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C1 Immersed Hypersurfaces SeparateRn

Michael Hirsch & Charles Pugh

1. Introduction

Clearly an immersed 2-sphere separatesR3.As evidenced by the papers of Vaccaro,
Feighn, and M. D. Hirsch, this statement is true—but it is less than clear. We sum-
marize the known results for proper immersionsf : Mm → Nn where the codi-
mensionk = n−m is≥ 1 andM,N are boundaryless. Recall that a map isproper
if pre-images of compact sets in the target are compact in the domain.

(a) Vaccaro [7]. Iff is merely PL (piecewise linear) then everything fails; the
counterexample is the house with two rooms, which is a nonseparating PL im-
mersion of the 2-sphere inR3. The illustration in Figure 1 is drawn as piece-
wise smooth. See also Rourke and Sanderson [6] or Bing [1].

Figure 1 The house with two rooms

(b) Vaccaro [7]. Iff is C1 and if fM is a subcomplex of aC1 triangulation of
N thenHm(fM;Z2) 6= 0, which by Alexander duality implies thatfM sep-
arates whenN = Rm+1.

(c) Feighn [2]. Iff isC2, k = n−m = 1, andH1(N;Z2) = 0, thenfM sepa-
ratesN.

(d) Hirsch [4]. If f is C2 thenfM k-separatesN in the sense that thekth ho-
mology and thekth homotopy groups of the pair(N,N \ fM) are nontrivial.
The coefficient group for the homology can be eitherZ orZ2.

Note thatk-separation is also referred to as “k-piercing.”
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In this paper we analyzeC1, non-C2, immersions. As the following proposi-
tion shows, (c) is a consequence of (d), and accordingly we concentrate on (d).
Our main result is as follows.

Theorem A. A properC1 immersionf : Mm → Nn k-separatesN whenk =
n − m ≥ 1. In particular, aC1 immersion of a compactMm in Rm+1 separates
Rm+1.

Note, too, that (d) is a local statement whereas (c) concerns the global topology
of N.

Proposition. If H1(N;Z2) = 0 then1-separation implies topological sepa-
ration.

Proof. The setfM separatesN if and only if the reduced homology group
H #

0(N \ fM;Z2) is nonzero. The long exact reduced homology sequence of
(N,N \ fM) is

· · · −→ H1(N;Z2) −→ H1(N,N \ fM;Z2) −→ H #
0(N \ fM;Z2).

By assumption, the first group is zero and the second is nonzero. Exactness im-
plies that the third is nonzero.

Vaccaro’s proof relies on simplicial topology, which is why his theorem ignores
immersions like that shown in Figure 2.

Figure 2 An immersion to which Vaccaro’s method does not apply

Feighn employs standard Morse theory, which is why he assumes thatf isC2.

Feighn is willing to confront infinitely complicated immersions, as in Figure 2, so
his result is topologically more general than Vaccaro’s. Hirsch also employs stan-
dard Morse theory and needsf to beC2. Using smoother analysis and rougher
functions, we show how to lower the differentiability hypotheses onf fromC2 to
C1, retaining the other generalities of Feighn and Hirsch.

In Section 2 we review Feighn’s counting argument, in Section 3 we mod-
ify his ideas to suit theC1 codimension-1 case, in Section 4 we generalize to
higher codimensions, and in Section 5 we investigate some related but curious
low-differentiability phenomena.
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2. Good Points and Bad Points

To include the possibility thatM,N have nonempty boundaries, we adopt Feighn’s
assumption that the proper immersionf : Mm→ Nm+1 satisfies

f −1(∂N ) = ∂M and f is transverse to∂M.

Sincef is a proper immersion, thef -pre-image of anyy ∈ fM is a finite set of
points,x1, . . . , xs . The numbers is themultiplicity of y with respect tof. Feighn
calls a pointy ∈ fM goodif fM does not branch aty andbad if it is not good. See
Figure 3. For a good pointy there are neighborhoodsU1, . . . , Us of the pre-image
pointsx1, . . . , xs such thatf(Ui) = f(Uj ) when 1≤ i, j ≤ s.
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Figure 3 Good and bad points offM labeled with their multiplicities

It is standard to see that the set of good points infM is open-dense, and the
pre-image is also open-dense inM.

