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EVALUATING A FAMILY OF INTEGRALS

Russell Euler

In the study of blackbody radiation, a relationship between the Stefan-
Boltzmann constant and Planck’s constant can be derived using the fact that

(1)

∫
∞

0

x3dx

ex − 1
=

π4

15
.

The purpose of this paper is to obtain a generalization of identity (1).
Consider the family of improper integrals defined by

I(p) =

∫
∞

0

xpdx

ex − 1
.

Conditions will be imposed on p to ensure the convergence of the integral. If p ≥ 1,
then f(x) = xp/(ex − 1) has a removable singularity at x = 0. Now,

1

ex − 1
=

1

ex(1− e−x)
= e−x

∞∑
n=0

(e−x)n

for e−x < 1. So, for x > 0,

1

ex − 1
=

∞∑
n=0

e−(n+1)x

with the convergence being uniform on compact subsets of the interval of conver-
gence. Hence, if p > 0, then

xp

ex − 1
=

∞∑
n=0

xpe−(n+1)x
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for x ≥ 0. From the definition of the Gamma function [4], it is known that

∫
∞

0

xpe−(n+1)xdx =
Γ(p+ 1)

(n+ 1)p+1
.

Therefore, for p > 0,

I(p) = Γ(p+ 1)

∞∑
n=0

1

(n+ 1)p+1

= Γ(p+ 1)
∞∑
n=1

1

np+1
.(2)

If p is an odd positive integer, then the series in (2) converges and has been evaluated
in [1] using various expansion techniques beginning with the logarithmic derivative
of the infinite product expansion of sinx. In this paper, the series in (2), with p an
odd positive integer, will be evaluated in closed form using residue theory. To this
end, consider

∞∑
n=1

1

np+1
=

1

2

∞∑
n=−∞

′

1

np+1

where the prime attached to the summation indicates that the term corresponding
to n = 0 is to be omitted. It has been shown in [3] that if f(z) satisfies

|f(z)| ≤
M

|z|k

on CN for all nonnegative integers N where k > 1 and M are constants independent
of N , and CN is the square with vertices at (N + 1/2)(±1 ± i), then

∞∑
n=−∞

f(n)
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is the negative of the sum of the residues of πf(z) cotπz at the poles of f(z). So,
to evaluate the summation in (2), take

f(z) =
1

zp+1

and use
∑

′.
It is known from [2] that

z cot z =

∞∑
n=0

(−1)n22nB2nz
2n

(2n)!

for |z| < π, where the B2n’s are the Bernoulli numbers of even index. Hence,

π cotπz

zp+1
=

∞∑
n=0

(−1)n(2π)2nB2nz
2n−p−2

(2n)!

for 0 < |z| < 1. So,

Resz=0
π cotπz

zp+1
=

(−1)(p+1)/2(2π)p+1Bp+1

(p+ 1)!
.

Therefore,

∞∑
n=1

1

np+1
= −

(−1)(p+1)/2(2π)p+1Bp+1

2(p+ 1)!
.

Substituting the latter identity into (2) and simplifying yields

I(p) =
(−1)(p+3)/2(2π)p+1Bp+1

2(p+ 1)

=
(−1)(p+3)/22pπp+1Bp+1

p+ 1
.(3)
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In conclusion, identity (3) is valid for all odd positive integers p and provides a
generalization of (1). In particular, for p = 3, equation (3) becomes

I(3) = −2π4B4 = −2π4(−1/30) = π4/15,

which agrees with (1).
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