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The large factorials are approximated through the use of Stirling’s formula:

n! ≃
√
2π nn+1/2e−n.

The proof of the Stirling’s formula can be found in many texts, such as [1], [2], and [3].

In this short note Stirling’s formula is derived as an application of the Central Limit

Theorem. Thus, this proof can be introduced in a mathematical statistics course.

Let X1, X2, . . . , Xn be a random sample from an exponential distribution with mean

1.

By the Central Limit Theorem the limiting distribution of

Zn =

∑n
i=1 Xi − n

√
n

is standard normal.

That is,

Zn
d−→ Z ∼ N(0, 1) as n → ∞.

Thus, for every x,

P (Zn ≤ x) → P (Z ≤ x) as n → ∞.

Since Xi ∼ exp(1), i = 1, 2, . . . , n, and all independent,

n
∑

i=1

Xi has a Gamma distribu-

tion with probability density function

f(t) =
tn−1e−t

(n− 1)!
t ≥ 0, and zero otherwise.
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Hence,

P (Zn ≤ x) = P

( n
∑

i=1

Xi ≤ n+ x
√
n

)

=

∫ n+x
√
n

0

tn−1e−t

(n− 1)!
dt.

Thus,

(1)

∫ n+x
√
n

0

tn−1e−t

(n− 1)!
dt ≃

∫ x

−∞

1
√
2π

e−t2/2 dt.

Differentiating both sides of (1) with respect to x, we have

(2)
√
n
(n+ x

√
n)n−1e−(n+x

√
n)

(n− 1)!
≃

1
√
2π

e−x2/2.

Since (2) is true for all x, taking x = 0 in (2) we get

√
nnn−1e−n

(n− 1)!
≃

1
√
2π

which gives the desired result.
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