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1. Introduction

This paper concerns the asymptotic behavior of nonlinear analogs of harmonic
“functions” on trees. Our study was motivated by some open problemg-for
harmonic functions on domains R*. We hope that our results will suggest cor-
rect settings for the continuous case.

Fix v > 3, and let the tred, be a regular directed graph. The 3&tof its
vertices is in one-to-one correspondence with finite words in the alpbiabet
{1,2,...,v}. The vertexvy is the origin of the tree. Theth generation is

Gy ={v;: ]GMk},

v, =G

k=0

so that

The set ofchildrenof a vertexv, € V, is defined asd,, = {v1, ..., v, }. We
denote by ¢, w] the edge that links the verticasandw. We define the set of
edgesE, of the treeT, in the following way: the edgev| w] € E, if and only if
w € H,. Observe that if}, w] € E, then [w, v] ¢ E, (T, is a directed graph).

Let F: R, — R be a continuous function such th&t0, 0, ..., 0) = 0 and
F(L1...,1) =1(hereR, := [0, c0) is the positive closed half-axis aif, :=
(R1)"). We say that such a functiafis admissible In what follows, we consider
only admissible functions. We understafigx,, xo, ..., x,,) as akind of nonlinear
mean of the arguments, xo, ..., x,.

Letn > 1, and let¢ be a function onGo U --- U G,. We say thatp is F-
harmonicif

¢ ) = F(pvnn), ¢(vr2), ..., ¢ (vp))
foranyv; e GoU--- UG, _1.
If A is a subset of vertices contained @5, then we define thé&-harmonic
“measure” ofA, denoted bywr (v, A), as the function defined i6Go U --- U G,
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which takes the value 1 oA, the value 0 onG, \ A, and is F-harmonic on
GoU---UG,_1. We denotevy (A) = wr(vy, A).
We study the following problems abowt-.

THE MARTIO PROBLEM. Does the inequality
wr(AU B) < k(wp(A) + wr(B)) @
hold, whereA, B C G, andk does not depend oA, B, n?

THE WEAK MARTIO PROBLEM.  Does there exist a continuous functipn R2 —
R, nondecreasing in each argument, such @ 0) = 0 and

wp(AU B) < Y(wr(A), wrp(B)) )

foralln and allA, B C G,?
In other words, knowing thabr(A), wr(B) are (very) small, can one conclude
thatwr (A U B) also is small?

Obviously, (2) is much weaker than (1).

In this paper we give the answers to both problems, depending on the function
F. We also study the corresponding problems for get8 that are contained in
certain Cantor-type subsetsff. In fact, Martio asked only about the inequality
(1) for special functions), (defined hereafter).

These certainly are problems of estimating the iterates. dlamely, define a
sequence of function{g""} in the following way: F" is a function ofv” real vari-
ables, with

Fl(-xla"'ax\))zF(xla---7xv)a

F2(x1, ..., x2) = F(FY(x1, ..., %)), o F X020y, o000 X02)),

F"(x1, ..., xpn) = F(F" Xxq, .o xpn1), oy F7N0pnyngg, ooy x0n).
In G, there are” vertices. We can sort the verticesG) in alphabetical order:
vy,..., 11 <V1..12<: "<V .. vv-1<UVUy. . vy

For each subsef of G, we defines® € {0, 1}*" as follows. The-coordinate of
8, denoted bysf, is 1if theith vertex ofG,, isin E and O ifitis not inE. Then
we have thatvz (E) = F"(8%).

Let us introduce a special family of functio$, 1 < p < co.

NotaTioN. Leta > 0. In the following, for simplicity we will use the expres-
siont* to denote the odd extension of the functidrdefined forr > 0:
¥ =¢tt|*t for teR. ()

In particular,t? = t|t| is negative ift is negative and so it is different from the
usual notation. Everywhere in this note we shall tisenly with the meaning (3)
and no other. We trust this will not lead to any confusion.
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With this notation, defind,: R” — R by the implicit rule
Fy(ay,az,...,a,) =x if (x —a)" T (x—a)" '+ + (x—a,)P =0
“4)
The F,-harmonic functions will be calleg-harmonic functions, and the corre-
sponding harmonic measure will be denoteddyy

Elementary properties gf-harmonic functions give that
(@) w,@) =0,
(b) w,(G,) =1, and
(©) wy(G,\ A) =1—w,(A), foreveryA C G,.
If v =21orv = 2, the framework degenerates and evgrizarmonic function on
a graph is harmoni¢p > 1). In the following we consider the case> 3.

These concepts on graphs have important connections with potential theory on
Riemannian manifolds (see e.g. [CFPR; FR; HS; K1; K2; K3; R1; R2; S]).

The main inspiration for our work agg-harmonic functions, on domainsRy,
whose discrete analogs gseharmonic functions on oriented graphs. A function
u on adomaim in R” is calledp-harmonic(l < p < oo) if the partial differen-

tial equation
Apu = —div(|Vu|?~2Vu) = 0 ()

holds in©2; this equation must be understood in a weak sense (see [HKM, p. 57]).
Obviously, 2-harmonic functions are harmonic. Note thdtarmonic functions
are not a linear space jif # 2, but they have many properties that are similar to
those of harmonic functions. For instance, they have a comparison principle: If
u, v are p-harmonic functions irf2 andu < v on 92, thenu < v in Q [HKM,
p. 133]. It is possible to construct a potential theory for equation (5) because the
main tool for developing such theory is the comparison principle [HKM].

