REMARK ON A GENERAL ARITHMETIC FOURIER TRANSFORM

Krystyna Grytczuk

Abstract. In this note we prove a general result connected with arithmetic Fourier transforms from which follows the main result given by Walker [1].

1. Introduction. In the paper [1], W. J. Walker proved the following result concerning arithmetic Fourier transforms. Let f be an even function of period 2π which is normalized, so that

$$
\int_{0}^{2 \pi} f(\theta) d \theta=0
$$

Suppose that the Fourier series

$$
f(\theta)=\sum_{n=1}^{\infty} a_{n} \cos n \theta
$$

is absolutely convergent to f. Moreover, let

$$
\delta_{j}^{q}= \begin{cases}0 & \text { if } j \text { contains a prime factor greater than the } q \text { th prime } \tag{1}\\ 1 & \text { otherwise. }\end{cases}
$$

Recall that the Möbius function is defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \tag{2}\\ (-1)^{r} & \text { if } n=p_{1} p_{2} \cdots p_{r} \\ 0 & \text { if } p^{2} \mid n\end{cases}
$$

In addition, define $S(n)$ by

$$
\begin{equation*}
S(n)=\frac{1}{n} \sum_{m=0}^{n-1} f\left(\frac{2 \pi m}{n}\right) \tag{3}
\end{equation*}
$$

Then, it follows that

$$
\begin{equation*}
a_{n}=\lim _{q \rightarrow \infty} \sum_{j=1}^{\infty} \delta_{j}^{q} \mu(j) S(j n) ; \quad n \geq 1 \tag{4}
\end{equation*}
$$

Moreover, Walker indicated some connections and applications to the field of signal processing and to artificial neural networks.
2. Result. In the present paper we prove a general result.

Theorem. Let the function h satisfy the following condition.

$$
\frac{1}{n} \sum_{m=0}^{n-1} h\left(\frac{w m j}{n}\right)= \begin{cases}0 & \text { if } j \neq k n \tag{C}\\ 1 & \text { if } j=k n\end{cases}
$$

where $w \neq 0$ is a fixed real constant and k is a positive integer and let the function f have the expansion on the Fourier series

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} h(n x) \tag{5}
\end{equation*}
$$

which is absolutely convergent to f. Then

$$
\begin{equation*}
a_{n}=\lim _{q \rightarrow \infty} \delta_{j}^{q} \mu(j) S(j n) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
S(n)=\frac{1}{n} \sum_{m=0}^{n-1} f\left(\frac{w m}{n}\right) \tag{7}
\end{equation*}
$$

and δ_{j}^{q} and μ are defined by (1) and (2), respectively.

Proof. First we prove that by the hypothesis it follows that

$$
\begin{equation*}
S(n)=\sum_{k=1}^{\infty} a_{k n} \tag{8}
\end{equation*}
$$

Rewriting the series (5) in the form

$$
f(x)=\sum_{j=1}^{\infty} a_{j} h(j x)
$$

and putting $x=(w m) / n$, where $w \neq 0$ is a real constant we obtain

$$
\begin{equation*}
f\left(\frac{w m}{n}\right)=\sum_{j=1}^{\infty} a_{j} h\left(\frac{w m j}{n}\right) \tag{9}
\end{equation*}
$$

From (7) and (9) we get

$$
\begin{equation*}
S(n)=\sum_{j=1}^{\infty} a_{j} \frac{1}{n} \sum_{m=0}^{n-1} h\left(\frac{w m j}{n}\right) \tag{10}
\end{equation*}
$$

Applying to (10) condition (C), we obtain

$$
S(n)=\sum_{j=1}^{\infty} a_{j}
$$

for $j=k n$, so

$$
S(n)=\sum_{k=1}^{\infty} a_{k n}
$$

and we see that (8) is proved. On the other hand, we know the following summation formula for the Möbius function.

