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Although no isosceles right triangle can be a Pythagorean triangle, if

a = 21669693148613788330547979729286307164015202768699465346081691992338845992696,

b = a+1, and c =
√
a2 + b2, then the triple (a, b, c) gives the sides of a Pythagorean triangle

which is nearly isosceles [1]. This example prompts the question of whether Pythagorean

triangles can always be found that are nearly similar to right triangles given by the triple

(a, b,
√
a2 + b2) where a and b are positive integers.

A question that needs to be asked here is what does “nearly similar to” mean? One

possibility would be to find a right triangle given by the triple (d, e, f) such that the ratio

d/e is approximately equal to a/b. Better still, can we find a sequence of Pythagorean

triangles given by {(an, bn, cn)} such that

lim
n→∞

an
bn

=
a

b
?

If so, we would say that each of the triangles in this sequence are approximately similar to

the triangle (a, b, c).

To develop a general method for generating Pythagorean triangles which are nearly

similar to a given right triangle with integral sides a and b, consider the quadratic equation

x2 − 2a

b
x− 1 = 0.

This equation has roots

α =
a+

√
a2 + b2

b
and β =

a−
√
a2 + b2

b
,
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where 0 < |β| < |α|. It follows that

lim
n→∞

(

β

α

)n

= 0.

Define the sequence {xn} by xn = αn + βn. Since

αn−1

(

α2 − 2a

b
α− 1

)

+ βn−1

(

β2 − 2a

b
β − 1

)

= 0,

then

αn+1 + βn+1 =
2a

b
(αn + βn) + (αn−1 + βn−1).

This shows for n ≥ 1,

xn+1 =
2a

b
xn + xn−1.

Because the sequence begins with x0 = 2 and x1 = 2a/b, each term will be a rational

number with bn in the denominator of xn. Further,

lim
n→∞

xn+1

xn

= lim
n→∞

αn+1 + βn+1

αn + βn

= lim
n→∞

α+
(

β

α

)n

β

1 +
(

β
α

)n

= α.

Define a sequence {(an, bn, cn)} of triples by an = (x2
n+1−x2

n) · b2(n+1), bn = 2xn+1xn ·
b2(n+1) and cn = (x2

n+1 + x2
n) · b2(n+1). Then an, bn, and cn are positive integers satisfying

a2n + b2n = c2n. Hence, the triple (an, bn, cn) is a Pythagorean triple for each integer n. The
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right triangles given by this sequence of triples become nearer to being similar to the right

triangle given by the triple (a, b,
√
a2 + b2) as n gets larger. To verify this note that

lim
n→∞

an
bn

= lim
n→∞

x2
n+1 − x2

n

2xn+1xn

=
1

2
lim
n→∞

(

xn+1 − xn

xn

)(

xn+1 + xn

xn+1

)

=
1

2
lim
n→∞

(

xn+1

xn

− 1

)(

xn

xn+1
+ 1

)

=
1

2
(α− 1)

(

1

α
+ 1

)

=
1

2

α2 − 1

α

=
1

2

(

2a

b
· α
α

)

=
a

b
.

The preceding procedure gives a method for generating infinitely many integral right

triangles such that the ratio of the two legs converge to a/b, where a and b are integral legs

of a right triangle, even though the hypotenuse may be irrational.

It is worth noting that the sequence {xn} defined by xn = αn+βn could also be defined

by xn = αn − βn or

xn =
αn − βn

α− β
.

If

xn =
αn − βn

α− β
,
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a = 1 and b = 2 then the sequence is the Fibonacci sequence and α is the golden ratio. In

this case the sequence of triangles converge to the right triangle given by (1, 2,
√
5).
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