ACCELERATED MSOR METHOD

Saadat Moussavi
University of Wisconsin - Oshkosh

1. Abstract. Since the development of the "SOR" method by David Young [3], there has been a strong interest to use more than one parameter for SOR to improve the convergence [13], [14], [15] and [16].
D. Young himself considered a two parametric method called "MSOR". The two parameters weight the diagonal of positive-definite and consistently ordered 2-cyclic matrix [6], removing Young's hypothesis that the eigenvalues of Jacobi iteration matrix must all be real. We prove for certain cases that when "SOR" diverges, the two parametric method converges.
2. Introduction. To find the solution vector x to the linear system

$$
\begin{equation*}
A x=b, \tag{2.1}
\end{equation*}
$$

where A is a sparse $n \times n$ matrix and b is a given n-vector of complex n-space. Stationary iterative methods, including SOR, solve the $n \times n$ linear system (2.1) by first splitting A into two terms,

$$
\begin{equation*}
A=A_{0}-A_{1} \tag{2.2}
\end{equation*}
$$

where A_{0}^{-1} is easy to compute. Relation (2.2) can be written as:

$$
\begin{equation*}
A=A_{0}\left(I-A_{0}^{-1} A_{1}\right)=A_{0}(I-B) \tag{2.3}
\end{equation*}
$$

where $B=A_{0}^{-1} A_{1}$ is called the iteration matrix. Therefore, the linear system (2.1) can be written as

$$
\begin{equation*}
x=B x+A_{0}^{-1} b . \tag{2.4}
\end{equation*}
$$

Then, by choosing any arbitrary starting vector x_{0}, the equation (2.4) is used to generate the vector sequence $\left\{x_{k}\right\}$, constructed as

$$
\begin{equation*}
x_{k+1}=B x_{k}+A_{0}^{-1} b \quad k=0,1,2, \ldots . \tag{2.5}
\end{equation*}
$$

By relation (2.3), it is clear that if $\left\{x_{k}\right\}$ converges at all, it must converge to $x_{\text {sol }}=A^{-1} b$ (vector solution), where $A x_{\text {sol }}=b$. Relation (2.3) shows that $\left\{x_{k}\right\}$ produced by (2.5) converges to $x_{\text {sol }}=A^{-1} b$ for any x_{0} if and only if $\rho(B)<1$, where $\rho(B)$ is the spectral radius of $B[1]$. The smaller $\rho(B)$, the faster the sequence $\left\{x_{k}\right\}$ converges to $x_{\text {sol }}=A^{-1} b$ (asymptotically).

The above splitting is called stationary since there is no altering of parameter from iteration to iteration. It is called one part splitting since each x_{k+1} depends only on one previous vector x_{k}.

Examples of one-part stationary splitting are represented in the following important iteration methods.
(i) Successive Overrelaxation (SOR) method was developed independently by Frankel [2] and Young [3], [4] in 1950.
S.O.R: Choose

$$
A_{0}=\frac{1}{\omega} D-L, \quad A_{1}=\left(\frac{1}{\omega}-1\right) D+U
$$

where D is the diagonal part of A and $-L,-U$, are strictly lower and upper triangular parts of A respectively. Then, iteration matrix B_{ω} is given by

$$
B_{\omega}=(D-\omega L)^{-1}((1-\omega) D+\omega U)
$$

(ii) Modified Successive Overrelaxation (MSOR) method first considered by Devogelaere [5] in 1958. Here is how it works. Consider the matrix A in the following form

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are square non-singular matrices. Use ω for the "red" equations corresponding to D_{1} and ω^{\prime} for the "black" equations corresponding to D_{2} then M.S.O.R: Choose

$$
A_{0}=\left(\begin{array}{cc}
\frac{1}{\omega} D_{1} & 0 \\
N & \frac{1}{\omega^{\prime}} D_{2}
\end{array}\right)
$$

