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A Szegö-Type Theorem for
Gabor–Toeplitz Localization Operators

H. G. Feichtinger & K. Nowak

1. Introduction and Preliminaries

Linear time-frequency methods such as Gabor expansions or the short-time Fourier
transform provide ways of analyzing signals by describing their frequency con-
tent as it varies over time. In contrast to quadratic methods, Gabor expansions
allow one to manipulate signals in a linear way. The resulting time-variant filter-
ing procedures allow one to isolate partial signals or suppress the noise. Gabor
expansions have a long history and have been applied by engineers for decades.
Despite this fact, their mathematical properties still hide many intricate features.
Their study has recently been substantially intensified ([AT; FS; QC; Te] are some
recent books that deal with current developments).

The Gabor reproducing formula defines a natural context for time-frequency
localization, which is one of the methods for time-variant filtering. By modifying
by the weight function, the basic projection operators that build the reproducing
formula, we emphasize those regions of the time-frequency plane that correspond
to large values of the weight and disregard those where the weight is small. The
resulting operator, assigning to the original signal its time-frequency modifica-
tion, shares many features with classical Toeplitz operators and is called aGabor–
Toeplitz localization operator.The weight function is called asymbol.

One of the main lines of investigation of time-frequency localization operators
is the study of the behavior of their eigenvalues as the domain of localization is
expanded by dilations (see [Da2; LW; RT]). The distribution function, indicating
how many eigenvalues are bigger thanε (1> ε > 0), is the principal object in this
study. The distribution of the eigenvalues of Gabor–Toeplitz operators was first
studied by Daubechies in [Da1]. She observed that if the symbol is a characteristic
function of a disk centered at the origin and if the function defining the reproducing
formula (i.e., thewindow) is a standard Gaussian, then the corresponding Gabor–
Toeplitz localization operator is diagonalized by Hermite functions. She obtained
a formula for the eigenvalues in terms of the restricted Gamma function, and this
allowed her to analyze the behavior of the distribution of the eigenvalues. Later, a
different approach (based on trace formulas) was taken by Ramanathan and Topi-
wala in [RT]. This approach enabled them to generalize several of the Daubechies
results to the context of general bounded domains and general windows. In this
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paper we examine the case where the symbols are no longer characteristic func-
tions of bounded domains but instead are general nonnegative, bounded, integrable
functions. Our main result is an analog of the classical Szegö theorem. (A nice
overview of Szegö-type theorems is contained in the book by Widom [W].) From
our result we derive corollaries that describe the behavior of the distribution of the
eigenvalues and the size of the plunge region. The first corollary shows that, on
the level of order 2n (wheren denotes dimension), the distribution of the eigen-
values mimics precisely the behavior of the distribution function of the symbol.
The second corollary shows that a similar phenomenon occurs for the plunge re-
gion of the eigenvalues. The main idea of the proof of our main result comes from
the formula linking Toeplitz and Hankel operators.

There are essentially three types of time-frequency localization operators in use:

(i) compositions of timepass and bandpass filters;
(ii) restrictions of the reproducing formulas based on coherent state expansions;

(iii) Weyl pseudodifferential operators with symbols having compact support.

The first class was investigated by Landau, Slepian, Pollak, and Widom (see [L;
LW; Sl]). Daubechies, Paul, Ramanathan, and Topiwala (see [Da2; RT]) studied
these operators of the second class, which are based on Calderón and Gabor re-
producing formulas. The general case was investigated by Dall’Ara, De Mari, and
Mauceri in [DDM]. The work in the third direction was done by Flandrin, Heil,
Ramanathan, and Topiwala [Fl; HRT]. Still another method of time-frequency
localization was developed by Hlawatsch, Kozek, and Krattenthaler in [HKK].
Much useful information on time-frequency localization can be found in a sur-
vey paper by Folland and Sitaram [FoS]. For general aspects of time-frequency
analysis, we refer the reader to the book of Folland [Fo]. Several new results deal-
ing with function spaces related to Gabor epansions were obtained recently by
Feichtinger and Gröchenig in [FG].

