupG acting onRn is a group of mappings,
each of which is aK-quasiconformal homeomorphism ofRn. Such a groupG
is discreteif there exists no sequence of mappings in the group that converges
uniformly onRn to the identity mapping. We note that, from the theory of quasi-
conformal mappings, a discrete 1-quasiconformal group is a discrete group of
Möbius transformations, that is, aKleinian group.

The action of a discrete quasiconformal groupG partitionsRn into two disjoint
sets. Theregular set�(G) ⊂ Rn is the largest open set on whichG acts discon-
tinuously; thelimit setL(G) is the complement of�(G) in Rn. It is easy to see
thatL(G) is a closed set; ifL(G) contains more than two points, thenL(G) is a
perfect set (and thus uncountable) that is either nowhere dense or all ofRn. For
the basics in the theory of quasiconformal groups see [GM1]; for discrete Möbius
groups(K = 1) see [Ma].

An important tool in the theory of Kleinian groups acting onRn−1 is the hy-
perbolic metric onHn. Note that every Kleinian group0 acting onRn−1 extends
to a group of hyperbolic isometries acting discontinuously on hyperbolicn-space
(Hn, ρ). If 0 has no finite-order elements, then the quotient spaceHn/0 is a com-
plete Riemanniann-manifold of constant sectional curvature−1. One of the great
difficulties in the analysis of (non-Möbius) quasiconformal groups is that, though
individually every quasiconformal map ofRn−1extends to a quasiconformal map of
Hn, it is not known whether extensions of all elements of the group exist so that the
group structure is preserved. Furthermore, even in the case where such an exten-
sion exists, the extended group no longer acts isometrically on hyperbolicn-space.

Conformally equivalent to the extension problem fromRn−1 toHn is the problem
of extending quasiconformal groups acting onSn−1 toBn. Note that, by reflection,
a quasiconformal group acting onBn extends to a quasiconformal group acting on
Rn with the same dilatation.
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Because we wish to use geometric arguments involving the hyperbolic metric,
we will consider only thoseK-quasiconformal groups acting onRn that preserve
the unit ballBn. We call such a groupG a quasiconformal Fuchsian group,and
we label such aG by the symbol “QCF”. IfG is a QCF group then∂Bn is also
invariant underG, and ifG is discrete in addition then it acts discontinuously in
Bn, andL(G) ⊂ ∂Sn−1 by [GM1, Cor. 3.8]. In this case it is easy to show thatG

is countable.
There is a well-developed theory relating the hyperbolic action of a Kleinian

group onBn to its conformal action onSn−1. One can extend parts of this theory
to the class of quasiconformal groups. ThePoincaré serieswith exponents of a
discrete QCF groupG is defined as

6(s, x, y) :=
∑
g∈G

e−sρ(x,g(y)) for x, y ∈Bn ands > 0.

Definition 2.1 (Exponent of convergence). For a discrete QCF groupG acting
onRn, we call

δ(G) := inf {s | 6(s,0,0) <∞}
theexponent of convergenceof G.

The following proposition shows that the convergence or divergence of the series
6(s, x, y) is independent of the choice ofx andy (and soδ(G) can be computed
with any base pointsx, y in the place of 0). We omit the proof, since it is based
on the well-known result in the Kleinian group setting (see e.g.[N]).

Proposition 2.2. LetG be a discrete QCF group acting onRn. Then, for all
x, y ∈Bn,

inf
s
{6(s, x, y) <∞} = inf

s
{6(s,0,0) <∞}

= inf
s

{∑
g∈G

(1− |g(x)|)s <∞
}

= inf
s

{∑
g∈G

(1− |g(0)|)s <∞
}

= lim sup
r→∞

1

r
logN(r, x, y) = lim sup

r→∞
1

r
logN(r, 0,0),

whereN(x, y, r) = #{g ∈G | ρ(x, g(y)) < r}.
It is not clear a priori thatδ(G) is finite for a discrete QCF groupG. Lemma 2.3
shows that in fact it is bounded above byn−1, that is, the dimension of the sphere
at infinity of hyperbolic spaceBn. This is a well-known fact for Kleinian groups;
see [N, Thm. 1.6.1]. A proof of Lemma 2.3 is in [GM2]; this has not yet appeared
in print, so we provide an outline of the argument for the reader’s convenience.