Therefore, iteration matrix $B_{\left(\omega, \omega^{\prime}\right)}$ is defined by

$$
B_{\left(\omega, \omega^{\prime}\right)}=A_{0}^{-1} A_{1}=\left(\begin{array}{cc}
(1-\omega) I_{1} & \omega F \\
\omega^{\prime}(1-\omega) G & \omega \omega^{\prime} G F+\left(1-\omega^{\prime}\right) I_{2}
\end{array}\right)
$$

where $F=-D_{1}^{-1} M$ and $G=-D_{2}^{-1} N$. Young [6] has proved that if A is positive-definite, then

$$
\rho\left(B_{\omega_{b}}\right)<\bar{\rho}\left(B_{\left(\omega, \omega^{\prime}\right)}\right),
$$

where $\bar{\rho}\left(B_{\left(\omega, \omega^{\prime}\right)}\right)$ is virtual spectral radius of $B_{\left(\omega, \omega^{\prime}\right)}$. Young also showed that B_{1} (GaussSeidel iteration matrix) converges faster than MSOR if A is positive definite, $0<\omega \leq 1$ and $0<\omega^{\prime} \leq 1$. Moussavi generalized Young's Theorem by considering $0<\omega \leq 1$ or $0<\omega^{\prime} \leq 1$ [17]. Mcdowell [7] and Taylor [8] analyzed the convergence of the MSOR method and obtained slightly better convergence by considering $\rho\left(B_{\left(\omega, \omega^{\prime}\right)}\right)$ instead of $\bar{\rho}\left(B_{\left(\omega, \omega^{\prime}\right)}\right)$.

In this paper, a comparison of the spectral radii of iteration matrices $B_{\left(1, \omega^{\prime}\right)}$ and $B_{(\omega, 1)}$ with B_{1} is done for the case when the eigenvalues of B_{j} (Jacobi) are not all real (Theorem 3.1). It can also be shown that if A is positive-definite, then iteration matrices $B_{\left(1, \omega^{\prime}\right)}$ and $B_{(\omega, 1)}$ induce faster convergence than B_{1} (Gauss-Seidel) for $1<\omega<2$ and $1<\omega^{\prime}<2$ (Corollary 3.3). If A is an irreducible, L-matrix with $\rho\left(B_{j}\right)<1$, then a relationship can be found between $\rho\left(B_{\left(\omega, \omega^{\prime}\right)}\right)$ and $\rho\left(B_{1}\right)$. A sufficient condition for $\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<1$ can also be found (Theorem 3.7). Finally it is shown that if the SOR method is not convergent and the eigenvalues of SOR are in a certain region in the plane, then iteration matrix $B_{(1,2)}$ induces rapid convergence of $\left\{x_{k}\right\}$ (Theorem 3.9).

3. Accelerated MSOR Method.

Theorem 3.1. Suppose

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are non-singular matrices and let $\rho\left(B_{j}\right)<1$. Then
(a) If the eigenvalues of B_{1} with modulus $\rho\left(B_{1}\right)$ have the real part less than $\rho^{2}\left(B_{1}\right)$, then

$$
\rho\left(B_{(\omega, 1)}\right)>\rho\left(B_{1}\right) \text { and } \rho\left(B_{\left(1, \omega^{\prime}\right)}\right)>\rho\left(B_{1}\right)
$$

for all $1<\omega<2$ and $1<\omega^{\prime}<2$.
(b) If the eigenvalues of B_{1} with modulus $\rho\left(B_{1}\right)$ have the real part greater than $\rho^{2}\left(B_{1}\right)$, then

$$
\rho\left(B_{(\omega, 1)}\right)>\rho\left(B_{1}\right) \text { and } \rho\left(B_{\left(1, \omega^{\prime}\right)}\right)>\rho\left(B_{1}\right)
$$

for all $0<\omega<1$ and $0<\omega^{\prime}<1$.
(c) If (a) and (b) hold together, then $\rho\left(B_{1}\right)$ is the smallest.

Proof. According to Young [6],

$$
(\lambda+\omega-1)\left(\lambda+\omega^{\prime}-1\right)=\lambda \omega \omega^{\prime} \mu^{2}
$$

where

$$
\lambda \in \sigma\left(B_{\left(\omega, \omega^{\prime}\right)}\right) \text { and } \mu \in \sigma\left(B_{j}\right)
$$

It is clear that $B_{\left(1, \omega^{\prime}\right)}$ and $B_{(\omega, 1)}$ are Jacobi shifting of B_{1}, with parameters ω and ω^{\prime}, respectively [12]. Hence if

$$
\xi \in \sigma\left(B_{(\omega, 1)}\right) \text { and } \psi \in \sigma\left(B_{\left(1, \omega^{\prime}\right)}\right)
$$

then

$$
\begin{align*}
\xi & =\omega \mu^{2}+(1-\omega) \cdot 1 \tag{3.1.1}\\
\psi & =\omega^{\prime} \mu^{2}+\left(1-\omega^{\prime}\right) \cdot 1 \tag{3.1.2}
\end{align*}
$$