Feighn’s strategy is to analyze the multiplicity assuming thatfM does not 1-
separateN homotopically. There are four steps.

Step 1.Every multiplicity is even. Feighn then chooses a goody0 whose mul-
tiplicity s0 has the smallest even factor 2α0. All other multiplicities are divisible
by 2α0.

Step 2.From the assumption thatfM fails to 1-separateN, Feighn constructs a
smooth map of the 2-disc intoN, g : D→ N, such thatg andg|∂D are transverse
to fM andy0 ∈ g(∂D). Also there is a uniquez0 ∈D with g(z0) = y0, and this
z0 lies in ∂D.

Step 3.Feighn next examines the joint pullback

P = {(x, z)∈M ×D : fx = gz}.
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It is a compact 1-manifold whose boundary lies inM× z0. It consists ofs0/2 arcs
(and some Jordan curves that are irrelevant). Thusχ(P ) = s0/2, which implies
that 2α0 does not divideχ(P ).

Step 4.Feighn then constructs a functionτ : D→ R such that the composite

µ : (x, z) 7→ z 7→ τ(z)

is a Morse function onP that has noncritical maxima at the boundary points ofP.

The Euler characteristic ofP is the sum of the Morse indices at the critical points
of µ. Becauseµ is a composite, its critical points occur not singly and indepen-
dently but rather in whole fibers,

P(y) = {(x, z)∈P : f(x) = y},
where all points in the fiber share the same Morse index. The multiplicity ofy is
the cardinality of the fiber, and all multiplicities are divisible by 2α0; hence the
Morse-theoretic Euler characteristic is divisible by 2α0, which contradicts Step 3.

Feighn’s construction ofτ uses the distance function in the ambient
spaceN, and this is where he uses theC2 hypothesis. In Section 3 we
produce such a Morse function by different means.

Here are some details about Steps1–3. The standing assumption is thatfM fails
to 1-separateN homotopically.

Step 1.For anyy∗ ∈ fM, draw a short arcγ0 that crossesfM transversely at
y∗. SincefM does not 1-separateN homotopically, there is a second arcγ1 ho-
motopic toγ0 (the homotopy keeps the endpoints inN \ fM fixed) that is disjoint
from fM. Rounding off corners and smoothing the homotopy leads to a smooth
map of the 2-disc intoN, h : D→ N, such that:

(a) h andh|∂D are transverse tof ;
(b) h embeds∂D and sends a unique pointz∗ ∈ ∂D to y∗;
(c) h(∂D) ∩ fM = {y∗}; and
(d) h(∂D) ∩ ∂N = ∅.
This construction is standard (see Figure 4). Transversality implies thatf × h:
M × D → N × N is transverse to the diagonal1N. The pre-image is the joint
pullback

P = Ph = (f × h)−1(1N) = {(x, z) : fx = hz}.
The diagram

M

f ��?????

P
πM

������� πD

��?????

N

D

h�������

commutes, andP is a compact1-dimensional submanifold ofM×Dwhose bound-
ary necessarily lies inM×∂D. Commutativity implies that the only points ofP that



C1 Immersed Hypersurfaces SeparateRn 187

fM

 gD

 y*

 branch points

Figure 4 A smooth disc transverse tofM at a good pointy∗

map toy∗ are inM×z∗. The fiber ofP overy ∈ fM, P(y) = {(x, z) : fx = hz =
y}, either is empty or consists precisely of the set of points{(x1, z), . . . , (xs, z)},
where{x1, . . . , xs} is thef -pre-image ofy. Thus,P(y) has cardinality 0 or car-
dinality s.

