EVALUATING A FAMILY OF INTEGRALS

Russell Euler

In the study of blackbody radiation, a relationship between the Stefan-Boltzmann constant and Planck's constant can be derived using the fact that

(1)
$$\int_0^\infty \frac{x^3 dx}{e^x - 1} = \frac{\pi^4}{15}.$$

The purpose of this paper is to obtain a generalization of identity (1).

Consider the family of improper integrals defined by

$$I(p) = \int_0^\infty \frac{x^p dx}{e^x - 1}.$$

Conditions will be imposed on p to ensure the convergence of the integral. If $p \ge 1$, then $f(x) = x^p/(e^x - 1)$ has a removable singularity at x = 0. Now,

$$\frac{1}{e^x - 1} = \frac{1}{e^x (1 - e^{-x})} = e^{-x} \sum_{n=0}^{\infty} (e^{-x})^n$$

for $e^{-x} < 1$. So, for x > 0,

$$\frac{1}{e^x - 1} = \sum_{n=0}^{\infty} e^{-(n+1)x}$$

with the convergence being uniform on compact subsets of the interval of convergence. Hence, if p>0, then

$$\frac{x^p}{e^x - 1} = \sum_{n=0}^{\infty} x^p e^{-(n+1)x}$$

for $x \ge 0$. From the definition of the Gamma function [4], it is known that

$$\int_0^\infty x^p e^{-(n+1)x} dx = \frac{\Gamma(p+1)}{(n+1)^{p+1}}$$

Therefore, for p > 0,

(2)
$$I(p) = \Gamma(p+1) \sum_{n=0}^{\infty} \frac{1}{(n+1)^{p+1}}$$
$$= \Gamma(p+1) \sum_{n=1}^{\infty} \frac{1}{n^{p+1}}.$$

If p is an odd positive integer, then the series in (2) converges and has been evaluated in [1] using various expansion techniques beginning with the logarithmic derivative of the infinite product expansion of sin x. In this paper, the series in (2), with p an odd positive integer, will be evaluated in closed form using residue theory. To this end, consider

$$\sum_{n=1}^{\infty} \frac{1}{n^{p+1}} = \frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{1}{n^{p+1}}$$

where the prime attached to the summation indicates that the term corresponding to n = 0 is to be omitted. It has been shown in [3] that if f(z) satisfies

$$|f(z)| \le \frac{M}{|z|^k}$$

on C_N for all nonnegative integers N where k > 1 and M are constants independent of N, and C_N is the square with vertices at $(N + 1/2)(\pm 1 \pm i)$, then

$$\sum_{n=-\infty}^{\infty} f(n)$$

is the negative of the sum of the residues of $\pi f(z) \cot \pi z$ at the poles of f(z). So, to evaluate the summation in (2), take

$$f(z) = \frac{1}{z^{p+1}}$$

and use \sum' . It is known from [2] that

$$z \cot z = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} B_{2n} z^{2n}}{(2n)!}$$

for $|z| < \pi$, where the B_{2n} 's are the Bernoulli numbers of even index. Hence,

$$\frac{\pi \cot \pi z}{z^{p+1}} = \sum_{n=0}^{\infty} \frac{(-1)^n (2\pi)^{2n} B_{2n} z^{2n-p-2}}{(2n)!}$$

for 0 < |z| < 1. So,

$$\operatorname{Res}_{z=0} \frac{\pi \cot \pi z}{z^{p+1}} = \frac{(-1)^{(p+1)/2} (2\pi)^{p+1} B_{p+1}}{(p+1)!}.$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n^{p+1}} = -\frac{(-1)^{(p+1)/2} (2\pi)^{p+1} B_{p+1}}{2(p+1)!}.$$

Substituting the latter identity into (2) and simplifying yields

(3)
$$I(p) = \frac{(-1)^{(p+3)/2} (2\pi)^{p+1} B_{p+1}}{2(p+1)}$$
$$= \frac{(-1)^{(p+3)/2} 2^p \pi^{p+1} B_{p+1}}{p+1}.$$

In conclusion, identity (3) is valid for all odd positive integers p and provides a generalization of (1). In particular, for p = 3, equation (3) becomes

$$I(3) = -2\pi^4 B_4 = -2\pi^4 (-1/30) = \pi^4/15,$$

which agrees with (1).

References

- 1. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.
- Y. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, 1969.
- 3. M. Spiegel, Complex Variables with an Introduction to Conformal Mapping and Its Applications, Schaum's Outline Series, McGraw-Hill, 1964.
- 4. M. Spiegel, *Theory and Problems of Laplace Transforms*, Schaum's Outline Series, McGraw-Hill, 1965.

Russell Euler Department of Mathematics and Statistics Northwest Missouri State University Maryville, MO 64468-6001

email: 0100120@acad.nwmissouri.edu