Lemma 2.3 (Gehring–Martin). LetG be a discrete QCF group acting onRn.
Thenδ(G) ≤ n− 1.
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Proof. BecauseG acts discontinuously onBn, there exists a pointx ∈ Bn that is
stabilized only by the identity inG. Since Möbius transformations act as isome-
tries on(Bn, ρ), it is easy to see (using Proposition 2.2) thatδ(G) is invariant
under conjugation ofG by a Möbius transformation. Thus we can assume that
x = 0.

The geometric idea behind the Gehring–Martin argument is as follows. First
they show that there exists a fixedA (independent ofr) such that

N(r, 0,0) < Aer(n−1). (2.1)

The key geometric fact in showing this is that, becauseG is discrete and con-
sists of uniformlyK-quasiconformal mappings, there exists a hyperbolic distance
d such that all of the orbit points of 0 are separated by a distance of at leastd.

It is immediate that∑
g∈G

ρ(0,g(0))<r

e−αρ(0,g(0)) = N(r, 0,0)e−αr + α
∫ r

0
N(t, 0,0)e−αt dt.

Substituting (2.1) into the equation just displayed and taking the limit asr →∞,
we see that the Poincaré series converges for allα > n−1.

Remark 2.4. In Section 5 we will demonstrate, using a more general class of
discrete groups, that Lemma 2.3 is no longer true in this enlarged class.

There is a connection between the Hausdorff dimension of the limit set and the
exponent of convergence for a Kleinian group0 acting conformally onSn−1. The
relationship is especially nice in the setting of geometrically finite groups.

Theorem 2.5 [Pa; S1; Tu]. Let 0 be a geometrically finite Kleinian group act-
ing onSn−1. Then

δ(0) = dim(L(0)).

If 0 is geometrically finite and purely loxodromic, thenL(0) consists entirely of a
certain type of limit points. More generally, letG be a discrete QCF group. Then
a pointx ∈ L(G) is aconical limit point if there is a sequence of orbit points in
Bn that converges tox inside a Euclidean nontangential cone with vertex atx. We
denote byLc(G) the full collection of conical limit points inL(G).

With respect to the conical limit set, Bishop and Jones [BiJo] were able to re-
move the assumption of geometric finiteness.

Theorem 2.6 (Bishop–Jones).Let 0 be a Kleinian group whose limit set con-
tains more than two points. Thenδ(0) = dim(Lc(0)).

In Example 4.1 we see that Theorem 2.6 does not generalize to the full class of
QCF groups. Though Theorem 2.6 is not true in this more general setting, an argu-
ment in [BiJo] (Theorem 2.1), showing that the Hausdorff dimension of the conical
limit set is bounded above by the exponent of convergence, generalizes to the case
of QCF groups.

Theorem 2.7. Let G be a discrete QCF group acting onRn. Thenδ(G) ≥
dim(Lc(G)).
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3. Independence of Extension

Our next goal is to show that the exponent of convergence of a discrete QCF group
depends only upon the action of the group onSn−1.

We first note that a quasiconformal mappingf : Bn → Bn is a quasi-Möbius
mapping; hence it is immediate that, iff is the identity on the boundary, then the
hyperbolic distance fromx ∈Bn to f(x) is bounded above by a constant depend-
ing only onK andn.

Lemma 3.1. For eachn∈N, n ≥ 2, andK ≥ 1, there exists a constantc(K, n) >
0 such that the following holds: If f : Bn→ Bn isK-quasiconformal and extends
to the identity onSn−1, then

ρ(x, f(x)) ≤ c(K, n) for all x ∈Bn.
Remark 3.2. EveryK-quasiconformal mappingf : Bn→ Bn extends uniquely
to aK-quasiconformal mapping ofSn−1; see [V].

Using Lemma 3.1, we now show that the exponent of convergence of a discrete
QCF group onRn depends only on the action of the group onSn−1.