(a) All the eigenvalues of B_{1} with modulus $\rho\left(B_{1}\right)$ are on the arc $T B T^{\prime}$ (Figure 1), where $S T$ and $S T^{\prime}$ are tangent lines to the circle C with center at the origin and radius $\rho\left(B_{1}\right)$. It is easy to show that x-coordinates of T and T^{\prime} is $\rho^{2}\left(B_{1}\right)$. Hence if $\omega>1$ or $\omega^{\prime}>1$, then μ^{2} shifts to ξ or ψ outside the circle C on the line which passes through two points μ^{2} and $S:(1,0)$, respectively. This means that (3.1.1) or (3.1.2) gives a slower convergence. Of course in this case one could find $0<\omega<1$ or $0<\omega^{\prime}<1$ such that

$$
\rho\left(B_{(\omega, 1)}\right)<\rho\left(B_{1}\right) \text { and } \rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<\rho\left(B_{1}\right)
$$

Figure 1.
(b) All the eigenvalues of B_{1} with modulus $\rho\left(B_{1}\right)$, are on the arc $T A T^{\prime}$ (Figure 1). Then $\omega<1$ or $\omega^{\prime}<1$ shifts μ^{2} toward point $S:(1,0)$ on the line which passes through two points μ^{2} and $S:(1,0)$. Hence (3.1.1) and (3.1.2) will give a slower convergence. Of course in this case one could find $1<\omega<2$ or $1<\omega^{\prime}<2$ such that

$$
\rho\left(B_{(\omega, 1)}\right)<\rho\left(B_{1}\right) \text { or } \rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<\rho\left(B_{1}\right) .
$$

(c) Clear by part (a) and part (b).

Lemma 3.2. $B_{(\omega, 1)}$ is a Jacobi shifting of $B_{\left(1, \omega^{\prime}\right)}$ or vice versa.
Proof. By (3.1.1) and (3.1.2)

$$
\mu^{2}=\frac{\psi+\omega^{\prime}-1}{\omega^{\prime}}=\frac{\xi+\omega-1}{\omega}
$$

or equivalently

$$
\psi=\frac{\omega^{\prime}}{\omega} \xi+\left(1-\frac{\omega^{\prime}}{\omega}\right) \cdot 1
$$

Corollary 3.3. Let

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are non-singular matrices. If $\mu_{1}=\rho\left(B_{j}\right)<1$ and all the eigenvalues of B_{j} are real, then

$$
\rho\left(B_{(\omega, 1)}\right)<\rho\left(B_{1}\right) \text { or } \rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<\rho\left(B_{1}\right)
$$

for $1<\omega<2$ or $1<\omega^{\prime}<2$.
Proof. Since all the eigenvalues of B_{1} are on the line segment $\left[0, \mu_{1}^{2}\right]$, it is clear by part (a) of Theorem 3.1 that $\rho\left(B_{1}\right)$ is greater than $\rho\left(B_{(\omega, 1)}\right)$ or $\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)$ for $1<\omega<2$ or $1<\omega^{\prime}<2$.

Theorem 3.4. Let

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are non-singular matrices. If A is an irreducible L-matrix and $\rho\left(B_{j}\right)<1$, then

$$
\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<\rho\left(B_{\left(\omega, \omega^{\prime}\right)}\right)
$$

for $0<\omega<1$ and $0<\omega^{\prime}<1$.
Proof. To get $B_{\left(1, \omega^{\prime}\right)}$ and $B_{\left(\omega, \omega^{\prime}\right)}$, split matrix A in the following ways. $A=A_{0}-A_{1}$, where

$$
A_{0}=\left(\begin{array}{cc}
D_{1} & 0 \\
N & \frac{1}{\omega^{\prime}} D_{2}
\end{array}\right)
$$

and

$$
A_{1}=\left(\begin{array}{cc}
0 & -M \\
0 & \left(\frac{1}{\omega^{\prime}}-1\right) D_{2}
\end{array}\right)
$$

and $A=A_{0}^{\prime}-A_{1}^{\prime}$, where

$$
A_{0}^{\prime}=\left(\begin{array}{cc}
\frac{1}{\omega} D_{1} & 0 \\
N & \frac{1}{\omega^{\prime}} D_{2}
\end{array}\right)
$$

and

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\left(\frac{1}{\omega}-1\right) D_{1} & -M \\
0 & \left(\frac{1}{\omega^{\prime}}-1\right) D_{2}
\end{array}\right)
$$