Observe thatP(y∗) is simultaneously (a) the boundary points ofP and (b) the
productf −1(y∗) × z∗. The boundary points of a compact 1-manifold have even
cardinality. Therefore, the multiplicity of everyy∗ with respect tof is even. See
Figure 5.

Figure 5 The joint pullbackP and its boundary points (the manifoldM appears to
be 1-dimensional in the figure)

Step 1bis. Choose a good pointy0 ∈ fM with least even multiplicitys0 among
good points. Thens0 = 2α0`, ` is odd, and all multiplicities of good points are
divisible by 2α0.

Steps 2 and 3.The preceding construction was made for a general pointy∗ ∈
fM. Repeating it for the special pointy0 producesg : D → N, and Figure 5 is
valid for P = Pg. Thusχ(P ) = s0/2.
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Remark. The even multiplicity condition is often fulfilled by an immersion. For
example, Boy’s surface is an immersed 2-sphere inR3 all of whose good points
have multiplicity 2. It is also easy to immerse the torus inR3 so that all its points
have multiplicity a power of 2.

3. C1 Immersions in Codimension 1

Consider a spaceW and a continuous function defined onW, sayw0 : W → R.
As explained in [5], astrong(or “Whitney”)C 0 neighborhood ofw0 consists of all
functionsw : W → R for which |w(x)−w0(x)| < ε(x), whereε is a given pos-
itive continuous function defined onW. If W is compact, thenε is bounded away
from 0 and the strongε-neighborhood ofw0 is just an ordinary uniform neighbor-
hood. If, however,W is noncompact, then the functionε can have arbitrarily fast
decay toward the frontier ofW; consequently, the behavior ofw near the frontier
is extremely like that ofw0. For example, ifW = (0,1) andw0(x) = e−1/x then,
for the correct choice ofε : (0,1) → (0,∞), any strongC 0 ε-approximation to
w0 satisfies limx→0w(x)x

−n = 0 for all n ∈N. If W is a manifold andw0 is Cr

(r ≥ 1), then it is natural to define corresponding strongCr neighborhoods ofw0.

This leads to thestrongCr topologyon the set ofCr maps from one manifold to
another. See [5].

Lemma 1. Any properC1 immersion isC1 diffeomorphic to a properC1 immer-
sion that isC∞ on its good set.

Proof. Let f0 : Mm→ Nn be a properC1 immersion. Its good setG0 ⊂ f0M ⊂
N is an open embeddedC1 m-submanifold ofN. (It is not closed in general, but
it does not accumulate on itself.) LetG̃0 be the same point set asG0, but with an
abstract, artificialC∞ structure that isC1 compatible with itsC1 structure as aC1

submanifold ofN. See [5, Chap. 2] for the existence of such smoothings. ByC1

compatibility, the inclusion
i0 : G0 ↪→ N

defines aC1 embeddingG̃0→ N. AnyC1 embedding can be stronglyC1 approx-
imated by aC∞ embedding; saỹi0 : G̃0→ N is such an embedding. A strongC1

perturbation of aC1 embedding extends to an ambientC1 diffeomorphism, say
i : N → N,wherei|G0 = ĩ0. In fact, we can makei the identity map off a sharply
tapered neighborhoodV of G0; see Figure 6. The image ofG0 underĩ0 is aC∞
submanifold ofN.

Define a mapf : M → N asf = i B f0. Thenf is a properC1 immersion
whose good setG is aC∞ submanifold ofN, G = ĩ0(G0). By construction,
f −1G = f −1

0 (G0) is an open setU ⊂ M. The mapf |U is aC1 submersion ofU
ontoG. Since anyC1 map from one smooth manifold to another can be strongly
C1 approximated by aC∞ map, we stronglyC1 approximatef |U by aC∞ map
f̃ : U → G.