There are many reasons to stughharmonic functions. For instance, jif £
2 then (5) is a simple example of nonlinear degenerate elliptic equation. Observe
that (5) is the Euler equation for the functional

J(u) =/|Vu(x)|pdx,
Q

which is an elementary functional with nonquadratic growing it~ 2. As a
consequencey-harmonic functions are functions with extremal properties in the
Sobolev spac#17(Q).

Moreover, if p = n then p-harmonic functions play an important role in the
theory of quasiconformal and quasiregular mappings.

Roughly speaking, we can define theharmonic “measure” of the Borel sub-
setE C 92 at a pointx € © as thep-harmonic function irf2 that takes value 1 in
E and value 0irdQ \ E, evaluated inc. See [HKM, Chap. 11] for a rigorous def-
inition. Harmonic measure is a main tool in linear potential theory. An important
property of harmonic measure is its additivity.pif~ 2 thenp-harmonic measure
does not have this property, that is, it is not a measure. In spite optthiarmonic
measure plays an important role in nonlinear potential theory.
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OpPEN PrOBLEM. Is the p-harmonic measure subadditive? That is, does the in-
equalityw (A U B) < k(w(A) + w(B)) hold for all Borel subsetd, B C 9<2 for
some constarit? This is an open problem for every domaky even ifQ is the

unit ball of R" (n > 2). (We refer to [B] for some information in the case of the
unit disk.)

In view of the difficulty of this problem, Martio asked whether its analog is sat-
isfied for thep-harmonic measure on regular trees. We remark that regular trees
are suitable models for the balls in Euclidean spaces.

Let us return to the discrete setting of graphs. In what follows, we will consider
admissible functiong satisfying some of the following properties:

(i) F(x,x,...,x) =x,x >0
(i) F is nondecreasing with respect to each argumentfng, x», ..., x,) >
0 if we have thatxy, x5, ..., x,) # 0,

(iii) F(xg, x2,...,xy) = F(x¢1), Xz(2), - - - » Xz (vy) fOr any rearrangementof the
set{l, 2,...,v}; )
(iv) F(txy, txo, ..., tx,) = tF(x1, x2, ..., x,) forxq, x2, ..., x,,t €R;
(V) F(x1,x2,...,x,) <max(xy, xp,...,x,) ifwedonothave; =x, =--- =
Xv}

(vi) F can be defined on the whoR’, and this verifiesF'(t + x1,¢ + x», ...,
t+x,)=t+ F(xy, xo2,...,x,) forall xy, xp, ..., x,,t €R;

(vii) FA—x1,1—x2,...,1—x,) =1— F(x1,x2,...,x,) for xs, x, ..., x, €
[0, 1].

It is obvious that any admissible function satisfying)(also satisfiesij. If F
is strictly increasing with respect to each argument, thgfoflows from (). If F
is admissible and satisfies] and i) for all x1, x», ..., x,, t € R, then it satisfies
condition ii).

For each admissibl€, wr satisfies properties (a) and (b)®f. If F satisfies
(i) and ii), thenwr also satisfies (c).

The functionF, has all propertiesif—(vii) and is strictly increasing with re-
spect to each argument. In general, we do not assume that all condidie(si |
hold. We remark that one can defipeharmonic functions on trees very similarly
to the definition (5).

Two subsetsd, B of G,, will be calledcongruentif there is an isomorphism of
the graphGo U G1 U - - - U G,, onto itself that leaves eadty, invariant and maps
A onto B. For such sets, obviouslyr(A) = wr(B) for all admissible functions
F satisfying {ii ).

Theorems 1 and 2 are the key results. They provide conditions to give a negative
and a positive answer, respectively, to the weak Martio problem.

From now on, we consider the case= 3 in order to simplify notation and the
proofs of Theorems 1 and 2; however, we remark that these results are true for
anyv > 3. Later we will comment on the case of generalegular trees (see Re-
mark 3).
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THEOREM 1. Suppose thatF satisfies(ii)—(iv) and that F(ao, bo, co) <

Jaoboco for some positiverg, bo, co. Then, for every: > 0, there exist con-
gruent subset8©, BY B of G, such thatGs, = B® U BY U B® and

wp(B®) — 0asn — oo.

It follows that if F satisfies the hypotheses of Theorem 1, then the answers to the
weak Martio problem and to the Martio problem are negative. Indeed, (2) and
Theorem 1 would imply

1=wr(B? UBP UB®) < ¢ (wr(BY), y(0r(BL), wr(BP))) — 0

asn — oo.

CoroLLARY 1. The answer to the weak Martio problem is negative for phe
harmonic measure for app # 2.

Proof. Indeed, putig = bg = 1 andco = u>. Then
—ao)’ ™+ w—bo)" '+ w—co)’ = w—-D"2— (u+u?"h.

For eachp # 2 there exists a (close to 1 such thai(u — ag)? 4 (u — bo)? 1+
(u — co)?~1 > 0, which givesF (ao, bo, co) < u = Jagboco (if1 < p < 2 then
itis enough to taka = 1+¢; if p > 2, we can taket = 1— ¢ fore = ¢(p) small
enough). O

Denote byR; the triangleRs = {(x,y,z) € R® : x + y +z = 1} and byg =
(3. 3. 3) its center. Let dist denote the usual Euclidean distance.
THEOREM 2. Suppose thaf satisfiegiv) and (v).