Since A is an L-matrix, D_{1} and D_{2} are positive, and N and M are non-positive matrices, thus $-M$ is non-negative. Since $0<\omega<1$ and $0<\omega^{\prime}<1$,

$$
\left(\frac{1}{\omega}-1\right) D_{1} \text { and }\left(\frac{1}{\omega}-1\right) D_{2}
$$

are positive, hence $A_{1}^{\prime} \geq A_{1}>0$. Since A is an L-matrix and $\rho\left(B_{j}\right)<1, A$ is an M-matrix [6]. That is, $A^{-1} \geq 0$. But because A is also irreducible, $A^{-1}>0$ [9]. By Varga's Theorem 3.15,

$$
\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<\rho\left(B_{\left(\omega, \omega^{\prime}\right)}\right)
$$

for $0<\omega<1$ and $0<\omega^{\prime}<1$ [9].
Corollary 3.5. Under the assumption of Theorem 3.4, if all the eigenvalues of B_{1} with modulus $\rho\left(B_{1}\right)$ have the real part greater than $\rho^{2}\left(B_{1}\right)$, then

$$
\rho\left(B_{\left(\omega, \omega^{\prime}\right)}\right)>\rho\left(B_{1}\right)
$$

for $0<\omega<1$ and $0<\omega^{\prime}<1$.
Proof. Clear by Theorem 3.4 and part (b) of Theorem 3.1.
Lemma 3.6. Suppose that

$$
A=\left(\begin{array}{cc}
I_{1} & M \\
N & I_{2}
\end{array}\right)
$$

Then

$$
\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right)^{-1}
$$

exists if and only if $(I-N M)^{-1}$ exists.
Proof. Since

$$
\begin{gathered}
B_{\left(\omega, \omega^{\prime}\right)}=\left(\begin{array}{cc}
(1-\omega) I_{1} & \omega M \\
\omega^{\prime}(1-\omega) N & \omega \omega^{\prime} N M+\left(1-\omega^{\prime}\right) I_{2}
\end{array}\right), \\
\left.I-B_{(} \omega, \omega^{\prime}\right)=\left(\begin{array}{cc}
\omega I_{1} & -\omega M \\
-\omega^{\prime}(1-\omega) N & -\omega \omega^{\prime} N M+\omega^{\prime} I_{2}
\end{array}\right)
\end{gathered}
$$

Suppose that the matrix

$$
\left(\begin{array}{ll}
X & U \\
Y & V
\end{array}\right)
$$

is the inverse of

$$
\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right) .
$$

Then

$$
\begin{align*}
\omega X-\omega M Y & =I_{1} \tag{3.6.3}\\
-\omega^{\prime}(1-\omega) N X-\omega \omega^{\prime} N M Y+\omega^{\prime} Y & =0 \\
\omega U-\omega M V & =0 \\
-\omega^{\prime}(1-\omega) N U-\omega \omega^{\prime} N M V+\omega^{\prime} V & =I_{2} \tag{3.6.4}
\end{align*}
$$

By (3.6.3) and (3.6.4) one gets

$$
\begin{aligned}
\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right)^{-1} & =\left(\begin{array}{ll}
X & U \\
Y & V
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{\omega} I_{1}+\frac{1-\omega}{-\omega} M(I-N M)^{-1} N & \frac{1}{\omega^{\prime}} M(I-N M)^{-1} \\
\frac{1-\omega}{\omega}(I-N M)^{-1} & \frac{1}{\omega^{\prime}}(I-N M)^{-1}
\end{array}\right) .
\end{aligned}
$$

Note that

$$
\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right)^{-1} \text { and }\left(I+B_{\left(\omega, \omega^{\prime}\right)}\right)
$$

are commutative.
Theorem 3.7. Let

$$
A=\left(\begin{array}{cc}
I_{1} & M \\
N & I_{2}
\end{array}\right)
$$

and γ be the eigenvalue of $(I-N M)^{-1}$ with the smallest real part, i.e., $0<\operatorname{Re} \gamma \leq \operatorname{Re} \lambda$ for all $\lambda \in \sigma\left((I-N M)^{-1}\right)$. Let $\rho\left(B_{j}\right)<1$. Then $\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<1$ if and only if $0<\omega^{\prime}<2 \operatorname{Re} \gamma$.