Throughout this paper we will work with the Gabor transform of functionsf ∈
L2(Rn)with respect to a fixed square integrablewindowφ ∈L2(Rn). For the sake
of convenience we assume that the functionφ is normalized inL2(Rn), that is,
‖φ‖L2(Rn) = 1. By φq,p we denote thephase-space shiftof φ by (q, p),

φq,p(x) = e2πipxφ(x − q).
The coordinatesq, p are interpreted as position and momentum (time and fre-
quency in the 1-dimensional setting), and the spaceR2n is called thephase space.
TheGabor transformF of f with respect toφ is given by

F(q, p) = 〈f, φq,p〉.
The functionsφq,p give rise to theGabor reproducing formula: For anyf ∈
L2(Rn) we have

f =
∫
R2n
F(q, p)φq,p dq dp,

where the integral is understood in a weak sense. Clearly we have‖F‖L2(R2n) =
‖f ‖L2(Rn). By multiplying the amplitudesF(q, p) by some weightb(q, p), we
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can emphasize or eliminate certain parts of the phase-space representation off.

TheGabor–Toeplitz localization operatoris defined by

Tbf =
∫
R2n
b(q, p)F(q, p)φq,p(x) dq dp,

whereb is assumed to be a nonnegative, bounded, and integrable function de-
fined on the phase space. The functionb is called thesymbolof Tb, or its Gabor
multiplier.

It is not hard to check that Gabor–Toeplitz localization operators satisfy

0 ≤ Tb ≤ ‖b‖L∞ , (1)

that they are trace class, and that

tr Tb =
∫
R2n
b(η) dη. (2)

Our aim is to study the asymptotic behavior of the eigenvalues of Gabor–Toeplitz
localization operators as the symbol is dilated. We defineL∞ normalized dilation
by bR(ζ) = b(ζ/R), R > 0. We are interested in the behavior of the eigenvalues
λi(R) of TbR asR→∞. It follows from (1) and (2) that

0 ≤ λi(R) ≤ 1 and
∞∑
i=0

λi(R) = R2n
∫
R2n
b(η) dη.

For more background and further details, see [Da2] and [RT].

2. The Main Result and its Consequences

Theorem 2.1. Let φ ∈ L2(Rn), ‖φ‖L2(Rn) = 1, andb ∈ L1(R2n) with 0 ≤ b ≤
1. Then, for any continuous functionh defined on the closed interval[0,1], the
following asymptotic formula holds:

lim
R→∞

tr(TbRh(TbR ))

R2n
=
∫
R2n
b(η)h(b(η)) dη. (3)

Remark 1. The operatorTbR is a nonnegative trace class operator because its
symbol is nonnegative and integrable. Its operator norm is bounded by 1 because
its symbol is bounded by1. The functional calculus of self-adjoint operators allows
all bounded functions defined on its spectrum to act on it. In particular, all contin-
uous functions defined on [0,1] may be applied toTbR . Each continuous function
h provides a bounded operatorh(TbR ). The operator norm ofh(TbR ) is bounded
by the maximum of the functionh. The operatorTbRh(TbR ) is trace class, and it
makes sense to compute its trace.

Remark 2. The mapping

h→ 1

R2n
tr(TbRh(TbR ))

defines a bounded functional onC([0,1]). The representing measure equals
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µR = 1

R2n

∞∑
k=0

λk(R)δλk(R).

Formulas (1) and (2) imply that the total variation ofµR equals

‖µR‖ = 1

R2n

∞∑
k=0

λk(R) =
∫
R2n
b(η) dη.

Let us define a measureµ by the integral formula∫ 1

0
h(t) dµ(t) =

∫
R2n
b(η)h(b(η)) dη.

With this interpretation, formula (3) is equivalent to the statement that the mea-
suresµR converge weakly toµ asR →∞. A standard approximation argument
implies that it is enough to prove (3) forh(t) = t n, n = 0,1,2, . . . .

Formula (3) directly leads to descriptions of the asymptotic behavior of the dis-
tribution of the eigenvalues and the size of the plunge region. Let us denote the
distribution of the sequence{λi(R)}∞i=0 byN(δ,R) = |{i : λi(R) > δ}| with 0 <
δ < 1 and the size of the plunge region byM(δ1, δ2, R) = |{k : δ1 < λk(R) < δ2}|
with 0 < δ1 < δ2 < 1. In the following corollaries we assume that the windowφ
and the symbolb satisfy the same requirements as in Theorem 2.1.