(a) If for somes > Owe haveF(x, y, z) > ¥/xyz + edist((x, y, z), ¢)? for all
(x, y,2) € R3, then there exists aN > 0 such thatwr > w?'.

(b) If for someC > 0 we haveF(x, y,z) < ¥xyz + Cdist((x, y, z), q)? for
all (x, y, z) € R, then there exists ad > 0 such thatwy < w’z"’

Consequently, if

Yxyz +edist((x, y, 2),9)? < F(x,y,z) < ¥xyz + Cdist((x, y,2),9)> (6)

on R3 for someg, C > 0, then there exist positive constant§ N such that
oy < or < oM. In particular, the answer to the weak Martio problem is posi-
tive, because

wr(AUB) < (wr(A)YN + wp(B)M)M

for all sets of verticest andB.

Observe that (6) and the homogeneity) ©f F in fact imply certain estimates
for F on the wholeR2 . In Section 2 we discuss the central role of the goemetric
average in Theorems 1 and 2.

REMARks. 1. Suppose thak is twice differentiable iny, F(g) < % and (ii)

holds. Then ii) implies that the values of-(¢) are the same fof = 1,2, 3.
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Hence the Taylor formula gives that the right-hand inequality in (6) is satisfied on
R3 in a neighborhood aof and thus on the whol®; (for a sufficiently largeC).

2. If(iv)and ¢i) hold andF (x, y, z) > ¥/xyzonR3, thenF(x, y, z) = “5*=
onR3. Indeed, pus = “3=, x =5+, y = s + 7, andz = s + . Then for

fixedx, y, z there exist = ¢(x, y, z) > 0ands = §(x, y, z) > 0 such that
s+tF(x,y,2) = F(s+tx,s+1ty,s +12)

> (s +1X)(s +15)(s +12) > s — et |?

for all r € (=6,8). ThentF(%,%,z) > —elt|? for all t € (=8, 8); if t € (0, 8)
we obtainF(x, ¥,Z) > 0, and ifr € (-6, 0) we deduceF (%, y,z) < 0. Hence
F(X,3,Z) = 0and sowe deduce thatx, y, z) = s. Itfollows that (v), (vi), and
F(x,y,z) > ¥Yxyz trivially imply wr = w»>. (Note that this gives an alternative
proof of Corollary 1.)

In the sequel we will apply Theorems 1 and 2 to Cantor subsets, pfve de-
fine these sets following Theorem 4 and explain there why we call them Cantor
sets. This will lead to a use of functiomsthat do not satisfy\().

3. Analogs of Theorems 1 and 2 hold true feregular trees for any > 3.
Simply replaceRs with R, = {x € R", : x1+ - - - + x, = 1}, replace/xyz with
Yx1xo...x,, and putg = (v L v7L ..., v7Y) e RY. We will explain in Section 2
how to change the proofs in order to cover the general case.

As a corollary of Theorem 2 and Remark 1 we obtain the following result, since
F(g) = % is a consequence aifv).

CoRroOLLARY 2. Suppose thak is twice differentiable iy and that(iii )—(v) hold.
Then there exists al > 0 such thatwr < wi!.

In order to state the following results, we need some additional definitions.
We define the set afescendantsf a vertexv, denoted byD,, as follows:

(a) v is a descendant af,
(b) if w # v, thenw is a descendant efif and only if w € H, andq is a descen-
dant ofv.

If Ac G,andA’ c G, withn < n’, we say thatd andA’ areequivalent setd
A’ is the set of all descendants of the verticedlithat are inG,,—that is,A’ =
(Uyea Dv) N Gyr. If A and A’ are equivalent themr(A) = wp(A’) for every
admissible functiorF. In the sequel we identify equivalent sets, and then we can
write A’ C G, andA C G,.

Theorems 3—7 can be understood as a study of smoothness properties of the
nonlinear measurer.

THEOREM 3. Consider a fixed sef C G,. For eachv > 3 and admissible func-
tion F satisfying(ii) and (vii), there is a positive constaktthat depends only on
v, F, and E such that

wr(AUB) < k(wp(A) + wp(B)) forall A, BC G, withAUB=E (7)
for any natural number > n.
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We denote by (E) the sharp constant in Theorem 3.
The next corollary gives a partial positive result about subadditivity.

CoroLLARY 3. Consider a fixed natural number For eachv > 3 and admissi-
ble functionF satisfying(ii) and (vii ), there is a positive constah}, that depends
only onv, F, andn such that

wp(AU B) < ky(wr(A) + wp(B)) forall A, B C G, with AUB C G,

for any natural number > n.

This corollary gives a partial positive result for the Martio problem. To derive it
from Theorem 3, it suffices to skt as the maximum of(E) for E C G,,.

The next results concern the following question: Given fixed gktsc G,
with wr(H,) — 0 asn — oo, does there exist somg verifying wr(A U B) <
Y(wr(A), wp(B)) forallnand allA, B C H,?

