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Abstract. This article focuses on the concept of primality, a topic which extends

from the dawn of history to the present. It likewise foreshadows some of the challenges

confronting the mathematical world of the twenty-first century. Various tests of primality

are often cumbersome or difficult to apply – including the Sieve of Eratosthenes andWilson’s

Theorem. Other tests are typified by Fermat’s Little Theorem. The notion of repunit

numbers extends this pursuit and leads to the intriguing area of fraudulent primes. It

likewise provides an interesting classroom activity in which converses and the expressing of

necessary and sufficient conditions are analyzed.

1. Introduction. The challenge of the converse has played a critical role in the history

of mathematics and has repeatedly given rise to the most appealing of questions. Such

challenges span an impressive number of centuries and prove quite abundant in the more

recent history. Included are the celebrated Euclid-Euler characterization of even perfect

numbers, the Gaussian regular polygon constructibility standard, and the Steiner-Lehmus-

Terquem Problem of angle bisectors. Prime numbers, a substantial part of Books VII, VIII,

and IX of Euclid’s Elements, have likewise provided extremely difficult questions as varying

converses are analyzed. Among these extended modern day pursuits is the problem of false

primes.

2. False Primes and Fermat’s Little Theorem. Fermat’s Little Theorem was

formally conjectured in western culture by Fermat in 1640. Proved by Leonhard Euler in

1736, it reveals that if a is not divisible by a prime p, then

ap−1 ≡ 1 (mod p).

That is, ap−1−1 is divisible by the prime number p provided a is not divisible by p [1]. The

question of the validity of the converse, dating from perhaps as early as 500 B.C. in Oriental

mathematics, naturally arose. Such a converse would provide a method of establishing the
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primality of a select positive integer. Not until the year 1819 was the matter finally resolved

by the congruence discovery that

2340 ≡ 1 (mod 341).

Note that 341 is not prime, its factorization being (11)(31). Composite numbers x, satisfying

2x−1 ≡ 1 (mod x), are given the name “pseudoprimes to the base 2.” Today, it is known

that these numbers form an infinite set. Interestingly, if n is a pseudoprime to the base

2, so is 2n − 1. Such a construction guarantees the infinitude of the set [2]. It is also

known that the arithmetic progression generated by an + b where a and b are relatively

prime produces an unending number of pseudoprimes. This powerful theorem is highly

reminiscent of Dirichlet’s Theorem concerning the generating of prime numbers. Several

small pseudoprimes beyond 341 are the numbers 561, 645, 1105, and 1729.

Significantly, the encounter with pseudoprimes is relatively rare as the integers unfold.

So seemingly infrequently does the converse to Fermat’s Little Theorem fail that some

regard it as an acceptable primality test for a number. It has recently been established that

there are 882, 206, 716 primes less than 20 billion, but merely 19, 865 pseudoprimes to the

base 2. Such a mind-boggling count was obtained by the mathematicians John L. Selfridge,

Jan Bohman, and Samuel S. Wagstaff [3]. A strong feeling exists that the Little Theorem

of Fermat thus has a converse which rarely produces composites [4]. The word “rarely” has

a connotation in this context somewhat at odds with that of conventional usage, especially

as one notes that the set of pseudoprimes is an infinite set.

Though the set of pseudoprimes and the allied topics of Carmichael numbers have been

the object of considerable study throughout the twentieth century [1], other areas of false

prime encounters have not. As suggested, a false prime is one of relatively infrequent coun-

terexamples to the converse of a theorem which requires primality in its hypothesis. Here

a great departure from Wilson’s Theorem is noted. Such a theorem provides a necessary

and sufficient condition of primality [5], a feature lacking in some degree in Fermat’s Little

Theorem.

3. False Primes and Repunit Numbers. A repunit number, a term coined by

Albert H. Beiler, is simply a positive integer consisting of all “ones” in its decimal repre-

sentation. The symbol Rn will be used to denote the number which thus consists of n ones

in its digital format. For any prime p greater than 5, it follows by Fermat’s Little Theorem

that p is a divisor of 10p−1 − 1. More specifically, p is a divisor of 99999999 . . .999 where
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p−1 “nines” appear in the dividend, and consequently, p is a divisor of 11111111111 . . .111.

That is, for all primes p greater than 5, p is a divisor of Rp−1. For example, 7|R6, 43|R42,

and 65537|R65536.

The question implicit in this theorem’s development is again that of the converse. If

p|Rp−1, does it follow that p is prime? Should the answer be “yes,” then a simply described

test for primality would follow. Should the answer be “no,” then the matter of frequency

of failure must be addressed (and thus, the probabilistic nature of this test for primality).

Composite numbers p which satisfy the condition p|Rp−1 are called “deceptive primes”

[3]. However, do deceptive primes exist? Is it conceivable that the set of deceptive primes is

empty in which case the above “test” for primality is fully valid? Consider the exploratory

table below which tests all odd integers greater than 5 but less than 91. Note as well that

the test does not fail even once in the listing.

A PROBABILISTIC TEST FOR PRIMALITY

x Does x divide Rx−1? Is x prime or composite?