Theorem 3.3. LetG andG̃ be two discrete QCF groups acting onRn that agree
on Sn−1; that is, there exists an isomorphismϕ : G → G̃ such thatg|Sn−1 =
ϕ(g)|Sn−1 for all g ∈G. Thenδ(G) = δ(G̃).
Proof. ChooseK ≥ 1 large enough so that both groupsG andG̃ areK-quasicon-
formal. Choosex ∈ Bn. For g ∈ G let g̃ := ϕ(g) ∈ G̃ be the corresponding
element so thatg andg̃ agree onSn−1. By the triangle inequality we have that

ρ(x, g̃(x)) ≤ ρ(x, g(x))+ ρ(g(x), g̃(x)).
Sinceg−1 isK-quasiconformal, we obtain furthermore that

ρ(g(x), g̃(x)) ≤ 8K(ρ(x, g−1g̃(x))),

where8K(t) = 4dmax{t, t α} with d = d(K, n) andα = K1/(1−n) (see [GM2,
Cor. 2.10]). Observe now thatg−1 B g̃ is aK2-quasiconformal map onBn that
extends to the identity onSn−1. By Lemma 3.1 we obtain thatρ(x, g−1g̃(x)) ≤
c(K2, n). Hence

ρ(x, g̃(x)) ≤ ρ(x, g(x))+ C,
whereC = 8K(c(K2, n)) depends only onK andn. In the same way we obtain

ρ(x, g(x)) ≤ ρ(x, g̃(x))+ C.
Thus, for anys > 0 we have that

e−sρ(x,g(x))e−sC ≤ e−sρ(x,g̃(x)) ≤ e−sρ(x,g(x))e sC.
This implies that∑

g̃∈G̃
e−sρ(x,g̃(x)) <∞ if and only if

∑
g∈G

e−sρ(x,g(x)) <∞,

and this completes the proof.
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4. Counterexamples

This section contains a collection of basic counterexamples highlighting the differ-
ent behavior of the exponent of convergence with respect to Hausdorff dimension
that discrete quasiconformal groups exhibit. This list is not complete in detailing
the pathological behavior (relative to Kleinian groups) of the action of quasicon-
formal groups; we have limited ourselves here to examples using results in Sec-
tions 2 and 3 and to the use of elementary analytical techniques. In [BT] we will
explain why such phenomena occur by “localizing” Patterson–Sullivan theory.

Recall that a Kleinian group0 acting onRn is aFuchsian groupif 0 keeps the
unit ballBn (or the upper half-spaceHn) invariant. A Fuchsian group is a QCF
group withK = 1. Our first counterexample shows that, unlike in the Kleinian
case (cf. Theorem 2.6), the Hausdorff dimension of the conical limit set of a QCF
group can be strictly smaller than the exponent of convergence of the group (note,
however, that it is always true that dimLc(G) ≤ δ(G); see Theorem 2.7).

Example 4.1. There exists a QCF groupG acting onR2 such thatδ(G) >
dimLc(G).

Construction.It will be more convenient to work in the upper half-space model
H2. Let0 be a finitely generated Fuchsian group of the second kind acting onH2

that contains a parabolic element with fixed point at∞. Necessarilyδ(0) < 1.
One can, for example, choose0 to be the Hecke group generated byz 7→ z + 1
andz 7→ −λ−2/z for someλ > 2. We can assume thatγ (z) = z+1 is a generator
of 0. ChooseK > 1 so large thatK/(K +1) > δ(0), and define

ϕ(z) :=
{
z if |z| ≤ 1,

|z|1/K−1z if |z| > 1.

One easily verifies that, for largen∈Z, we have

ρ(i, ϕγ nϕ−1(i)) = ρ(i, ϕ(i + n)) ∼ log(|n|1/K+1),

where “∼” means that the two quantities differ only by an additive constant that
is bounded independently ofn. Hence, using Proposition 2.2, we observe that

δ(G) ≥ δ(〈ϕγϕ−1〉)
= inf

{
s > 0

∣∣∣ ∑
n∈Z

e−sρ(i,ϕγ
nϕ−1(i)) <∞

}
= inf

{
s > 0

∣∣∣ 2
∑
n∈N

1

ns(1/K+1)
<∞

}
= K

K +1
> δ(0).

On the other hand,ϕ is locally bi-Lipschitz at everyx ∈R (but not at∞), and this
implies that dim(Lc(G)) = dim(Lc(0)). Since dim(Lc(0)) = δ(0) by [Pa] and
[S1], we conclude that dim(Lc(G)) < δ(G).
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We will return to this example in more detail in [BT]. In particular, we will local-
ize the definitions for the exponent of convergence and the Hausdorff dimension
of the limit set and thus show that the pathology behind this example can be de-
scribed in terms of these localized quantities.

