EVALUATING A FAMILY OF INTEGRALS

Russell Euler

In the study of blackbody radiation, a relationship between the StefanBoltzmann constant and Planck's constant can be derived using the fact that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15} \tag{1}
\end{equation*}
$$

The purpose of this paper is to obtain a generalization of identity (1).
Consider the family of improper integrals defined by

$$
I(p)=\int_{0}^{\infty} \frac{x^{p} d x}{e^{x}-1}
$$

Conditions will be imposed on p to ensure the convergence of the integral. If $p \geq 1$, then $f(x)=x^{p} /\left(e^{x}-1\right)$ has a removable singularity at $x=0$. Now,

$$
\frac{1}{e^{x}-1}=\frac{1}{e^{x}\left(1-e^{-x}\right)}=e^{-x} \sum_{n=0}^{\infty}\left(e^{-x}\right)^{n}
$$

for $e^{-x}<1$. So, for $x>0$,

$$
\frac{1}{e^{x}-1}=\sum_{n=0}^{\infty} e^{-(n+1) x}
$$

with the convergence being uniform on compact subsets of the interval of convergence. Hence, if $p>0$, then

$$
\frac{x^{p}}{e^{x}-1}=\sum_{n=0}^{\infty} x^{p} e^{-(n+1) x}
$$

for $x \geq 0$. From the definition of the Gamma function [4], it is known that

$$
\int_{0}^{\infty} x^{p} e^{-(n+1) x} d x=\frac{\Gamma(p+1)}{(n+1)^{p+1}}
$$

Therefore, for $p>0$,

$$
\begin{align*}
I(p) & =\Gamma(p+1) \sum_{n=0}^{\infty} \frac{1}{(n+1)^{p+1}} \\
& =\Gamma(p+1) \sum_{n=1}^{\infty} \frac{1}{n^{p+1}} \tag{2}
\end{align*}
$$

If p is an odd positive integer, then the series in (2) converges and has been evaluated in [1] using various expansion techniques beginning with the logarithmic derivative of the infinite product expansion of $\sin x$. In this paper, the series in (2), with p an odd positive integer, will be evaluated in closed form using residue theory. To this end, consider

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}=\frac{1}{2} \sum_{n=-\infty}^{\infty} \frac{1}{n^{p+1}}
$$

where the prime attached to the summation indicates that the term corresponding to $n=0$ is to be omitted. It has been shown in [3] that if $f(z)$ satisfies

$$
|f(z)| \leq \frac{M}{|z|^{k}}
$$

on C_{N} for all nonnegative integers N where $k>1$ and M are constants independent of N, and C_{N} is the square with vertices at $(N+1 / 2)(\pm 1 \pm i)$, then

$$
\sum_{n=-\infty}^{\infty} f(n)
$$

is the negative of the sum of the residues of $\pi f(z) \cot \pi z$ at the poles of $f(z)$. So, to evaluate the summation in (2), take

$$
f(z)=\frac{1}{z^{p+1}}
$$

and use \sum^{\prime}.
It is known from [2] that

$$
z \cot z=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n} B_{2 n} z^{2 n}}{(2 n)!}
$$

for $|z|<\pi$, where the $B_{2 n}$'s are the Bernoulli numbers of even index. Hence,

$$
\frac{\pi \cot \pi z}{z^{p+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 \pi)^{2 n} B_{2 n} z^{2 n-p-2}}{(2 n)!}
$$

for $0<|z|<1$. So,

$$
\operatorname{Res}_{z=0} \frac{\pi \cot \pi z}{z^{p+1}}=\frac{(-1)^{(p+1) / 2}(2 \pi)^{p+1} B_{p+1}}{(p+1)!}
$$

Therefore,

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}=-\frac{(-1)^{(p+1) / 2}(2 \pi)^{p+1} B_{p+1}}{2(p+1)!}
$$

Substituting the latter identity into (2) and simplifying yields

$$
\begin{align*}
I(p) & =\frac{(-1)^{(p+3) / 2}(2 \pi)^{p+1} B_{p+1}}{2(p+1)} \\
& =\frac{(-1)^{(p+3) / 2} 2^{p} \pi^{p+1} B_{p+1}}{p+1} \tag{3}
\end{align*}
$$

In conclusion, identity (3) is valid for all odd positive integers p and provides a generalization of (1). In particular, for $p=3$, equation (3) becomes

$$
I(3)=-2 \pi^{4} B_{4}=-2 \pi^{4}(-1 / 30)=\pi^{4} / 15
$$

which agrees with (1).
References

1. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1982.
2. Y. Luke, The Special Functions and Their Approximations, Vol. 1, Academic Press, 1969.
3. M. Spiegel, Complex Variables with an Introduction to Conformal Mapping and Its Applications, Schaum's Outline Series, McGraw-Hill, 1964.
4. M. Spiegel, Theory and Problems of Laplace Transforms, Schaum's Outline Series, McGraw-Hill, 1965.

Russell Euler
Department of Mathematics and Statistics
Northwest Missouri State University
Maryville, MO 64468-6001
email: 0100120@acad.nwmissouri.edu