Corollary 2.2. Let 0< δ < 1. If |{η : b(η) = δ}| = 0, then

lim
R→∞

N(δ,R)

R2n
= |{η : b(η) > δ}|. (4)

Corollary 2.3. Let 0 < δ1 < δ2 < 1. If |{η : b(η) = δi}| = 0 for i = 1,2,
then

lim
R→∞

M(δ1, δ2, R)

R2n
= |{η : δ1 < b(η) < δ2}|. (5)

Comments. (i) Formulas (4) and (5) show that, asymptotically, the eigenvalues
λi(R) mimic the behavior of the symbol function. This phenomenon is related to
the fact that, asymptotically, the calculus of Gabor–Toeplitz localization operators
becomes a perfect calculus. Such a perfect calculus property is a desired feature
of quantization procedures. In our case, the quantization is the assignment of the
operatorTb to its symbolb. The perfect calculus property can be expressed (in a
trace class sense) as follows: For any two nonnegative, bounded, integrable sym-
bolsb1 andb2, we have

lim
R→∞

1

R2n
‖Tb1

R
b2
R
− Tb1

R
Tb2

R
‖S1 = 0 (6)

and

lim
R→∞

1

R2n
‖Tb1

R
Tb2

R
‖S1 = lim

R→∞
1

R2n
‖Tb1

R
b2
R
‖S1 =

∫
R2n
b1(η)b2(η) dη.
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The perfect calculus property (6) holds only in the asymptotic sense. Even for
characteristic functions of bounded sets, the mapb → Tb fails to be a homo-
morphism.

(ii) Our results indicate that there is some kind of instability in the behavior of
the plunge region with respect to perturbations of the symbol. Let us start with a
symbol that is a characteristic function of a bounded domain with smooth bound-
ary. Let us also assume that the function defining the reproducing formula is reg-
ular. In this case the plunge region grows no faster thanR2n−1 (see [RT]). If we
perturb the symbol and make it attain values that are smaller than 1 on a set of
positive measure but keep it bounded by 1, then the plunge region changes its be-
havior. After the perturbation, it grows asymptotically with the rateR2n.

(iii) If the symbol b is a characteristic function of a bounded domain�, then
its distribution function is constant on [0,1) and its value coincides with the vol-
ume of�, denoted by|�|. In this case it is relatively straightforward to derive an
estimate of the second term of the asymptotic expansion ofN(δ,R)—that is, an
estimate of the error made by substitutingR2n|�| for N(δ,R):

N(δ,R)−R2n|�| ≤ cδR2n

(
|�|−

∫∫
R2n8(R(ζ−η))χ�(ζ)χ�(η) dη dζ

)
, (7)

wherecδ = max
(

1
δ
, 1

1−δ
)

and8(ζ) = |〈φ, φζ〉|2. If the domain is regular enough
and the function8 has sufficient decay at infinity, then the right-hand side of (7)
may be controlled bycR2n−1 (see [RT]).

(iv) The operatorsTb with b = χ�, where� is a bounded domain, resemble
the operators investigated in [W]. The main difference is that twisted convolution
is used in our context, whereas Widom makes use of the standard convolution.

(v) Our results show that it is possible to replace the lim inf in Theorem 1 of
[RT] by a true limit without making the additional assumptions formulated in
Corollary 1 of [RT].

The proofs of (6) and (7) will be presented at the end of Section 3.

3. Proofs

Since‖φ‖L2(Rn) = 1, it follows from the Gabor reproducing formula that the
Gabor transformWφ : L2(Rn)→ L2(R2n) given by the fomula

Wφf(q, p) = 〈f, φq,p〉 = F(q, p)
is an isometry and that the integral operatorPφ : L2(R2n)→ L2(R2n),

PφH(q, p) =
∫
R2n
H(s, r)〈φs,r , φq,p〉 ds dr,

is an orthogonal projection ontoWφ(L
2(Rn)). It is easy to check that the operator

PφMbPφ has the matrix representation[
WφTbW

∗
φ 0

0 0

]
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with respect to the decompositionL2(R2n) = Wφ(L
2(Rn))⊕Wφ(L

2(Rn))⊥. This
matrix representation shows that, as far as our results are concerned, we may iden-
tify the operatorsTb andPφMbPφ.

By Hb = (I − Pφ)MbPφ we denote the Hankel operator with the symbolb.

The proof of our main theorem is based on the following lemma.

Lemma 3.1. If b is a nonnegative, bounded, integrable function defined onR2n,

then

lim
R→∞

‖HbR‖S2

Rn
= 0, (8)

where‖ · ‖S2 denotes the Hilbert–Schmidt norm.

Proof. Let c(η) = b1/2(η). Observe that the integral kernel ofMcRPφMcR equals

cR(ζ)〈φη, φζ〉cR(η).
We have

tr(PφMbRPφ)
2 = tr(McRPφMcR)

2

= R2n
∫
R2n

∫
R2n
R2n8(R(ζ − η))b(η)b(ζ) dη dζ, (9)

where8(η) = |〈φ, φη〉|2. Since
∫
R2n 8(η) dη = 1, 8 ≥ 0, andb ∈L2(R2n), we

obtain ∫
R2n

∫
R2n
R2n8(R(ζ − η))b(η)b(ζ) dη dζ → ‖b‖2

L2(R2n)
(10)

asR→∞. It follows from (9) and (10) that

lim
R→∞

tr(PφMbRPφ)
2

R2n
= ‖b‖2

L2n .