First we remark that, as so stated, weak Martio inequality (2) is always true in
this situation. Indeed, let, be a one-point set ity,,. Take any continuous func-
tion ¥ (x, y) that is increasing with respect toandy and satisfiegr(0, 0) = 0
andy (0, wr(1,)) = Y(wr(l,),0) > wr(H,) for every natural number; then
(2) trivially holds for thisy if A, B C H,. Instead of (2), we will study the
“intermediate” Martio inequality

wr(AUB) _ < wr(A)  wp(B) )
wF(Hn) wF(Hn)7 wF(Hn)
for a special class off,.

First we need the definition of the product of two sets of vertices. Given
G, andE C Gy, we put

8

DXEZ{U”:UIED, UJEE}CG,-Jrs,

where 1J is the vector(iy, ..., iq, j1, ..y jo), if I = (ig,...,i,) and J =
(j1, ---, j»). This product satisfies the distributive laws with respect to the union
and the intersection of sets:

Ax(BUC)=(AxB)UMAXC), Ax(BNC)=(AxB)N(AxC).

We havewr(D x E) = wr(D)wr(E) for every admissible functiof” and sets
D andE.

THEOREM 4. If v > 3and if F is an admissible function that satisfigs), (iv),
(v), and (vii), then

k(D x E) <k(D)k(E) foreveryD, E.

Let2 < u < v, and putC,, ; to be any fixed subset @f; with 1 points. We define
the Cantor subset, , of G, by

Cun=Cpax - xCya.
—_—

n
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Obviously,wr(Cy ) = wr(Cy1)" — 0asn — oco. We will study (8) forH, =
Cun-

We use the word Cantor to denote theGgt,, since the sef, = (1, C,..» CON-
tained in the boundary df, (see [GH, Chap. 6] for the definition of the boundary
of a tree) is homeomorphic to a Cantor set in the real line.

THEOREM 5. For each functionF, (p > 2) and eachv > 3, we have
k(C2,) =1 forall n,
so that the Martio inequalityl) holds ifA U B = C»,,.

Theorem 5 is not true for > 3 and 1< p < 2 (see Lemma 6).

CoroLLARY 4. Forallv>3 n>1 andall E:

() kK(G, x E)=k(E)ifp>1
(i) k(Con x E) <k(E)ifp > 2.

CoroLLARY 5. Consider a fixed natural number For eachv > 3andp > 1,
there is a positive constai, (the same constant as in Corollary 8epending
only onv, p, andn such that

wp(AU B) < ky(w,(A) + w,(B))
for all setsA, B satisfying any of the following conditions
(i) AUB C G,;
(i) AU B = G, x D, withr a natural number and c G,;
(iii) AUB = Gy X Cgg X -+ X G,, x Cay, x D, With rq, ..., 74,51, ..., 84
natural numbers an® c G,, if p > 2.

Puto = F(L,...,10,...,0 andF(xy, ..., x,) = 0 *F(x1, ..., x,,0,...,0). It
N’

"
is plain that, forA C C,. ., wr(A)/wr(Cyn) = wi(A). If F satisfies ()—(iv),
then F also satisfies these properties.Hfis strictly increasing in each variable
and satisfiesi{), then F’ satisfies ).

THEOREM 6. Let2<pu <vandH, =C,,.
(a) If F satisfieqii)—(iv) and

F(x1,...,x,,0,...,0) <o {/x1x2...x,

for somexy, ..., x, € R, then the intermediate Martio inequalif) does not
hold.
(b) Suppose thak is strictly increasing in each variable and is twice continu-
ously differentiable in1,...,1,0, ..., 0). If F satisfies {ji ) and (iv) and if there
——

is ane > 0 such that ®

m
F(x1,...,x4,0,...,0) > 0 ¥/x1x2... x,, —i—sZ(xj —1/n)? (9)
j=1
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forall (x4, ...,x,) € Ry, then there exis€, p > 0 such that
wr(AUB) - C<wF(A) + a)F(B))p
wF(C;I.,n) - a)F(C;L,n)
forallnandallA, B C C, ,.

(10)

THEOREM 7. (a)Let2 < u < v. Then there are positivg, C, p such that(10)
holds forF = F, forall pe (2—-6,2+ ).

(b) If u = 2then there is & > 0 such that, for anyp € (2 — §, 00), there
existC > O andp > 0 such that(10) holds forF = F,.

AckNowLEDGMENTS. We would like to thank Professor O. Martio for suggest-
ing this problem and Professor J. L. Fernandez for many useful discussions. We
thank the referee for a careful reading of the manuscript.

2. Proofs of Theorems 1 and 2

We denote byR, the relative boundary aR, as a subset of the affine plafe=
{xeRY x4+ ---4+x, =1}). PutS(xg, x2, ..., xy_1,x,) = (X2, X3, ..., Xy, X1).
Then S is an orthogonal linear transformation Bf such thatS” = 1. First we
consider the case = 3.