We conjecture that Example 4.1 is sharp in the sense that the exponent of con-
vergence of aK-quasiconformal conjugate of a parabolic cyclic Fuchsian group
acting onH2 cannot exceedK/(K + 1). Note that if we replaceϕ in the exam-
ple byϕ(z) = |z|1/K−1z then we haveδ(〈ϕγϕ−1〉) = 1/(K + 1). Recall also that
the exponent of convergence of any parabolic cyclic Fuchsian group acting onH2

is 1
2 .

Conjecture. Let0 be a parabolic cyclic Fuchsian group acting onH2, and let
ϕ : R2→ R2 be aK-quasiconformal mapping that keepsH2 invariant. Then

1

K + 1
≤ δ(ϕ0ϕ−1) ≤ K

K + 1
.

Our second counterexample contrasts the behavior of the exponent of convergence
on sequences of QCF groups with its behavior on sequences of Kleinian groups.
We start by defining in what sense these sequences are converging.

Fix an abstract finitely generated groupH, and let

ρi : H → QC(K)
be a discrete faithful representation ofH into the spaceQC(K) of K-quasicon-
formal mappings onRn endowed with the compact-open topology. We say that a
sequence

{ρi : H → QC(K)}
converges algebraicallyto a discrete faithful representationρ∞ : H → QC(K) if
ρi(h)→ ρ∞(h) for each generatorh∈H.

In dimension 2, if{ρi} is a sequence of discrete faithful representations into
the space of Möbius transformations andH is not cyclic, then it is a fundamental
result of Jørgensen [J] that the limit representation is automatically discrete and
faithful. In any dimensionn ≥ 2, if H does not contain elements of finite order,
if ρi(H ) is a non-elementary quasiconformal Fuchsian group for eachi, and ifK
is sufficiently close to 1, then we have shown [BM] that the limit representation is
again discrete and faithful.

It is clear that, by definition, algebraic convergence preserves the group struc-
ture. Our next type of convergence respects, in the Kleinian case, the geometric
structure on compact subsets of the quotient manifolds. A sequence

{Gi ∈QC}
converges geometricallytoG∞ if:

(1) for eachg ∈G∞, there exists a sequence{gi ∈Gi} such thatgi → g; and
(2) if {gik ∈Gik } so that{gik } converges tog, theng ∈G∞.
For Kleinian groups, the topology induced by geometric convergence is equiva-
lent to the Gromov topology, that is, quasi-isometric convergence on compact sets
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of the quotient manifolds; see [Th] or [BePe]. Observe that, if a sequence{ρi} is
converging algebraically and geometrically, then it is clear from the definition of
geometric convergence that the algebraic limit is contained in the geometric limit.
Should a sequence{ρi} converge algebraically and geometrically to the same dis-
crete groupG, we say that the sequenceconverges strongly.

We will show that the following two facts, which are true in the Möbius cat-
egory, are not true in general for QCF groups. The first theorem is true in more
generality than we give here; however, the statement given makes the contrast be-
tween Kleinian groups and non-Kleinian QCF groups explicit.

Theorem 4.1 [CT2; Mc]. Suppose thatH is not a free group, and let{ρi : H →
Möb(n)} be a sequence of Kleinian groups converging strongly to a geometrically
finite groupρ∞(H ). Then

lim
i→∞ δ(ρi(H )) = δ(ρ∞(H )).

Via Patterson–Sullivan theory, we see that Theorem 4.1can be restated to conclude
that the Hausdorff dimension function is continuous on strongly convergent se-
quences (with geometrically finite limits) of Kleinian groups provided the groups
are not free.

If one assumes only algebraic convergence, then the best one can do is lower
semicontinuity.

Theorem 4.2 [BiJo]. If H is a finitely generated abstract group and{ρi : H →
Möb(n)} is a sequence of discrete faithful representations converging algebraically
to ρ∞, then

dim(L(ρ∞(H )) ≤ lim inf
i→∞ dim(L(ρi(H )).