Proof. If μ is an eigenvalue of B_{j}, then μ^{2} is an eigenvalue of $N M$. Hence $\rho(N M)<1$, which implies that $(I-N M)^{-1}$ exists [9]. First we show that $(I-N M)^{-1}$ is N-stable,
which means all the eigenvalues of $(I-N M)^{-1}$ have positive real parts. Suppose that γ is an eigenvalue of $(I-N M)^{-1}$, then one can write it in the form

$$
\gamma=\frac{1}{1-\mu^{2}}
$$

where $\mu \in \sigma\left(B_{j}\right)$. Let $\mu=x+y i$. Then

$$
\begin{equation*}
\operatorname{Re} \gamma=\frac{1-x^{2}+y^{2}}{\left(1-x^{2}+y^{2}\right)+4 x^{2} y^{2}} \tag{3.7.5}
\end{equation*}
$$

since $x^{2}+y^{2}<1,(3.7 .5)$ is positive. Let

$$
H=\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right)^{-1}\left(I+B_{\left(\omega, \omega^{\prime}\right)}\right)=2\left(I-B_{\left(\omega, \omega^{\prime}\right)}\right)^{-1}-I
$$

Then

$$
H_{\left(1, \omega^{\prime}\right)}=\left(\begin{array}{cc}
I_{1} & \frac{2}{\omega^{\prime}} M(I-N M)^{-1} \tag{3.7.6}\\
0 & \frac{2}{\omega^{\prime}}(I-N M)^{-1}-I_{2}
\end{array}\right)
$$

Therefore, the eigenvalues of $H_{\left(1, \omega^{\prime}\right)}$ are the same as the eigenvalues of its diagonal submatrices. Hence

$$
\sigma\left(H_{\left(1, \omega^{\prime}\right)}\right)=1 \cup\left\{\left.\frac{2}{\omega^{\prime}} \nu-1 \right\rvert\, \nu \in \sigma\left((I-N M)^{-1}\right)\right\}
$$

$H_{\left(1, \omega^{\prime}\right)}$ is N-stable if and only if all the real parts of its eigenvalues are positive, that is,

$$
\frac{2}{\omega} \operatorname{Re} \gamma-1>0
$$

or equivalently $0<\omega^{\prime}<2 \operatorname{Re} \gamma$. Then it is clear that $\rho\left(B_{\left(1, \omega^{\prime}\right)}\right)<1$ (see Theorem 1.5 in [6]).
Lemma 3.8. Let

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are non-singular matrices. Let ξ be an eigenvalue of $B_{\left(1, \omega^{\prime}\right)}$ and λ be an eigenvalue of $B_{\omega^{\prime}}$, then eigenvalues ξ of $B_{\left(1, \omega^{\prime}\right)}$ and λ of $B_{\omega^{\prime}}$ are related by the following relation

$$
\begin{equation*}
\xi=\frac{1}{\omega^{\prime}} \lambda+\frac{\left(\omega^{\prime}-1\right)^{2}}{\omega^{\prime}} \frac{1}{\lambda}-\frac{\left(\omega^{\prime}-1\right)\left(\omega^{\prime}-2\right)}{\omega^{\prime}} . \tag{3.8.7}
\end{equation*}
$$

Moreover, $\xi=\left(l_{1}\left(g\left(l_{2}(\lambda)\right)\right)\right)$, where

$$
l_{1}(\lambda)= \pm\left(\frac{1}{\omega^{\prime}-1}\right) \lambda, \quad g(\lambda)=\lambda+\frac{1}{\lambda}
$$

and

$$
l_{2}(\lambda)= \pm \frac{\left(\omega^{\prime}-1\right)}{\omega^{\prime}} \lambda-\frac{\left(\omega^{\prime}-1\right)\left(2-\omega^{\prime}\right)}{\omega^{\prime}}
$$