Let us make the following observation. Lete N. Each setE C G, can be
represented in a unique way in the form

E={vy ivyeX}U{vy iv,eY}U{vg v, €Z}

for some subset¥, Y, Z of G,_;. With the last identity in mind, we will write
E=(X,Y, Z); thenwpr(E) = F(or(X), wr(Y), wr(Z)).
We have a formula

(X1, Y1, Z1) U (X2, Y2, Z2) = (X1 U X3, Y1 U Y2, Z1 U Z3). 1)

Proof of Theorem 1Let ag, bo, co € (0, +00) and F(ao, bo, co) < agboco.
The key of this proof is to transform this inequality involving the geometric aver-
age in the inequality (17) for some s&® O,) > the intuition to choose the appro-
priate sets was inspired by some numerical simulations. By propejtyf(F, we
can assume thatybgcg = 1. There are closed subsetg, A1 = SAg, andA, =

S2A, of dR3 such thatdg U A; U A, = 3Rz and
Ag C{(x,y,2)€P:xInag+ ylnbg+ zInco < 0}. (12)

Indeed, divideP into three equal angle¥, 2l;, 2, of size%” with common ver-
tex atg and putd; = 2; N dRs. The boundary of the half-plane if involved in
(12) containg;. From this, one sees that there is a positiolpthat works.

Choosez, b, ¢ slightly larger tharug, bo, co (respectively), so thatbc > 1 but
F(a, b, c) <1 We can also still assume that

xlna+ylnb+zlnc <0 for (x,y,z) € Ap. 13)
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We defineB,E{,)ym subsets ofGyy;y,, for j = 0,1,2 andk,l,m € Z.,
k +1+ m > 0, by induction om = k + [ + m. The inductive rule is

B/E,jl),m = (Blijf)l,l,m’ B]E,jl)fl,m’ B/E,jl),mfl) for k’ l’ m = :L (14)
and it does not depend gn The “boundary conditions” are
: Gy if (.5 5) €A,
B = (15)

9 if (n’n’n)€8R3\Al’

heren = k + 1+ m > 1(k, [, m are natural numbers) akdm = 0. This defini-
tion is consistent, and by induction @an= k + [ + m—using (15) (forn = 1),
(11), and (14)—it is proved that

(0) 1 2
B UBLL, UBY,, = Gisrin (16)

forallk,l,m > Owithk +1+m > 1
Next let us apply induction again en= k + [ 4+ m to prove that

or (B ) < a e a)

If kim = O, then B,(f’,) ., Nas been formed by the rule (15), and we may assume

that (£, L, ) € Ao (otherwiseBy) ,, = # and (17) is true). Thewy(By),,) =
wr(G,) =1, and (17) follows from (13). lklm > 0, then the induction hypothe-
sis yields

© \ _ ) 0 (0)
WF (Bk,z,m) = F(a)F(kalI,m)’ a)F(Bk,I—:Lm)’ WF (Bk I,m— 1))
< F(akarlbflem afkbflJrlem afkb Cferl)
=a*p'c™F(a, b, c) <a *plem.

Now put B\ = B!/ . SinceSAo = A; andS?A, = A,, the setsB @, BD,
B are congruent. Next, (16) give®® U BV U B? = Gg,. Sinceabc > 1,

(17) implies thator (B®) — 0 asn — oo. O
We put
o o a\ Ve
x*+ ¥y +z -
Go(x,y,2) = (yT) . (x,y,2)€ R?jr.

The geometric average plays an important role in Theorem 2. On the one hand, its
Taylor formula is quite similar to the Taylor formula 6%, (see (18)); on the other
hand, computations involving, are quite simple.

LemMma 1. The hypothesi&) of Theorem 2 implies that, for some> 0,
Gy(x,y,2) < F(x,y,2), (x,y,2)¢€ Iii.

The hypothesigb) of Theorem 2 implies that, for songe> O,
F(x,y,2) <Gg(x,y,2), (x,y,2)€ Iii_.
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Proof. G, (x, y, z) is an increasing function ef for 0 < o < oo [HLP, Chap. 2].
Let the hypothesis (a) of Theorem 2 hold. The Taylor formula gives

1 a—1 . 2
Gy(x,y,2) = 3 + —5 + o)) dist((x, y, 2), 9)°,
(18)

1 1
Yxyz = 3 + <—§ + 0(1)) dist((x, y, z), q)2

ifx+y+z=1 (x,y,2) — ¢q. Hence there is ang > 0 and an open didd in
the planeP, centered iy, such thatG,,(x, y,z) < F(x,y,z) if (x,y,2) €U.
Therefore G, (x, y,z) < F(x,y,z) inU forall « € (0, ag].

Let r be the radius of{. For fixedx, y, z, we haveG,(x, y,z) — ¥xyz as
o — 0 [HLP, Chap. 2]. By the Dini theorem [Ru, Thr13], this convergence
is uniform for (x, y, z) € R3. Hence there exists ane (0, ] such that

Go(x,y,2) < Yxyz+er? < F(x,y,2)

for (x, y, z) € R3\ U. We conclude byiy) that F(x, y, z) > Gq(x, y, z) for all
(x,y,2)€R3.

If hypothesis (b) holds, then (18) yields that there is a disas before and
some large8o such thatF(x, y,z) < Gg,(x,y,z) in Y. It follows from prop-
erty (v) of F that F(x, y,z) < max(x,y,z) — & on Rz \ U for somes > O.
SinceG,(x, y,z) — max(x, y, z) uniformly on Rz asa — oo, it follows that
F(x,y,2) < Gg(x,y,z)onRsforsomep > By, and we are done. O

Proof of Theorem 2An obvious induction argument shows that, if eitlfeor G
satisfies {f), thenF < G implies thatwr(X) < wg(X) for all setsX. It is also
plain to see thabg, (X) = w2(X)Y* for all setsX. Thus we obtain from Lemma

1thatwr > wy® if (a) is assumed, and, < wy” if (b) is assumed. These in-
equalities imply that

wr(AUB) < 02(AU BYYP < (02(A) + 02(B) < (wr(A)* + wp(B)*)YP,

so that the weak Martio inequality (2) holds. O

The Case of Arbitrary

LemMmaA 2. There is a dense subsBtof the planePy = {x e R : x1+---+x, =
0} such that, for every € D, vectorsr, Sr, ..., S'~1r spanP,.