By the implicit function theorem and the global rank theorem, every strongC1

small perturbation of a submersionf : U → G is a submersionU → G of the
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G0
G

V

Figure 6 i is the identity map offV

form f B j, wherej is aC1 diffeomorphismU → U that stronglyC1 approxi-
mates the identity mapU → U. Thusj extends to aC1 diffeomorphismM →
M, still called j, such thatj(x) = x for all x ∈M \ U. DefineF : M → N as
F = f B j. It is a properC1 immersion thatC1 approximatesf0, and sinceF |U =
f̃ isC∞, it follows thatF isC∞ on its good set. Commutativity of the diagram

M

j

��

F // N

id
��

M

id
��

f // N

i−1

��
M

f0 // N

now shows thatF isC1 diffeomorphic tof0.

Lemma 2. Letf be aC1 immersionM → N and letG be any open-dense sub-
set offM. Then, for any smooth manifoldW, the generic smooth mapg : W →
N is transverse tof, andg−1G is open-dense ing−1(fM).

Proof. Sincef is aC1 immersion,fM consists of a countable collection of over-
lapping embeddedC1 m-discsDi. The generic smooth mapg : W → N (or the
genericCr map, 1≤ r < ∞) is transverse toDi. (Note that this fact does not
rely on high smoothness ofDi.) SinceW is second countable, the generic smooth
mapg : W → N is transverse to all theDi; that is,g is transverse tof. (If f is
merely a smooth map, not an immersion, the question of whether the genericg is
transverse tof is a three-star problem in [5, p. 84].)

By continuity,g−1G is an open subset ofg−1(fM). The proof that it is generi-
cally dense ing−1(fM) has nothing to do with smoothness offM. Let g0 : W →
N be given, and take anyδ > 0 and any compact setK ⊂ W. Choose points
w1, . . . , w` ∈ g−1

0 (fM) that areδ/2-dense inK ∩ g−1
0 (fM). Their imagesyi =

g0(wi) are “independently mobile” in the sense that small perturbationsg of g0

exist that simultaneously move theyi to any prescribed pointsy ′i nearyi, g(wi) =
y ′i . SinceG is dense infM, this means that we can perturbg0 to g so thatg(wi)∈
G. Therefore,g−1G includes{w1, . . . , w`}, which isδ/2-dense inK ∩ g−1

0 (fM).

On the other hand, compactness ofK implies that the setK ∩ g−1(fM) is not
much larger thanK ∩ g−1

0 (fM). In fact, for g near enough tog0, the former
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lies in theδ/2-neighborhood of the latter. It follows thatg−1(G) is δ-dense in
K ∩ g−1(fM). This condition ofδ-density is open in the space of mapsg, even
under a weaker topology like the compact open topology. Thus

G(δ,K) = {g : g−1G is δ-dense inK ∩ g−1(fM)}
is open-dense inC∞(W,N ). Taking the intersection ofG(δi, Ki) asKi ↑ W and
δi ↓ 0 we see that, for the genericg, g−1G is dense ing−1(fM).

Theorem A (in codimension 1). If f : Mm→ Nm+1 is a properC1 immersion
thenfM 1-separatesN.

Proof. By Lemma 1 it is no loss of generality to assume thatf isC∞ on its good
set. Suppose the theorem is false and thatfM does not 1-separateN homologi-
cally. Following Feighn’s construction, we find a smooth map of a compact sur-
faceW intoN, g : W → N, which is transverse tof such thatg embeds∂W onto
a smooth loopγ meetingfM only at the pointy0. (The difference between not
1-separating homologically versus homotopically boils down to whetherW can
have handles or is the disc.) We choose a goody0 with least even multiplicity
s0 = 2α0`,where` is odd and the minimization is done over the good points. The
immersionf has multiplicity divisible by 2α0 at all the good points.

By Lemma 2, we may assume thatg is transverse tof and thatg−1G is open-
dense ing−1(fM). Nowg−1(fM) is the immersed image ofP, the joint pullback,
under the immersionπW : P → W that projects(x,w) to w. As in Step 3 of
Feighn’s proof (explained in Section 2),χ(P ) = s0/2.