Remark 4.3. There are well-known examples where the dimension of the limit
set of the limit group isstrictly lessthan the limit inferior of the dimensions of
the limit sets along the sequence. An example of such phenomena is a sequence
of degenerate groups on the boundary of a Bers’ slice converging to a maximal
cusp [C].

Proposition 4.4. Let0 be a Kleinian group, and let{ϕn ∈QC(K)} so that{ϕn}
converges to a mappingϕ ∈QC(K) in the compact-open topology.

Then the sequence{ρn} of representations of0 toQC groups defined by

{ρn : 0 7→ ϕn0ϕ
−1
n }

is strongly convergent to the representation

ρ : 0 7→ ϕ0ϕ−1.

The proof of this proposition is exactly the same as the proof for Kleinian groups,
so we omit it.

The following example shows that Theorems 4.1 and 4.2 do not generalize to
the setting of QCF groups. Example 4.2(i) contrasts Theorem 4.1, and Exam-
ple 4.2(ii) contrasts Theorem 4.2.
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Example 4.2. (i)There exist a Kleinian group0 acting onR2 and a sequence{ϕn}
of uniformly quasiconformal mappings onR2 that satisfy the following:ϕn→ id
asn→∞, but

δ(ϕn0ϕ
−1
n ) 6→ δ(0) asn→∞.

(ii) There exist a finitely generated Kleinian group0 acting onR2 and a se-
quence{ψn} of uniformly quasiconformal mappings onR2 that satisfy the follow-
ing: ψn→ ψ quasiconformal asn→∞, but

dim(L(Gn)) = 1 for all n and dim(L(G)) > 1,

whereGn = ψn0ψ−1
n andG = ψ0ψ−1; that is,

dim(L(G)) 6≤ lim inf
n→∞ dim(L(Gn)).

Construction.(i) Let 0 be a finitely generated and purely loxodromic Fuchsian
group, so thatLc(0) = L(0) = ∂D. For eachn ∈N we constructϕn as follows.
LetPn be a regular polygon with 2n sides, inscribed in the unit disk and placed in
such a way that two of its corners are on thex-axis. Then the interior ofPn is con-
tained in the interior ofPn+1 for all n. Replace now each of the sides ofPn by a
regular snowflake curve and call the resulting curveCn (see Figure 1).

Figure 1 The curvesCn

ThenCn is aK-quasicircle, whereK can be chosen independently ofn. Further-
more, dim(Cn) = log 4/ log 3 for alln, andCn → ∂D in the Hausdorff set topol-
ogy asn→∞.

Letϕn mapD conformally onto the interior ofCn,whereϕn(0) = 0 andϕ ′n(0) >
0. Thenϕn→ id by Carathéodory’s theorem on kernel convergence (see e.g. [Po]).
Extend eachϕn to a quasiconformal map ofR2, and denote the extension again
by ϕn. Then allϕn are uniformly quasiconformal, andϕn→ id asn→∞.
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DefineGn := ϕn B0 B ϕ−1
n . Since the quasiconformal conjugacy maps the limit

set of0 onto the limit set ofGn and in fact preserves the property of being conical,
we have thatLc(Gn) = Cn; hence

dim(Lc(Gn)) = log 4

log 3
for all n, but

dim(Lc(0)) = 1.

Now extend eachϕn to a quasiconformal map ofH3 and choose a subsequence
(again denoted by{ϕn}) so thatϕn → ϕ asn → ∞, whereϕ is quasiconformal
andϕ|R2 = id. Using Theorem 2.7 and Theorem 3.3, we obtain that

δ(ϕ B 0 B ϕ−1) = δ(0) = dim(Lc(0)) = 1,

but

δ(Gn) ≥ dim(Lc(Gn)) = log 4

log 3
> 1 for all n∈N.

(ii) Let 0 be a finitely generated Fuchsian group withL(0) = ∂D. Letψn map
D conformally onto the interior of thenth approximation of the regular snowflake
curve (see Figure 2), whereψn(0) = 0 andψ ′n(0) > 0.