7 yes prime

9 no composite

11 yes prime

13 yes prime

15 no composite

17 yes prime

19 yes prime

21 no composite

23 yes prime

25 no composite

27 no composite

29 yes prime

31 yes prime

33 no composite

35 no composite

37 yes prime

39 no composite

41 yes prime
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43 yes prime

45 no composite

47 yes prime

49 no composite

51 no composite

53 yes prime

55 no composite

57 no composite

59 yes prime

61 yes prime

63 no composite

65 no composite

67 yes prime

69 no composite

71 yes prime

73 yes prime

75 no composite

77 no composite

79 yes prime

81 no composite

83 yes prime

85 no composite

87 no composite

89 yes prime

... ... ...

Significantly, the next odd integer, namely the composite number 91 or (7)(13), proves

to be a counterexample. To show that 91|R90, note first that 7 is a divisor of R6 in which

case 7|R6(15). By use of the fact that 13|R6 (easily shown), it follows that 13|R6(15). Ac-

cordingly, 91|R90. As 91 is a deceptive prime, major questions of cardinality and frequency

of encounter arise.

To establish that the set of deceptive primes is infinite, the concept of primitive divisors

is needed. It can be shown that each repunit number Rx has a prime divisor which will

not divide any smaller repunit. These prime divisors are called primitive and are nicely
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illustrated by such examples as “11 is a primitive divisor of R2 and 37 is a primitive divisor of

R3.” In particular, it can be shown for odd integers x greater than 3 that any two primitive

divisors of Rx when multiplied yield a deceptive prime [3]. For example, 41 and 271, with

a product of 11111, are primitive divisors of R5 and thus, imply that (41)(271)|R11110.

Moreover, if a is a primitive divisor of Rx and b is a primitive divisor of R2x, then ab is a

deceptive prime. Since new deceptive primes can be found for each choice of Rx, it follows

that the set of deceptive primes is infinite.

4. Explorations. The infinitude of the set of deceptive primes tells us little about

their distribution. Nor does it reveal the probability of the primality of p on the basis of its

being a divisor of Rp−1. Such a probability question is unanswered though it is much akin

to the converse of Fermat’s Little Theorem and its probable prime predicaments.

Interestingly, the cardinality of the set of repunit primes is today unknown. Obviously,

if Rx is prime, then x itself must be prime. However, the converse fails [6]. For example,

R3 = (3)(37)

R5 = (41)(271)

R7 = (239)(4649)

R11 = (21649)(513239)

R13 = (53)(79)(265371653)

R17 = (2071723)(5363222357)

R29 = (3191)(16763)(43037)(62003)(77843839397).

This is somewhat of a variation on the converse situation above, yet it pinpoints a very

challenging area of endeavor. In particular, for which values of prime x is Rx a prime

number? Only five repunit primes are known today, these being R2, R19, R23, R317, and

R1031. Such a list is known to be complete for all subscripts x less than 10, 000. However,

the more difficult question of whether or not there is a largest repunit prime is presently

unanswered.

A subtle converse situation likewise arises here. Note again that if x is composite,

then Rx is composite. However, if Rx is composite, does it follow that x is composite too?

Actually, x may well be prime as illustrated in the table above. That is, R5, R7, R11, R13,
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and R17 are each composite, yet all subscripts are prime. Such prime subscripts illustrate

what may be labeled as pseudo-composites. They suggest an interesting counterpart to

false primes.

It can be shown that if x is a prime greater than 3, then any composite number Rx

is a deceptive prime. As x|Rx−1, then x|10Rx−1. In other words, x|Rx − 1. Building on

the theorem “a|b implies Ra|Rb,” it follows that Rx|R(Rx−1). For example, R11|R(R11−1)

in which case R11 or (21649)(513239) is a deceptive prime. The cardinality of the set of

composites Rx for which x is prime is here unresolved.

5. Conclusion. Again, consider the theorem “Hp implies C” where the hypothesis

Hp contains the restriction that p is prime. Should the converse statement “C implies Hp”

be false yet distinguished by hard-to-find counterexamples, the situation becomes right for

fraudulent primes to appear. For example, if 2n − 1 is prime, then n is prime. Yet the

primality of n may produce composites of the form 2n − 1 (e.g., n = 11). Such composite

numbers 2n − 1 for which n is prime again provide a class of false primes. Admittedly, the

subjective reference “hard-to-find counterexamples” is open to some debate. However, the

reader is invited to find other instances of false primes by taking into account a seemingly

scarce occurrence of composites as counterexamples in an appropriate converse setting.

Whereas the scarcity of pseudoprimes to the base 2 within the interval of the first 20

billion positive integers is now known, the counterpart for deceptive primes (those com-

posites x which divide Rx−1) remains a challenge. Whether or not such a test provides a

good probabilistic technique or Monte Carlo method for establishing primality is today a

conjecture. Yet it identifies an intriguing search (one which is barely begun here) in the

broad area of converses. It likewise provides in the process still another look at the concept

of fraudulent number types, be they pseudoprimes, deceptive primes, or the false primes of

some other fundamental relationship.

Note. A more extensive search for deceptive primes (those less than 20, 000, 000) is

now being completed (in cooperation with Timothy R. Ray). Such a determination of the

relative scarcity of deceptive primes, the pseudoprime (base ten) connection, and a listing

of key deceptive prime properties provide the focus of the search.
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