Nearw0, g
−1(fM) is an arcη ⊂ W that ends atw0. For y0 is a good point of

fM andgD meetsfM at y0 transversely, as shown in Figure 4. Letτ0 : W →
R be a smooth function such thatτ0|η has a noncritical maximum atw0. Any C1

small perturbation ofτ0 still has a noncritical local maximum alongη at τ0. The
rest ofg−1(fM) is a finite collection ofC1 arcsAi in W, i = 1, . . . , L. The good
setÃi = Ai ∩ g−1G is open-dense inAi and it is smooth. EachAi has aC1 tubu-
lar neighborhoodVi in which it appears to be a line segment. Takei = 1 and
changeτ0 in V1 so that (a) it becomes an apparentlyC∞ functionτ1 defined on
V1 and (b) on the apparentlyC∞ arcA1, τ1 is Morse. Only finitely many critical
points occur onA1, and we push them into the good setÃ1. Small enough subse-
quent perturbations do not destroy the fact that the critical points lie in the good
setsÃi, although Morseness may be lost.See Section 5.

AfterL progressively smaller modifications we obtain a functionτL that is really
justC1, but the critical points ofτL B πW are in the good set and this fact is per-
manent underC1 small changes ofτL. Let τ be a generic smooth perturbation of
τL. By genericity ofτ and smoothness of̃Ai, the restriction ofτ to Ãi is Morse,
1≤ i ≤ L. All critical points of τ B πW are good. That is,τ satisfies the condi-
tions in Step 4 of Feighn’s proof, as outlined in Section 2. The rest of the proof of
Theorem A is the same as theC2 case:µ = τ B πW is a Morse function onP and
the Euler characteristic calculated usingµ is divisible by 2α0, which contradicts
the fact that it equalss0/2.
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It is interesting to see how the preceding proof fails whenf : S2 → R3 is the
house with two rooms. Each sheet offM has multiplicity 2 at good points; at bad
points, it is 3. Even so, we might draw a discgD as shown in Figure 7, transverse
to f at a typical pointy0. Then we could consider the pullbackP and compute its
Euler characteristic in two ways. Sincef has multiplicity 2 aty0, there are two
endpoints inf −1(y0) and hence there is just one arc inP, soχ(P ) = 1.

gD

y0

gD

y2

y1

y0

Figure 7 The mapg : D → R3 embeds the disc acrossfS2 and meets it in the
curve shown, wherey1 is the tee-junction point

Piecewise linear Morse theory on 1-dimensional manifolds is easy. A pointp is
noncritical forµ if µ is monotone in a neighborhood ofp and is critical otherwise.
If µ achieves a local minimum or a local maximum at each of its critical points,
then it is Morse. Suppose thatµ = τ B πD is Morse onP and that it increases
toward∂P .

Considerτ and the rectangular loop3 of fS2 ∩ gD at y1 shown in Figure 7.
The perturbationτ must have a minimum or a maximum on3, and one of the
critical values must be different fromτ(y1). Let y2 be such a critical point. For
simplicity suppose there are no other critical points. In particular,τ decreases on
the segment [y0, y1].

If τ(y1) < τ(y2) thenτ achieves a minimum along all three branches offM

that pass throughy1. Thusy1 accounts for three minima ofµ onP, while y2 ac-
counts for two maxima. This agrees with the previous calculation

χ(P ) = 1= 3− 2.

On the other hand, ifτ(y2) < τ(y1) thenτ is noncritical along two of the three
branches throughy1 but achieves a local maximum along theL-shaped branch.
Thusy1 accounts for one maximum ofµwhiley2 accounts for two minima. Again,
χ(P ) = 1= 2−1. In any case, both calculations of the Euler characteristic agree
and we have no contradiction. When there are more critical points, the same type
of reasoning carries through.
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It may be worth mentioning explicitly what we noticed about an arbitrary con-
tinuous functionτ : T → R, whereT is the letterT. It explains why the bad point
y1 inevitably pulls back to a critical point ofµ.