Proof. Suppose that ψ is an eigenvalue of $B_{\left(\omega, \omega^{\prime}\right)}$ and λ is an eigenvalue of $B_{\omega^{\prime}}$. According to Young [9],

$$
(\psi+\omega-1)\left(\psi+\omega^{\prime}-1\right)=\psi \omega \omega^{\prime} \mu^{2} \text { and }\left(\lambda+\omega^{\prime}-1\right)^{2}=\lambda \omega^{\prime} \mu^{2}
$$

which implies

$$
\begin{equation*}
\psi \lambda\left(\omega^{\prime} \psi-\omega \lambda\right)+\lambda \omega\left(\omega^{\prime}-\omega\right)\left(\omega^{\prime}-2\right)+\left(\omega^{\prime}-1\right)\left(\omega^{\prime} \lambda(\omega-1)-\omega \psi\left(\omega^{\prime}-1\right)\right)=0 \tag{3.8.8}
\end{equation*}
$$

Then if ξ is an eigenvalue of $B_{\left(1, \omega^{\prime}\right)}$,

$$
\lambda \xi\left(\omega^{\prime} \xi-\lambda\right)+\left(\omega^{\prime}-1\right)\left(\omega^{\prime}-2\right) \lambda \xi+\left(\omega^{\prime}-1\right)\left(-\xi\left(\omega^{\prime}-1\right)\right)=0
$$

by (3.8.8). If $\xi \neq 0$, then (3.8.7) holds. Moreover, suppose that $\xi=\left(l_{1}\left(g\left(l_{2}\right)\right)\right)(\lambda)$, where l_{1} and l_{2} are linear functions, say $l_{1}(\lambda)=k \lambda+l, l_{2}(\lambda)=b \lambda+c$ and $g(\lambda)=\lambda+\frac{1}{\lambda}$. Then

$$
\begin{equation*}
\xi=\left(l_{1}\left(g\left(l_{2}(\lambda)\right)\right)\right)=(b k) \lambda+\frac{b}{k \lambda+l}+(b l+c) . \tag{3.8.9}
\end{equation*}
$$

Comparing (3.8.9) with (3.8.7),

$$
\begin{equation*}
b k=\frac{1}{\omega^{\prime}}, \frac{b}{k \lambda+l}=\frac{\left(\omega^{\prime}-1\right)^{2}}{\omega^{\prime}} \frac{1}{\lambda}, b l+c=\frac{\left(\omega^{\prime}-1\right)\left(2-\omega^{\prime}\right)}{\omega^{\prime}} \tag{3.8.10}
\end{equation*}
$$

By choosing $l=0$ in (3.8.10),

$$
k= \pm\left(\frac{1}{\omega^{\prime}-1}\right) \quad \text { and } \quad b= \pm \frac{\left(\omega^{\prime}-1\right)}{\omega^{\prime}}
$$

that implies

$$
l_{1}(\lambda)= \pm\left(\frac{1}{\omega^{\prime}-1}\right) \lambda, \quad l_{2}(\lambda)= \pm \frac{\left(\omega^{\prime}-1\right)^{2}}{\omega^{\prime}} \lambda-\frac{\left(\omega^{\prime}-1\right)\left(2-\omega^{\prime}\right)}{\omega^{\prime}}
$$

and $g(\lambda)=\lambda+\frac{1}{\lambda}$.
Theorem 3.9. Let

$$
A=\left(\begin{array}{cc}
D_{1} & M \\
N & D_{2}
\end{array}\right)
$$

where D_{1} and D_{2} are non-singular matrices. Suppose that eigenvalues of SOR lie inside the shaded area of Figure 2, where the circles C_{1} and C_{3} both have radius

$$
\frac{1+R}{2}
$$

with centers at

$$
\left(\frac{1-R}{2}, 0\right), \quad\left(\frac{-1+R}{2}, 0\right)
$$

respectively. Moreover, the circles C_{2} and C_{4} both have radius

$$
\frac{1+\frac{1}{h}}{2}
$$

with centers at

$$
\left(\frac{1-\frac{1}{R}}{2}, 0\right), \quad\left(\frac{-1+\frac{1}{R}}{2}, 0\right)
$$

respectively. Then the eigenvalues of $B_{(1,2)}$ are inside the shaded area of Figure 3.

Figure 2.
Furthermore, if $1<R<3+2 \sqrt{2}$, then $\rho\left(B_{(1,2)}\right)<1$.