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Using this formula and the Möbius inversion formula, by an easy calculation, we obtain

$$
\begin{equation*}
a_{n}=\sum_{k=1}^{\infty} \mu(k) S(k n) \tag{11}
\end{equation*}
$$

Now, assuming δ_{j}^{q} is defined as in (1), consider the expression

$$
\begin{equation*}
T_{q}(n)=\sum_{j=1}^{\infty} \delta_{j}^{q} \mu(j) S(j n) \tag{12}
\end{equation*}
$$

Then from (11) and (12) we can deduce that

$$
\begin{equation*}
T_{q}(n)=a_{n}+\sum_{k=2}^{\infty} \alpha_{k}^{q} a_{k n} \tag{13}
\end{equation*}
$$

where $\alpha_{k}^{q}=0$, if k contains one of the first q primes and $\alpha_{k}^{q}=1$, otherwise. From (13) and by the assumption of the Theorem, it follows that

$$
\lim _{q \rightarrow \infty} \sum_{k=2}^{\infty} \alpha_{k}^{q} a_{k n}=0
$$

Hence, from (12) and (13) we obtain

$$
\lim _{q \rightarrow \infty} T_{q}(n)=\lim _{q \rightarrow \infty} \sum_{j=1}^{\infty} \delta_{j}^{q} \mu(j) S(j n)=a_{n}
$$

The proof of the Theorem is complete.
3. Remark. Now, we observe that from our Theorem we can obtain Walker's result as a particular case. Indeed, let $h(x)=\cos x ; w=2 \pi$. Then for $x=(w m j) / n$ we have

$$
\begin{equation*}
\sum_{m=0}^{n-1} h\left(\frac{w m j}{n}\right)=\sum_{m=0}^{n-1} \cos \frac{2 \pi m j}{n} \tag{14}
\end{equation*}
$$

On the other hand, it is easy to see that

$$
\left\{\begin{array}{l}
\cos \frac{2 \pi m j}{n}+i \sin \frac{2 \pi m j}{n}=\left(\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)^{m j}=\epsilon^{m j} \tag{15}\\
\cos \frac{2 \pi m j}{n}-i \sin \frac{2 \pi m j}{n}=\left(\cos \frac{2 \pi}{n}-i \sin \frac{2 \pi}{n}\right)^{m j}=\epsilon^{-m j} \quad .
\end{array}\right.
$$

By (15), it follows that

$$
\begin{equation*}
\cos \frac{2 \pi m j}{n}=\frac{1}{2}\left(\epsilon^{m j}+\epsilon^{-m j}\right) \tag{16}
\end{equation*}
$$

Hence, from (14) and (16) we obtain

$$
\begin{equation*}
\sum_{m=0}^{n-1} h\left(\frac{w m j}{n}\right)=\sum_{m=0}^{n-1} \cos \frac{2 \pi m j}{n}=\frac{1}{2} \sum_{m=0}^{n-1}\left(\epsilon^{m j}+\epsilon^{-m j}\right) \tag{17}
\end{equation*}
$$

But it is well-known that if ϵ is a root of unity of degree n, then

$$
\sum_{m=0}^{n-1} \epsilon^{m j}= \begin{cases}0 & \text { if } j \neq k n \tag{18}\\ n & \text { if } j=k n\end{cases}
$$

for some positive integer k. Therefore, by (17) and (18) it follows that

$$
\frac{1}{n} \sum_{m=0}^{n-1} h\left(\frac{w m j}{n}\right)= \begin{cases}0 & \text { if } j \neq k n \\ 1 & \text { if } j=k n\end{cases}
$$

so that condition (C) is satisfied for the function $h(x)=\cos x$. Thus, by the Theorem with $w=2 \pi$, we obtain Walker's result, since,

$$
S(n)=\frac{1}{n} \sum_{m=0}^{n-1} f\left(\frac{w m}{n}\right)=\frac{1}{n} \sum_{m=0}^{n-1} f\left(\frac{2 \pi m}{n}\right)
$$

Reference

1. W. J. Walker, "The Arithmetic Fourier Transform and Real Neural Networks: Summability by Primes," J. Math. Anal. Appl., 190 (1995), 211-219.

Krystyna Grytczuk
Institute of Mathematics
Technical University
Zielona Góra, Poland