Proof. There is at least one such vector, namely (1, —1,0,0, ..., 0). The de-
terminant criterion of linear dependence shows that the property in question can
fail only on an algebraic submanifold &, of codimension 1. O

LEMmMma 3. Letr € D. Then the sets

A= {x €OR, T (x—q.8r) = _min (x—g, Skr)]
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are closed and satisf§/Ay = Ajforj=12,...,v—1 Moreover,AgU A1 U
--UA,_1=0R, and

(x —q,r) <0 for xe A, (19)
We remark that, in fact(g, S/r) = 0 for all j and allr € Po.

Proof. Let us prove (19) (all other properties are plain). Since vecférsspan
Py, we have thaEJ 0| X — q, Siry)| #0 forx € 8R Supposer € Ap, and put
tj = (x —q,Sr). Then}_! A0 Py Lt =(x—q,0)=0, andro <
forl<j <v—1 These three facts imphy < O. O

Let F(xy, ..., x,) be an admissible function that satisfies propertigs-(v), and
consider the corresponding measuige over 7,. Lemmas 2 and 3 allow one to
repeat the construction of Theorem 1 and so obtain congruenBSet8d, ...
B~V of G,, whose union is5,, and such thabr(B?) — 0 asn — oc. One
need only chooséa?, ad, ..., %), which now plays the role ofao, bo, co), SO
that(Ina?, Inad, ..., Ina%) € D. The rest of the proof follows the same lines. The
proof of the analog of Theorem 2 forregular trees requires no alterations.

We remark that the answer to the weak Martio problemgdrarmonic mea-
sure orv-regular trees still is negative for # 2. Indeed, ifp # 2, then there is
uclosetolsuchthat(L1,...,1Lu") <u= Ju".

3. Proofs of Theorems 3 and 4

Lemma 4. If (ii), (v), and (vii) hold, then the sefF of all valuesw(A) for all
setsA C Gy forall N > Ois dense irf0, 1].

Proof. It is easy to derive from these conditions that
min(xy, ..., x,) < F(x1,...,x,) < max(xy, ..., x,) for xi,...,x,€[0,1]

if we do not haver; = x, =--- =x,. Suppose thafF is not dense in [01], and let
(a, B) C [0, 1] be one of the maximal intervals such tifan («, 8) = @, where
a < B. ThenF contains points which are arbitrarily close ke, 8, ..., B) €
(«, B), a contradiction.

NoTATION. Ifa = (ay, ...,ay) andb = (by, ..., by), then we put

a-b=(aiby,...,ayby) and 1=(,...,1, 0=(0,...,0).

Proof of Theorem 3The statement is trivial iE = @. ConsiderE C G, with
E # ¢ andfixA andB with E = AU B. Without loss of generality we can assume
thatA N B = ¢, sinceF satisfies {{).

Letw; < wy < --- < w,» be thev” vertices inG,,. Putx; = wr(w;, A) and
vi = wp(w;, B) forl < i < v"withx = (x1,...,x,n) andy = (y1, ..., yyn).
We havewr(A) = F"(x) andwg(B) = F"(y).
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Observe that; + y; = §F for1 <i < v". This is obvious if§* = 0; if ¢ =
1then it is a consequence of property (ckgf (this property is true becauge
satisfies i{) and {ii)). Hencex + y = 8. Thereforewr(A) = F"(6* - x) and
wp(B) = F'"(8E . (1 — x)).

Consider the functiog(z) = F"(8% - z) + F"(8% - (1 — z)) with z € [0, 1]"".
SinceE # ¢, we have thas® # 0; this and (i) imply thatg(z) > O for everyz €
[0,1]*". The continuity ofg gives thatM = min{g(z) : z € [0, 1]""} > 0.

One has

wr(E) < #[F"@E X))+ F'$" - (1-x)] = wFAEIE)[wF(A) + wr(B)].
Therefore, Theorem 3 is proved with= wr(E)/M. O

REMARK. Let (ii), (v), and ii) hold. If z° € [0,1]"" is such thatg(z°) = M
then, by Lemma 4, for every > 0 one can choosa,, B, C Gy with large N
such thatd, U B, = E and|8% - z° — x®| < ¢ if x{ = wr(w;, A;). This implies
thatk(E) = wr(E)/M.

Proof of Theorem 4ConsiderD C G, andE C G,. Letw; < -+ < w,r be the
v” vertices ofG, anduy < --- < u,s thev* vertices ofG;. If w; = w; andu; =
uy, then we putw; x u; = vy € G,4,. RecallthatD x E = {w; x u; : w; € D,
uj € E}

LetA,BCc G,forn>r+s,withAUB =D x E. Putx; = wp(w; X u;, A)
andx’ = (xf,...,x%,) (herei =1,2,...,v"). By the foregoing remark,

wr (D)

resD resD _
F'@7-y)+ F'(6"-(1—y) = (D)

for every y €[0,1]"". (20)

Considen!, ..., x"" €[0,1]"" as defined previously. Then

FP(% - x) + F'@" - (1-x") = CL:(EEE)) for 1<i<v'
Put
k(B ssE i - kE) s(xE (1 _ o ' )
yl—wF(E)F(8 x') and ZI_CUF(E)F@ 1—-x") forl<i<v'.