Proposition. Along at least one of the three maximal arcs inT (two are L-
shaped and one is straight), τ is critical at t, the tee-junction point. Ifτ is Morse
thenτ is critical at t along one or three of these arcs, but not just two.

4. C1 Immersions in Higher Codimension

The extension from codimension 1 to codimensionk is a straightforward modifi-
cation of what appears in [4]. Letf : Mm → Nm+k be a properC1 immersion.
The situation with good and bad points is the same in all codimensions: the good
points form open-dense sets offM andM. Let D be a small smoothk-disc in
N that meetsfM transversely at a good pointy0 of minimal least-even multi-
plicity s0 = 2α0`. Here,y0 is at the center ofD, not in the image of its bound-
ary, and in fact transversality implies that the boundary is disjoint fromfM. The
pair (D, ∂D) defines a homology classh ∈ Hk(N,N \ fM;Z) and a homotopy
classp ∈ πk(N,N \ fM). They could be called the homology and homotopy
k-separating classesof fM.

Theorem A (in codimension≥ 2). Bothh andp are nontrivial. Furthermore,
h is not of odd order, nor is it divisible by2. The same is true forp; it is not of
odd order and does not have a square root.

Proof. As in the codimension-1 case, ifp is trivial thenD is homotopic (relative
to its boundary) to a discD ′ in N \ fM, and the unionD ∪ D ′ bounds a singu-
lar (k +1)-discg : B → N, whereB is the(k +1)-ball andg sends the northern
hemisphere ofS k = ∂B toD and the southern hemisphere toD ′. Following the
proof of Feighn’s theorem in Section 2, we modifyg so that:

(a) g is smooth and in general position with respect tof ;
(b) gB ∩∂N = ∅, andg sends the northern hemisphere of∂B toD and the south-

ern hemisphere intoN \ fM; and
(c) g−1(y0) ∩ ∂B is a single pointz0.

Thusg(∂B) crossesfM aty0 with multiplicity s.
Exactly as before, the pullback{(x, z) : fx = gz} is a 1-manifoldP ⊂ M ×B.

On one hand its Euler characteristic is half the number of pre-images ofy0, namely
s0/2,while on the other hand it is the sum of the Morse indices ofµ = τ BπB. The
latter sum is divisible by 2α0 since critical points occur along whole good fibers
P(y), as all critical points in a given fiber are of the same type, and 2α0 divides
the cardinality of each good fiber, which contradicts the fact thatχ(P ) = s0/2, so
p is nontrivial after all.

The proofs of the other assertions in Theorem A in codimension≥ 2 are also
the same as those in [4], once the existence of a Morse function likeµ is accepted.
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The only obstruction in the homology case is the need for a transversality pertur-
bation whenW is no longer a(k+1)-disc but is a(k+1)-dimensional simplicial
complex. A result of Fenn [3] that “anyWk+1 supports aC∞ structure off its
(k − 1)-skeleton” permits this, and then the previous homotopy analysis carries
over to homology.

5. Low Differentiability Phenomena

When looking for a proof of Feighn’s theorem in theC1 category, there is a natural
trick to try: given aC1 immersion, makeC1 changes of variables in the domain and
target space so that the new immersion isC2. If the trick can be done, Feighn’sC2

theorem implies Theorem A at once. In our proof of Theorem A, we skirted this
issue by making the immersion smooth on its good points rather than everywhere.

Theorem. There areC1 immersions that are not equivalent toC2 immersions
byC1 changes of variables.

Proof. The example is simple. Take an immersionf : S1→ R2 with two branches
through the origin. One branch containsX = [−1,1] × 0 on thex-axis, and the
other contains the curveY,

y = |x|3/2, −1≤ x ≤ 1.

We show there is noC1 equivalence off to aC2 immersion. In fact, we show
there is no Lipeomorphic (i.e., bi-Lipschitz) equivalence.

