VOLUME 7, NUMBER 3, FALL 1995

A RELATIONSHIP BETWEEN QUADRATIC EQUATIONS, RIGHT TRIANGLES AND FIBONACCI TYPE SEQUENCES

Leonard L. Palmer
Southeast Missouri State University

Although no isosceles right triangle can be a Pythagorean triangle, if $a=21669693148613788330547979729286307164015202768699465346081691992338845992696$,
$b=a+1$, and $c=\sqrt{a^{2}+b^{2}}$, then the triple (a, b, c) gives the sides of a Pythagorean triangle which is nearly isosceles [1]. This example prompts the question of whether Pythagorean triangles can always be found that are nearly similar to right triangles given by the triple $\left(a, b, \sqrt{a^{2}+b^{2}}\right)$ where a and b are positive integers.

A question that needs to be asked here is what does "nearly similar to" mean? One possibility would be to find a right triangle given by the triple (d, e, f) such that the ratio d / e is approximately equal to a / b. Better still, can we find a sequence of Pythagorean triangles given by $\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b} ?
$$

If so, we would say that each of the triangles in this sequence are approximately similar to the triangle (a, b, c).

To develop a general method for generating Pythagorean triangles which are nearly similar to a given right triangle with integral sides a and b, consider the quadratic equation

$$
x^{2}-\frac{2 a}{b} x-1=0
$$

This equation has roots

$$
\alpha=\frac{a+\sqrt{a^{2}+b^{2}}}{b} \text { and } \beta=\frac{a-\sqrt{a^{2}+b^{2}}}{b}
$$

where $0<|\beta|<|\alpha|$. It follows that

$$
\lim _{n \rightarrow \infty}\left(\frac{\beta}{\alpha}\right)^{n}=0
$$

Define the sequence $\left\{x_{n}\right\}$ by $x_{n}=\alpha^{n}+\beta^{n}$. Since

$$
\alpha^{n-1}\left(\alpha^{2}-\frac{2 a}{b} \alpha-1\right)+\beta^{n-1}\left(\beta^{2}-\frac{2 a}{b} \beta-1\right)=0
$$

then

$$
\alpha^{n+1}+\beta^{n+1}=\frac{2 a}{b}\left(\alpha^{n}+\beta^{n}\right)+\left(\alpha^{n-1}+\beta^{n-1}\right)
$$

This shows for $n \geq 1$,

$$
x_{n+1}=\frac{2 a}{b} x_{n}+x_{n-1} .
$$

Because the sequence begins with $x_{0}=2$ and $x_{1}=2 a / b$, each term will be a rational number with b^{n} in the denominator of x_{n}. Further,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} & =\lim _{n \rightarrow \infty} \frac{\alpha^{n+1}+\beta^{n+1}}{\alpha^{n}+\beta^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\alpha+\left(\frac{\beta}{\alpha}\right)^{n} \beta}{1+\left(\frac{\beta}{\alpha}\right)^{n}} \\
& =\alpha
\end{aligned}
$$

Define a sequence $\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}$ of triples by $a_{n}=\left(x_{n+1}^{2}-x_{n}^{2}\right) \cdot b^{2(n+1)}, b_{n}=2 x_{n+1} x_{n}$. $b^{2(n+1)}$ and $c_{n}=\left(x_{n+1}^{2}+x_{n}^{2}\right) \cdot b^{2(n+1)}$. Then a_{n}, b_{n}, and c_{n} are positive integers satisfying $a_{n}^{2}+b_{n}^{2}=c_{n}^{2}$. Hence, the triple $\left(a_{n}, b_{n}, c_{n}\right)$ is a Pythagorean triple for each integer n. The
right triangles given by this sequence of triples become nearer to being similar to the right triangle given by the triple $\left(a, b, \sqrt{a^{2}+b^{2}}\right)$ as n gets larger. To verify this note that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{x_{n+1}^{2}-x_{n}^{2}}{2 x_{n+1} x_{n}} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty}\left(\frac{x_{n+1}-x_{n}}{x_{n}}\right)\left(\frac{x_{n+1}+x_{n}}{x_{n+1}}\right) \\
& =\frac{1}{2} \lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}}-1\right)\left(\frac{x_{n}}{x_{n+1}}+1\right) \\
& =\frac{1}{2}(\alpha-1)\left(\frac{1}{\alpha}+1\right) \\
& =\frac{1}{2} \frac{\alpha^{2}-1}{\alpha} \\
& =\frac{1}{2}\left(\frac{2 a}{b} \cdot \frac{\alpha}{\alpha}\right) \\
& =\frac{a}{b}
\end{aligned}
$$

The preceding procedure gives a method for generating infinitely many integral right triangles such that the ratio of the two legs converge to a / b, where a and b are integral legs of a right triangle, even though the hypotenuse may be irrational.

It is worth noting that the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=\alpha^{n}+\beta^{n}$ could also be defined by $x_{n}=\alpha^{n}-\beta^{n}$ or

$$
x_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} .
$$

If

$$
x_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

$a=1$ and $b=2$ then the sequence is the Fibonacci sequence and α is the golden ratio. In this case the sequence of triangles converge to the right triangle given by $(1,2, \sqrt{5})$.

References

1. A. H. Beiler, Recreations in the Theory of Numbers, Dover, 1964.
2. E. C. Kennedy, "Concerning Sequences of Integral Right Triangles," American Mathematical Monthly, 45 (1935), 557-558.