Theny;,z; > 0andy; +z; > 1
Definey; = min{y;, 1} andz} =1 — y;. We have:

0<yf<1 and O<z/ <l (21
yi < yis (22)
ZF=1-y'=1-min{y;, 1} = maxl— y;, 0} < max{z;,,0} = z;. (23)

Therefore,
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wr(A) + wp(B) = F' (8P FS(8F - xb), ..., 85 F*(8F - x""))
+ F'PFsE -1 —xY), ..., 85 F¢6F - (1 —x"")))

wr(E) b D D D

= F'(8Pyq,....85y,)) + F'(8Pz4, ..., 822,
k(E)[ (1)’1 vry )+ (121 v )]
wF(E) r * * r * *

> B [F7(Py%, ..., 80y ) + Fr(6Pz5, ..., 80 2%)]
wr(E)

_ reeD ok reeD | o *
—k(E)[F(5 YO A+ F(T (1= y"))]

o @r(E) or(D) _ op(D X E)
= k(E) k(D) ~ k(D)K(E)

The definition ofx’ implies the first equality;i¢) gives the second equalityij ),
(22), and (23) imply the first inequality; and (20) and (21) give the last inequality.
Hence

wp(D x E) < k(D)k(E)[wF(A) + wp(B)]

and thusc(D x E) < k(D)k(E). O

4. Proof of Theorem 5

Observe that Theorem 4 will give the statement if we provekb@g 1) = L
Define the function

gx,y)=F,(x,»,0,....,0 + F,1-x,1-y,0,...,0.
Let A, B C G, be disjoint sets such that U B = Cy1. Let wi, w, be the

two points of Co1, and putx = wp(wi, A) andy = w,(wy, A). Then
wp(A) + w,(B) = g(x,y). By the remark before the proof of Theorem 4,
C
k(C21) = @p(C21) (24)

minx,ye[O,l] g(x, y)
(g is continuous on [A1] x [0, 1]). In order to calculate the minimum @f, we
need a piece of elementary analysis. Petv —2, a = p -1, 8 =1/(p — 1),
andy = (p —2)/(p — 1. Put
Xv(t) = Fp(t7:L 07 cee O);
N e’
v—2

thenX, : [0, 00) — [xq, o0) is a strictly increasing function (herg = X, (0) =
A+ (c + 1PN, The inverse functiors, to X, is defined explicitly by

Sy (x)=x+[(x =P T4 exP P, x> xo. (25)

Putx; = (1+ c¢f)"tandx, = L Thenxo < x1 < x, and the points; = S, (x;)
are given byso = 0, s1 = 1+ ¢#) 7%, ands, = 1+ .
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LEmMMA 5. Letv > 3. ThenX| is continuous oifi0, +00).
@Ifp>20<p <1, thenX/(r) is strictly decreasing o1f0, s1] and
[s2, 00) and is strictly increasing ofs1, s2].
21 1l<p<2(B>1,thenX|() is strictly increasing or0, s1] and
[s2, 00) and is strictly decreasing of3y, s2].

Proof. We have
Si(x) =1+ (¥ o @) (x), (26)

whereg(x) = (1—1/x)?~2 andy(n) = (In| +¢) - |n¥” 4+ ¢|~. Calculatingy’,
forl< p < 2we havey’ < 0on(—oo, —c?) and(0, 1) andy" > 0 on(—c?, 0)
and (1, c0); all signs are reversed jp > 2. Note thatp(x;) = —c¢”. This im-
plies thatS; is monotone on each of the intervalsy, x1), (x1, x2), (x2, c0) and
gives the signs of this monotonicity. Thus we also find the sign of monotonicity
of X/ =1/(S] o X,). We omit trivial details. O

LEMMA 6. Letv >3andO0O<s <1<t.
D) p>20<pB<,thenX|(s) < X D < X,@).
2fl<p<2(B>1D,thenX;(s) > X,(D > X, ().

Proof. Note thats; < 1 < s> andX, (1) = 1/(1+ (¢/2)#). From (26) and the
formulaX; = 1/(S, - X,), we have

p-1
Xy = 219

| L
= @rorrr HO=300. Xeo)=

X,(0).
(27)
Consider first the casp > 2 (0 < B8 < 1). The properties of the function

X! appearing in Lemma 5 imply that the statement is tru¥ if0) < X/ (1) <

X/ (00).

The inequalityX’ (1) < X, (c0) is equivalent to
Ale) =1+ 2V PP — 14+ 0)f >0

for every positive integet. It is easy to check that’(c) > 0 for all positivec.

This implies the inequalityA(c) > A(0) = 0. The inequalityX/(0) < X, () is

equality ifc = 1. If ¢ > 2 then

At+of+1

2 2 1 1
2X/(0) = < = < =2X/(D.
l+c+ A+ 14c+1 1+¢/27 1+ (c/2)*
In the case k p < 2, the same arguments yield the result. O

Note thatw,(C21) = X, (). By (24), the proof of Theorem 5 finishes with the
following result.