The proof of (8) is completed by observing that

PφM
2
bR
Pφ − (PφMbRPφ)

2 = PφMbR(I − Pφ)MbRPφ

and that
tr(PφM

2
bR
Pφ) = R2n‖b‖2

L2(R2n)
.

Remark. The preceding statement remains true for all nonnegativeb ∈L2(R2n);
one need only adjust properly the definition of Hankel operators.

Proof of Theorem 2.1.In view of Remark 2, it is enough to prove that

lim
R→∞

tr(PφMbRPφ)
m

R2n
=
∫
R2n
bm(η) dη (11)

for m = 1,2,3, . . . . LetQφ = I − Pφ. We observe that

PφM
m
bR
Pφ = PφMbR(Pφ +Qφ)MbR . . . MbRPφ

= (PφMbRPφ)
m + remaining terms, (12)

and each of the remaining terms contains a block of the form
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. . . PφMbRQφMbRQφ . . . QφMbRPφ . . . ,

with Qφ occurring at least once. In the second and all remaining occurrences of
Qφ we replaceQφ with I − Pφ and expand the resulting expression into a sum of
products. We thus obtain a sum of terms

. . . PφMbRQφM
k
bR
Pφ . . . .

We conclude that
|tr(remaining terms)|

can be estimated from above by a sum of expressions of the form

‖PφMbRQφM
k
bR
Pφ‖S1,

whereS1 denotes the trace class. By the Cauchy–Schwartz inequality we obtain

‖PφMbRQφM
k
bR
Pφ‖S1 ≤ ‖PφMbRQφ‖S2‖QφM

k
bR
Pφ‖S2. (13)

Now we may combine (12), (13), and Lemma 3.1 to obtain (11):

lim
R→∞

tr(PφMbRPφ)
m

R2n
= lim

R→∞
tr(PφMm

bR
Pφ)

R2n
=
∫
R2n
bm(η) dη.

Proof of Corollary 2.2.Let gδ(t) = χ(δ,1](t)/t and letg+δ,ε, g
−
δ,ε be continuous ap-

proximations ofgδ satisfying the following conditions:

(i) 0 ≤ g−δ,ε ≤ gδ ≤ g+δ,ε ≤ 1/δ,
(ii) g−δ,ε andg+δ,ε coincide withgδ outside the interval [δ − ε, δ + ε].
Observe that

N(δ,R) = tr(TbRgδ(TbR )),

tr(TbRg
−
δ,ε(TbR )) ≤ N(δ,R) ≤ tr(TbRg

+
δ,ε(TbR )), (14)

and

tr(TbRg
+
δ,ε(TbR ))− tr(TbRg

−
δ,ε(TbR ))

R2n
= tr(TbR(g

+
δ,ε − g−δ,ε)(TbR ))
R2n

→
∫
R2n
b(η)(g+δ,ε − g−δ,ε)(b(η)) dη ≤

1

δ
|{η : δ − ε ≤ b(η) ≤ δ + ε}|. (15)

Formulas (14) and (15), together with the fact that

|{η : δ − ε ≤ b(η) ≤ δ + ε}| → 0 asε→ 0,

imply thatN(δ,R)/R2n converges asR → ∞. Clearly the limit equals|{η :
b(η) > δ}|.
Proof of Corollary 2.3.The proof follows directly from Corollary 2.2.

Proof of (6). It is enough to apply the Cauchy–Schwartz inequality and Lemma
3.1 to the identity

PφMb1
R
b2
R
Pφ − PφMb1

R
PφMb2

R
Pφ = H ∗b1

R
Hb2

R
.
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Proof of (7). Letg1(t) = tχ[0,δ](t) andg2(t) = (1− t)χ(δ,1](t). Clearly,

N(δ,R)− R2n|�| = tr(χ(δ,1]TR� − TR�) = −tr g1(TR�)+ tr g2(TR�).

We obtain

|N(δ,R)− R2n|�‖
≤ tr(g1+ g2)(TR�) ≤ max

(
1

δ
,

1

1− δ
)

tr(TR� − T 2
R�)

= max

(
1

δ
,

1

1− δ
)
R2n

(
|�| −

∫∫
R2n8(R(ζ − η))χ�(ζ)χ�(η) dη dζ

)
.

The last equality follows from the proof of Lemma 3.1.
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