Suppose there is one,ψ : S1 → S1 is a Lipeomorphism,φ : R2 → R2 is a
Lipeomorphism, andφ B f B ψ : S1 → R2 is C2. The mapψ is irrelevant; the
Lipeomorphismφ carries the curvesX, Y to a pair ofC2 curvesX ′, Y ′. A Lipeo-
morphism cannot carry a pair of tangentC1 curves to a pair of transverseC1 curves.
ThusX ′, Y ′ are tangent atφ(0). A subsequentC2 diffeomorphismϕ : R2→ R2

carriesX ′ to X and carriesY ′ to the graph of aC2 function h : [−1,1] → R.
Henceλ = ϕ B φ is a Lipeomorphism that carries the pairX, Y to the pairX,H,
whereH = graphh. Sinceh is C2 andh(0) = 0 = h′(0), there is a constantK
such that

|hx| ≤ K|x|2.
Letµ be the inverse Lipeomorphism,µ = λ−1, and write it in coordinates as

µ(x, y) = (µ1(x, y), µ2(x, y)).

Thenµ(H ) = Y. Write

µ(x, hx) = (x1, |x1|3/2),

wherex1= µ1(x, hx). LetL be the Lipschitz constant ofµ. Then, for smallx,

|x1| = |µ1(x, hx)| = |µ1(x, hx)− µ1(x,0)+ µ1(x,0)− µ1(0,0)|
≥ |µ1(x,0)− µ1(0,0)| − |µ1(x, hx)− µ1(x,0)|

≥ 1

L
|x| − L|hx| ≥

(
1

L
−KL|x|

)
|x| ≥ 1

2L
|x|;



194 Michael Hirsch & Charles Pugh

that is,
|x| ≤ 2L|x1|.

Sinceµ2(x,0) = 0, we also have

|x1|3/2 = |µ2(x, hx)− µ2(x,0)| ≤ L|hx|
≤ LK|x|2 ≤ LK(2L|x1|)2 = 4L3K|x1|2,

which implies that1≤ 4L3K|x1|1/2,an impossibility for smallx1 (i.e., for smallx).

The same phenomenon appears to persist in higher dimensions and higher degrees
of differentiability—aCr change of variables can not always convert aCr im-
mersion to aCr+1 immersion. In contrast, here is a theorem whose proof is easy
enough once you remember that every closed subset ofR is the zero locus of some
smooth function.

Theorem. If h : R→ R is continuous,H is its graph, andX is thex-axis, then
there is a homeomorphism of the plane to itself that carriesX∪H toX∪G,where
G is the graph of a smooth function.

In the same vein, it is interesting to note that, in the proof of Theorem A, we made
a generic smooth perturbation ofτL in a specialC1 coordinate system whereτL
appears to be smooth, even thoughτL is intrinsically justC1. The resulting criti-
cal points ofτ occur only at good points and are of Morse type (strict maxima and
minima). Had we made the perturbation in coordinates whereτL is merelyC1 and
the perturbation is merelyC1 generic, then degenerate critical points would have
appeared. In fact, it is also easy to prove the following theorem.

Theorem. The critical points of the generich ∈ C1(R,R) are all degenerate,
and they form a Cantor set of Hausdorff dimension zero.

We close by posing a question that arose in the course of our initial attempts to
prove aC1 Feighn’s theorem. Recall that Whitney [8] constructed aC1 function
w : R2→ R that is nonconstant on a connected set of critical points. (His example
shows that the differentiability hypothesis in the Morse–Sard theorem is sharp.)
The graph ofw over a path in the critical set is like a mountain road with so many
switchbacks that its tangent is everywhere horizontal although it climbs steadily.
We ask whether this Whitney phenomenon can occur simultaneously in many di-
rections, not merely in the vertical direction. More precisely, we ask whether there
exists aC1 embedded surfaceW ⊂ R3 such that, for every directionv inR3, there
is a nontrivial pathσ : [0,1] → W along which all the tangent spaces toW are
perpendicular tov, 〈v, Tσ(t)W 〉 ≡ 0.
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