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Abstract. In this paper, mod n colorability is discussed and applied to tame links,
tangles, wild knots and non-compact knots. In particular, colorability is used to obtain
elementary non-unknotting criteria for wild knots and non-untangling criteria for tangles.

1. Introduction. Colorability has long been an elementary tool for determining
whether a knot diagram represents a non-trivial knot. If a knot has a diagram which can be
colored mod n, then the knot cannot be ambiently deformed into the standard “unknotted”
circle. This is a result that is often presented to “honors” level undergraduate students.
Colorability mod n has been discussed in a paper by the author [1], Kauffman [2] and Fox
[3]. In order to keep this paper self-contained we will discuss coloring and give applications
to links (a disjoint collection of knots), non-compact knots (embeddings of the real line in
3-space) and wild knots.

2. Definitions. A knot is a simple closed curve K in R3. A tame knot will be a
polyhedral simple closed curve in R3. A link will be a finite disjoint union of tame knots.
A map f :X → Y is proper if for every compact C ⊆ Y , f−1(C) is compact in X. A
non-compact knot is the image of a proper polyhedral embedding of R1 in R3. The intuition
is that ±∞ “goes to” ∞ in R3. Two knots (possibly wild or non-compact) K and K ′

are equivalent if there is an orientation-preserving homeomorphism h:R3 → R3 such that
h(K) = K ′. A (non-compact) knot K is unknotted if K is equivalent to the simple closed
curve in R3 described by: {(x, y, 0) | x2 + y2 = 1} ({(x, 0, 0) | x ∈ R} if K is non-compact).
Otherwise, K is said to be knotted.

Let K be a simple closed curve in R3. If K is not equivalent to a p. l. knot, we say
that K is wild. Let p ∈ K. p is a wild point of K for every polyhedral ball B containing p,
(B,B∩K) is not a standard ball pair; that is, B∩K is not a properly embedded unknotted
arc in B. Convention: when we say “knot”, we will mean “tame knot” unless otherwise
specified. Figures 1, 2, and 3 show examples of a knot, non-compact knot and a wild knot,
respectively.

A diagram of a knot or a link (tame, non-compact, or wild with at most a finite number
of wild points) will be the image of a projection of the knot or link onto a plane in R3

together with crossing information at the singular points (points with multiple preimages);
the crossing information tells us which strand “goes over” which. A regular projection is a
projection in which there are only a finite number (in the case where K is non-compact,
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the singular set is, at most, a countable discrete set) of singular points, every singular point
is the result of a non-tangential intersection and every singular point is a double point.
Figures 1, 2, and 3 are examples of regular projections. Figure 4 shows examples of what
is not allowed in a regular projection.

Two diagrams D1 and D2 of a knot or link K (K can be non-compact or have a
finite number of wild points) are said to be equivalent if D1 can be deformed into D2

by deformations of the plane (which respects crossing information of D1) and by a finite
number of moves (and their inverses), which are illustrated in Figure 5. These moves are
called the Reidemeister moves. Note that in each move, the diagram remains fixed outside
of the given circle. The following is well known:

Theorem 2.1. Two knots or links are equivalent if and only if all of their diagrams are
equivalent.

Proof. See reference [4]. These ideas were introduced in 1932 by Reidemeister; see
reference [5].

Research Problem. Find some sort of a Reidemeister theorem for non-compact knots
or for knots with one wild point. One difficulty of this problem is illustrated by Figures 6
and 7; the non-compact knot in Figure 6 is known to be knotted (proved in reference [6]; we
will give another proof) and the non-compact knot in Figure 7 is unknotted. Both of these
non-compact knots have diagrams which can be deformed into the “trivial” non-compact
knot by a countable number of Reidemeister moves.

3. Colorability mod n of Knot or Link Diagrams. A knot (possibly non-compact)
diagram is said to be colorable mod n if

1) at each overcrossing we can assign integers (known as colors) a, b, c where b is assigned
to the overcrossing, a is assigned to one of the other strands and c = 2b − a (mod n) is
assigned to the remaining strand, (see Figure 8) and

2) at least two distinct integers (mod n) are used.
A knot K is said to be colorable mod n if K has a diagram which is colorable mod n.
Figure 9 shows that the trefoil knot is colorable mod 3.
Theorem 3.1. Colorability mod n is a knot and link diagram invariant.
Sketch of Proof. One just checks that colorability mod n is preserved by the Reide-

meister moves and their inverses.
It follows from Theorem 2.1 and Theorem 3.1 that if K is a knot or link which has a

diagram that is colorable mod n and K ′ is equivalent to K then every diagram of K ′ is
colorable mod n. Note that the standard diagram of the unknot is not colorable mod n for
n > 1. Hence, any knot that is colorable mod n for n > 1 is knotted.