LemMma 7. Letv > 3. The functiorg(x, y) satisfies, forever@ < x,y <1,

X, D = (x,y) < =2X,0) if p>2,

1 2
a3 =8 =3
1+ ((v—2)/2)F 1+ (v —-DF

X, = g(x,y) = 2X,(0) if l<p<2.
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In particular, k(C21) = 1if p > 2andk(Cz1) = X,(1)/(2X,(0)) > 1if 1 <
p <2

Proof. By the symmetry of the functiop, we can assume that> y. So let us
study the values of on the set

D ={(x,y)€[0,1]%:x > y}.

First we see thag must attain its maximum and minimum values Bron the
boundary ofD, becausévg # 0 in the interior ofD. Indeed, by propertyi¥) of
the functionf,,, we have

1—x
glx, y)—yX< >+(1 y)X( )
y 1-y

Hence, by Lemma 6,

ag v/ f _y! 1-—x
5(x’y)_x”<y) X”<1—y>#0

for (x, y) in the interior of D, becaus€l — x)/(1— y) <1< x/y.
Note thatg(x, x) = X, (1) andg(l, y) = g(1— y, 0). Put
B(y)=g¢gLy)=X,(y) + Q- »X,(0), yel0,1].
SinceB(1) = X, (1), we obtain that mip g = minyp 1 B and maxy g =maxo 3 B.
We haveB’(y) = X/(y) — X,(0) and B(0) = 2X,(0). If p > 2 then, by
Lemma 6 and (27), it follows that/(y) < X (1) < X, (o0) = X,(0) for 0 <

y < 1 HenceB’(y) < 0for0 < y < 1 Similarly, B'(y) > 0for0 < y < 1if
1 < p < 2. This finishes the proofs of Lemma 7 and Theorem 5. O

5. Proofs of Theorems 6 and 7

Proof of Theorem 6Defines and F(x1, ..., x,) as in Section 1 and apply The-
orems 1 and 2 and Corollary 2 (in the general case 3) to F. Observe that
wr(Cy,n) = o". Part (a) is immediate. If (9) holds, then the differentiability con-
dition on F implies thatF also satisfies the (analog of) the right-hand side of (6).
This and Theorem 2 yield part (b). O

Proof of Theorem 7(a) We putP, = {x1+---+x, =a} C R*, a e R. The
invariance ofI:’,, under rearrangemen} implies théj{ F’,,(q) does not depend on
J (g is the center oR,,). ThereforedF,(q)|Po = 0. Note that there exist; >

0 and a neighborhoot; of ¢ in P; such that, for every, j, d) 5 O »(g") is uni-
formly continuous as a function @fp, ¢') € (2 — 81,2+ §1) X Vl It is easy to
check this fact as follows. Implicit differentiation of equation (4) glves tﬁaF,,

is aC* function in a neighborhood of the poi®, ¢) if 1 < v. Smceax 7 F,=

0, the Taylor formula with the Lagrange form of the rest gives that, forfan»y
0, there exisy > 0 and an open subsE&t (g € V C P;) such that

<elg' —ql?

Fy(q) L
pq P
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forall¢’ € V and allp € (2 — 80, 2 + 8o). SinceF, — F, uniformly onR,, as
p — 2, we conclude that there are positiwes such that (9) holds foF = F, if
p€(2—46,2+8). Theorem 6 then gives the first assertion.
(b) Lety = 2 andp > 2. We haves = X, (1). By Lemma 6 and (27),
) 141
X@®) =X, + X, -1 = Xu(l)T
for 0 < ¢ < 1, which implies that

X1+ X2

Fy(x1,x2,0,...,0) > o for xq, xo > 0.
——

v—2
Hence there is an > 0 such that (9) holds foF = F, for all p € (2, c0). The

analog of the right-hand inequality in (6) holds fér = F,,(x, y) forany p €
(1, 00). One can then conclude that assertion (b) holds. O

6. The Casep = o0

In potential theory it is possible to defined-harmonic functions”. In this section,
we consider thedo-harmonic measure”.
Theoo-harmonic measurss defined agr,, whereFy is the limit

min(xy, ..., x,) + Max(xy, ..., x,)
2

(it is easy to prove). Theorem 1 and Remark 2 give that the answer to the weak
Martio problem is negative for theo-harmonic measure. Besides, we can now
construct setd,,, B, € G, with D, = A, U B, and

Woo(Dy) _n+1
weo(Ap) + 0o (By) 2

ConsiderD; = G;. GivenD,,, we construcD, . ; inthe followingway: D, .1 =
(Dy, I, ..., I,), wherel, is any subset o5, with only one vertex. Then we
havews(D1) = 1 andwa (D,41) = woo(D,)/2 + 2771 and this implies that
weo(Dy) = (n+ 127"

ConsiderA; = Cz3. Given A,, we construct4,,; in the following way:
A= (A, 1,,9,...,0). Consequently, iB, = D, \ A, itfollows thatB,, ., =
(Bn, 9, 1, ..., I,). Itis immediate by induction thad,,(A,) = w(B,) = 27".
These equalities give (28).

Foo(x1, ..., x,) = lim F,(x1,...,x,) =
p—>00

(28)
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