Figure 2 Approximations of the snowflake curve

Then{ψn} converges to the the mapψ, which mapsD conformally onto the inte-
rior of the snowflake curve. Eachψn can be extended to a quasiconformal mapping
of R2, where the quasiconformal dilatation is independent ofn. Choose a subse-
quence such thatψn→ ψ̃ for some quasiconformal mapping̃ψ : R2→ R2. Then
ψ̃ |D = ψ, so thatψ̃ is an extension ofψ toR2.

DefiningGn := ψn B 0 B ψ−1
n andG := ψ̃ B 0 B ψ̃−1, we obtain

L(Gn) = ψn(L(0)) = ψn(∂D)
and hence

dim(L(Gn)) = 1 for all n∈N.
On the other hand, we have

L(G) = ψ(∂D) = standard snowflake curve
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and so
dim(L(G)) = log 4

log 3
> 1.

Using a similar construction to that of Example 4.2, we can produce an exam-
ple that illustrates how different the Hausdorff measure behaves on limit sets of
K-quasiconformal groups as compared to how it behaves on limit sets of Kleinian
groups. To draw the comparison out, note that we can take the quasiconformal
groupG constructed in Example 4.3 to be finitely generated so that its limit set
consists entirely of conical limit points. For Kleinian groups0 satisfyingLc(0) =
L(0), the Hausdorff measureHα at the critical dimensionα (restricted to the limit
set) is finite and positive [S1]. We explore this dichotomy between quasiconformal
groups and Kleinian groups more fully in [BT].

Example 4.3. There exists a discrete quasiconformal groupG acting onR2 that
satisfiesHα(L(G)) = 0, whereα = dim(L(G)).

Construction.Let0 be a Fuchsian group acting onR2 withL(0) = ∂D. Choose
a sequence{αi} with 1 < α1 < α2 < · · · < 3

2 and limi→∞ αi = 3
2 . Let Ci be a

snowflake curve of Hausdorff dimensionαi whose base length is 1/i2. Put allCi
together “head to tail”, and close this homeomorphic image of [0,1] up with a rec-
tifiable arc so that the resulting curve forms a closed Jordan curveC; see Figure 3.

Figure 3 The curveC of dimension3
2

Let ϕ be a quasiconformal map ofR2 that mapsD onto the interior ofC, and
defineG := ϕ0ϕ−1. Then we haveL(G) = C and moreover that dimC = 3

2, but
H3/2(C) = 0.

5. Convergence Groups

We conclude this paper with an open question. In [CT1] it was shown that an
infinite-index geometrically finite subgroup̃0 of a Kleinian group0 has the prop-
erty that dim(L(0̃)) < dim(L(0)). We show in Example 5.3 that the analogous
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statement is not true in the very general setting of convergence groups. The ques-
tion of whether this theorem remains true in the quasiconformal case (see Ques-
tion 5.1) remains open in its full generality [ABT].

Discrete convergence groups are generalizations of Kleinian groups and were
invented by Gehring and Martin [GM1]. The definition is as follows: Adiscrete
convergence groupG onRn consists of homeomorphisms acting onRn with the
property that, for every sequence{fk} of distinct elements inG, there is a subse-
quence{fkj } and two pointsa, b ∈ Rn such that the sequence{fkj } converges to
the pointa locally uniformly inRn \ {b} and the sequence{f −1

kj
} converges to the

pointb locally uniformly inRn \ {a}. It is clear that each element is isolated in a
discrete convergence group; no sequence of elements converges to the identity.

Möbius groups and quasiconformal groups are examples of convergence groups
(see [GM1]). Homeomorphic conjugates of quasiconformal groups are also con-
vergence groups, so that the class of convergence groups ofRn is strictly larger
than the class of quasiconformal groups. Convergence groups in many essential
ways resemble their conformal counterparts. For instance, as with Möbius groups
one defines thelimit setL(G) and theregular set�(G) of the convergence group
G in exactly the same way.

First we remark that Proposition 2.2 is no longer true if we require the groupG

only to be a discrete convergence group. However, we can still define the exponent
of convergence for a discrete convergence groupG acting onRn (and keepingBn
invariant) to beδ(G) := inf

{
s > 0 | ∑g∈G e−sρ(0,g(0))<∞

}
, with the convention

that inf(∅) = ∞.
Example 5.1. There exists a discrete convergence groupG onRn that keepsBn
andSn−1 invariant but satisfiesδ(G) = ∞.