Corollary 3.2. The trefoil knot is knotted.
Proof. Figure 9 shows that the trefoil knot has a diagram which is colorable mod 3.

Thus, it is known that non-trivial knots exist.
A link L is splittable if there exists a polyhedral 3-ball B such that some of the com-

ponents of L lie in the interior of B and the rest of the components lie in the complement
of B. Thus, if L is splittable one can find a diagram D of L such that the images of the
components that lie in the splitting ball B are disjoint from the images of the components
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that lie outside of B. By giving these disjoint images a monochrome (single integer) coloring
(see Figure 10) we get the following:

Corollary 3.3. A split link is colorable mod 3.
This leads to the following amusing corollary.
Corollary 3.4. The Hopf link is not splittable.
Proof. The standard diagram of the Hopf link is not colorable mod 3. See Figure 11.
Note that a “generalized Hopf link” (see Figure 12) is not colorable mod n for any

n > 1. Therefore we get the following corollary.
Corollary 3.5. If a link L is colorable mod n for n ≥ 2, then L is not equivalent to a

generalized Hopf link.
4. The Group of a Knot and Its Relationship to Colorability mod n. Let K

be a knot (possibly wild or non-compact). The group of K is defined to be π1(R3−K) (the
group of homotopy classes of closed curves based at some point of R3 − K). A standard
fact of knot theory is:

Theorem 4.1. Let K be a knot (possibly wild or non-compact). If K is unknotted,
then the group of K is isomorphic to the infinite cyclic group Z.

Proof. See any standard reference on knot theory, e.g., Chapter 3 of reference [4].
Thus, a standard way to prove that a knot is knotted is to compute its group and show

that its group is not isomorphic to Z. The following theorem is known for tame knots but
also applies to non-compact and to certain wild knots (Fox [3]).

Theorem 4.2. Let K be a tame knot (possibly non-compact) or link. If K is colorable
mod n, then there is a homomorphism of the group of K onto the dihedral group Dn.

It follows from Theorem 4.2 that if a non-compact knot K is colorable mod n then K is
knotted. We needed a theorem of this sort since there is no established set of Reidemeister
moves for non-compact knots.

Proof. Recall that the Dihedral group Dn (which is often viewed as the group of
reflections and rigid rotations of a regular polygon) has the following presentation:

< x, y | x2 = 1 = yn, xyx = yn−1 > .

Suppose K has a diagram D which has a crossing at which two distinct integers appear.
Use the Wirtinger method (Chapter 3, section D of reference [4] or Chapter 10 of reference
[7]) to obtain a presentation of the group of K. Let {c1, c2, . . . , cp} be the Wirtinger
generators of the group of K. Notice that, as one moves along D, a generator of the group
K changes precisely when the integer assignment of a strand of D changes. Hence, we can
assume that the strand associated with a generator ci has “color” i (mod n). We can now
obtain a function from the group of K to Dn in the following manner:

f(c±1i ) = xyi (mod n).

f is onto because {x, xy} generate Dn and are in the range of f .
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Note that each crossing induces the following relation in the group of K (Figure 13):

cjcic
−1
j = ck.

It turns out that there are all of the relations in the group of K. But, because K is colorable
mod n, we have that k = 2j − 1 mod n.

To see that f is a group homomorphism:

f(cj)f(ci)f(c−1j ) = xyj (mod n)xyi (mod n)xyj (mod n)

= yn−jyixyj = xn+i−jxyj = yi−jxyj = xyn−(i−j)yj

= xy2j−i = xyk = f(ck) = f(cjcic
−1
j ),

where mod n has been suppressed on the second and third lines.
Suppose now that each diagramD ofK has no crossing where 2 distinct integers appear.

It follows that D has at least two components D1 and D2 which come from components
K1 and K2 of K. K1 and K2 can be split by either a polyhedral ball (if K is compact)
or a polyhedral plane. The split “components” of the diagram can be colored by distinct
integers, say 0 and 1.