Figure 3.
Proof. Since $\omega^{\prime}=2$, by (3.8.7)

$$
\begin{equation*}
\xi=\frac{1}{2}\left(\lambda+\frac{1}{\lambda}\right) \tag{3.9.11}
\end{equation*}
$$

(3.9.11) can be written in the following form [10],

$$
\frac{\xi-1}{\xi+1}=\left(\frac{\lambda-1}{\lambda+1}\right)^{2}
$$

by the following auxiliary transformations

$$
\text { (i) } Z_{1}=\frac{\lambda-1}{\lambda+1} \quad \text { (ii) } Z_{2}=Z_{1}^{2} \quad \text { (iii) } \frac{\xi-1}{\xi+1}=Z_{2}
$$

The image of circle which passes through two points $(1,0)$ and $(-R, 0)$, (i.e., circle $\left.C_{1}\right)$ under the transformation (i) is a circle say C, which goes through two points $(0,0)$ and

$$
\left(\frac{-R-1}{-R+1}, 0\right) .
$$

The image of circle C under the transformation (ii) is a cardioid with the following equation

$$
\rho=\frac{(R-1)^{2}}{(R+1)^{2}}(1+\cos \varphi) .
$$

Finally, the image of this cardioid under the transformation (iii) is a symmetric Joukowski airfoil with respect to the real axis, which passes through two points $(1,0)$ and $\left(-\frac{1}{2}\left(R+\frac{1}{R}\right), 0\right)[11]$ (Figure 4).

Figure 4.
Obviously the image of the circle C_{2} under transformation (i) is the circle C. Then the image of the circle C_{1} and C_{2} under transformation (3.9.11) coincide. Also it is clear that all the points outside the circle C_{2} and inside of the circle C_{1} (i.e., all points belong to $C_{1}-C_{2}$) map inside the Joukowski airfoil. The same argument holds for circles C_{3} and C_{4}, i.e., all points belong to $C_{3}-C_{4}$ map inside the symmetric Joukowski airfoil about the real axis which passes through the points $(-1,0)$ and $\left(-\frac{1}{2}\left(R+\frac{1}{R}\right), 0\right)$.

References

1. R. Plemmons and A. Berman, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
2. S. P. Frankel, "Convergence Rate of Iterative Treatments of Partial Differential Equations," Math. Tables Aids Compute., 4 (1950).
3. D. Young, "Iterative Methods for Solving Partial Differential Equations of Elliptic Type," Doctoral Thesis, Harvard University, (1950), Cambridge, Massachusetts.
4. D. Young, "Iterative Methods for Solving Partial Differential Equations of Elliptic Type," Trans. Amer. Math. Soc., 76 (1954).
5. R. Devogelaere, "Over-Relaxation, Abstract," Amer. Math. Soc. Notices, 5 (1950), 147-273.
6. D. Young, Iterative Solution of Large Linear System of Equations, Academic Press, New York, 1971.
7. L. K. Mcdowell, Variable Successive Overrelaxation, Report No. 244, Dept. of Computer Science, University of Illinois, Urbana, IL, 1967.
8. P. J. Taylor, "A Generalization of Systematic Relaxation Method for Consistently Ordered Matrices," Numer. Math., 13 (1969).
9. R. Varga, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, 1962.
10. R. Churchill and J. Brown, Complex Variables and Applications, McGraw Hill Book Co., 1948.
11. A. Markushevich, Complex Numbers and Conformal Mappings, Hindustan Publishing Corp., Delhi, 1961.
12. J. de Pillis and M. Neumann, "Iterative Methods with k-part Splittings," IMA J. of Numerical Analysis, 1 (1981), 65-79.
13. M. Sisler, "Uberein Iterationsverfahren fur Zyklische Matrizen," Apl. Mat., 17 (1972), 225-233.
14. M. Sisler, "Uber die Knvergenenz eines Gewissen Iterationsverfahren fur Zyklische Matrizen," Apl. Mat., 18 (1973), 89-98.
15. M. Sisler, "Uber die Optimierung eines Zweiparametrigen Iterationsverfahren," Apl. Mat., 20 (1975), 126-142.
16. W. Niethammer and J. Schade, "On a Relaxed SOR Method Applied to Non-Symmetric Linear Systems," J. Comput. Appl. Math., 1 (1975), 133-136.
17. S. Moussavi, "A Generalization of Young's Theorem," Missouri Journal of Mathematical Sciences, 4 (1991), 76-87.