Construction.Let0 be a Fuchsian Möbius group onRn that satisfiesδ(0) ≥ 1,
and letϕ : Rn → Rn be the homeomorphism defined byϕ(0) = 0, ϕ = id on
Sn−1, ϕ(x)/|ϕ(x)| = x/|x|, andρ(0, ϕ(x)) = (ρ(0, x))1/2 for x ∈ Bn \ {0} (and
extendϕ to all ofRn by reflection). ThenG := ϕ0ϕ−1 satisfiesδ(G) = ∞.
This example actually shows more. Since the groupsG and0 agree onSn−1 (note
thatϕ = id onSn−1), we immediately have the following.

Example 5.2. There exist two discrete convergence groupsG andG̃ onRn that
agree onSn−1 but have different exponents of convergence.

Hence, Theorem 3.3 cannot be extended beyond the quasiconformal class.
We now end with the example announced previously.

Example 5.3. There exists a discrete convergence groupG acting onR2 with an
infinite index subgroup̃G such that

dim(L(G̃)) = dim(L(G)).

Moreover,G andG̃ are finitely generated groups that are topologically conjugate
to Schottky groups.
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Construction.Let 0 be a Schottky group onR2; that is,0 is a finitely gener-
ated, free, purely loxodromic Kleinian group with non-empty regular set [Ma].
We further assume that0 is generated byγ1, γ2, γ3 such that, fori = 1,2,3, γi
maps the exterior of the (round) diskD(i)

a ⊂ R2 onto the interior of the diskD(i)
b ⊂

R2 and also the interior ofD(i)
a onto the exterior ofD(i)

b . Let all six disks be mu-
tually disjoint and have radius 1. Let� be the common exterior of all six disks
(with∞∈�).

Now define a homeomorphismϕ as follows. Setϕ = id on�. Defineϕ on
D(1)
a \ γ−1

1 (D(1)
a ∪ D(2)

a ∪ D(2)
b ∪ D(3)

a ∪ D(3)
b ) so that the images ofγ−1

1 (∂D(1)
a ),

γ−1
1 (∂D(2)

a ), andγ−1
1 (∂D

(2)
b ) are circles of radius 1/5 and, on the other hand, the

images ofγ−1
1 (∂D3

a ) andγ−1
1 (∂D3

b ) are circles of radius(1/5)2.
In the same way, defineϕ onD(1)

b \ γ1(D
(1)
b ∪D(2)

a ∪D(2)
b ∪D(3)

a ∪D(3)
b ): Let

the images ofγ1(∂D
(1)
b ), γ1(∂D

(2)
a ), andγ1(∂D

(2)
b ) be circles of radius 1/5 and, on

the other hand, let the images ofγ1(∂D
3
a ) andγ1(∂D

3
b ) be circles of radius(1/5)2.

Proceed inductively in the same manner. The images underϕ of circles that are
images of∂D(1),(2)

a,b under an element of〈γ1, γ2〉 are circles of radiusR/5,whereR
is the radius of the “motherdisk”. All other “children” in a disk of radiusR have
size(R/5)2 (see Figure 4).

Figure 4 Construction of the groupG

Now let 0̃ = 〈γ1, γ2〉 and G̃ = ϕ(0). It is easy to see that dimL(G̃) =
log 3/ log 5=: d. On the other hand, for anyn∈N, the limit set ofG can be cov-
ered by 4·3n disks of radius 1/5n and 4· (5n−3n)+2 ·5n disks of radius(1/5n)2.
For this cover{Uα}, we have
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∑
(diamUα)

d = 4 · 3n
(

2

5n

)d
+ [4 · (5n − 3n)+ 2 · 5n]

(
2

52n

)d
= 4 · 2d + 2d [4 · (5n − 3n)+ 2 · 5n]3−2n→ 4 · 2d asn→∞.

Hence dimL(G) ≤ d, but sinceL(G̃) ⊂ L(G) we conclude thatL(G) andL(G̃)
have the same Hausdorff dimension.

However, our question does remain open in the quasiconformal setting.

Question 5.1. LetG be a discrete quasiconformal group acting onRn, so that
dim(L(G)) < n. Let G̃ be a finitely generated infinite index subgroup ofG.

Is dimL(G̃) < dimL(G)?
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