Then one can obtain a map from the group of K to D3 by mapping every generator of
the group of K1 to x and every generator of the group of K2 to xy. This map is an onto
group homomorphism. Note that it follows from the Seifert-Van Kampen Theorem that

π1(R3 −K) ' π1(R3 −K1) ∗ π1(R3 −K2).

(Here “∗” denotes “free product”.)
5. Applications. We now give a sample of applications of Theorem 4.2.
Example 5.1. Define a k-tangle T to be a polyhedral 3-ball B together with n disjoint

properly embedded polyhedral arcs. Suppose T has a diagram that can be colored mod
n for n ≥ 2 such that the endpoints of the arcs of T have the same integer color. There
is no way to connect the endpoints of T by polyhedral arcs outside of B so as to obtain
either the unknot or a generalized Hopf link. To see this, just give the arcs outside of B
the appropriate monochrome coloring. Thus, the knot or link so obtained is colorable mod
n. If k is odd, then any noncompact knot containing T as a “sub-tangle” must be knotted
for similar reasons. See Figure 14.

Example 5.2. Consider the non-compact knot in Figure 6. This is a non-compact knot
version of the well known “Remarkable Simple Closed Curve”. It is easy to see that this
non-compact knot is colorable mod 3. Hence, this non-compact knot is knotted (though
its diagram can be deformed into the diagram of an unknotted non-compact knot via a
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countable number of Reidemeister moves). The “knottedness” of the remarkable simple
closed curve was first proved by Fox [6].

Example 5.3. Consider the non-compact knot K shown in Figure 15a. We can think
of K as being formed by a countable union of 3-tangles glued together in a standard way.
(See Figure 15b.) Each tangle can be thought of as an element of a defining sequence for K.
Note that if we order the intersections of the arcs of the tangle with the end disks, which
will be referred to as D+ and D−, the color assignment of the endpoints of the arcs which
hit the end disk D+ is a permutation of the color assignment of the endpoints of the arcs
hitting D−, namely (01). Therefore, it is clear that K is colorable mod n and therefore
knotted.

Example 5.4. Figure 16a depicts a Fox-Artin [8] non-compact knot Ka and Figure 16b
shows 3 consecutive elements in a defining sequence; we’ll denote the “chunks” associated
with the elements by N1, N2 and N3 and index their end disks respectively. Note that the
color assignment of the strands which hit D+

3 is a permutation of the color assignment of
the strands which hit D−1 , namely (12). Thus, Ka is colorable mod 3 and therefore knotted.
Note that we can replace the upper two strands which hit D+

3 by any 2-tangle whatsoever
(so long as the arcs of the tangle remain in the ball depicted in Figure 17) to obtain K ′a. It
is easy to see that K ′a is colorable mod 3. In fact, the replacement tangle can be different
for every Nj where j = 0 mod 3. Similarly, we can replace any single colored strand by
an appropriately knotted strand without affecting the colorability mod 3 property of K ′a.
Hence, in such cases, it is easier to determine that K ′a is knotted by using coloring than it
is to compute the group of K ′a.

Example 5.5. Figures 3 and 18 show wild knot analogs of the non-compact knots
discussed in Examples 5.2 and 5.3. These wild knots have diagrams which can be colored
mod 3; except, of course, for the images of the wild point. We assign no color to the image
of the wild point. The following corollary follows from the limit group techniques discussed
in reference [8] and Theorem 4.2.

Corollary 5.6. If K is a wild knot (possibly non-compact) with the following properties:
1) The set of wild points p1, p2, . . . , pk, . . . of K is a discrete set,
2) K has a diagram D such that one of the subarcs pipi+1 is colorable mod n(n ≥ 2)

and
3) the subarcs of K between the wild points lie in 3-balls whose interiors are mutually

disjoint and whose boundaries intersect only at the pi.
Then K is knotted.

Figures 3 and 18 show situations in which Corollary 5.6 can be used. The reader is
invited to find a way to either relax or remove condition 3.
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Figure 2.

Figure 3.
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Figure 4.

Figure 5.
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Figure 6.

Figure 7.

Figure 8.
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Figure 9.

Figure 10.
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Figure 11.

Figure 12.
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Figure 13.

Figure 14.
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Figure 15a.

Figure 15b.
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Figure 16a.

Figure 16b.
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Figure 17.

Figure 18.
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