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The large factorials are approximated through the use of Stirling’s formula:
n! ~ \2x n"t1/2e7m,

The proof of the Stirling’s formula can be found in many texts, such as [1], [2], and [3].
In this short note Stirling’s formula is derived as an application of the Central Limit
Theorem. Thus, this proof can be introduced in a mathematical statistics course.

Let X3, Xo,...,X, be a random sample from an exponential distribution with mean

By the Central Limit Theorem the limiting distribution of

7, = Y Xi—n
vn

is standard normal.
That is,

Zn % Z~N(0,1) as n— occ.

Thus, for every =z,
P(Z, <z)— P(Z<z) as n— oo.

Since X; ~exp(1),i =1,2,...,n, and all independent, ZXi has a Gamma distribu-
i=1

tion with probability density function

t’n,fleft
ft) = t >0, and zero otherwise.

(n—1)!
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Hence,

n+zy/n tnfleft

P(anx)—P(éXign—l-x\/ﬁ)—/o (n—l)!dt'

Thus,

A R
1 ——dt ~ et 2y,
M AR -

Differentiating both sides of (1) with respect to x, we have

(2) \/ﬁ(”ﬂ\/ﬁ)"‘le‘("”ﬁ’ ~ L et
(n — 1)' o \ 2T '

Since (2) is true for all x, taking 2 = 0 in (2) we get

Vynnnlemn 1
(n — 1)' B 2
which gives the desired result.
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