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LINEARIZATION OF TRIGONOMETRIC
POLYNOMIALS AND INTEGRALS

Thierry Dana-Picard and Daniel Cohen

1. The Method. One of the problems encountered in calculus courses is the
computation of simple integrals. The existence of a primitive for a continuous func-
tion on an interval is a well-known theorem (see [3]), but the actual computation
is sometimes quite hard to perform, even impossible. In [2] a geometric approach
for computing one particular trigonometric integral is presented and an interesting
method for computing trigonometric integrals is given in [1]. We present a way to
compute integrals of trigonometric polynomials, via a linearization of these poly-
nomials using complex numbers and Euler’s formula (the method is simple, but we
did not find any exposition of it in classical textbooks).

Recall that for 2 € R, e'* = cosx + isinz. By DeMoivre’s formula, we have
for any x € R, e~ = cosx — isinz and for any n € Z, (e'*)" = ™. Therefore,

These are the so-called Euler’s formula.

By Newton’s binomial development, we can now compute any positive integral
power of cosx and of sinz and any product of such powers as a linear combination
of powers of e** and e,

1. Let f(x) = cos? z. Then
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Recall that
P\ _ p
k p—k

and that 2(p — k) — p = —(2k — p). We consider the following two cases.
Case 1. p is odd.
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Since cos is an even function, it could have been foreseen that for every power
we get a linearization with all summands of the form cos kz.
2. Let f(z) = sin?z. Then,

As before, we have two distinct cases.

Case 1. ¢ is odd.
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Since ¢ is odd, (2¢)? is a pure imaginary number and we can simplify by 7. Thus,
we get a linear combination of sines; this was expected since we computed an odd
power of an odd function.

Case 2. q is even.

_ (;)q f (Z) (—1)*=92 cos kz + (p’/’2>

/2
_ 1 g q k—q 1 p

Here g is even, thus i? is a real number (it equals £1). We get a linear combination
of cosines; this was expected as we computed an even power of an odd function,
getting an even function.

3. Now consider the general case, where f(x) = cosPz - sin?z. As above,
cosP z and sin? z are linear combinations of sines and/or cosines; thus the product
cosP z - sin? x is a linear combination of terms either of the form cosax - cos bz or of
the form cos ax - sinbx. Using the well-known formula:

cosa - cos 3 = & (cos(a + B) + cos(a — B))
{ cosa-sin 3 = §(sin(a + B) + sin(a — B))

we get a linearization of cosP x - sin? x for any natural numbers p and q.
2. Examples and Applications. Here are some examples.

Example 1. f(z) = cos?z.

1, ., N L ,
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Example 2. f(z) = cos®z.

1, N . B .
COSg.If: |:2(ezm+e—1x):| — §(63zm+3e2zme—zm+3ezze—22m+e—3m)

1 .. . . ) 1
= §(63” + e 4 3(e 7)) = §(2 cos 3z + 6 cosx)

= Leosac+ 2
—4COS.T 4COS.’II.

Case 3. f(z) =sin®z - cos® z.

1 2

3
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sin®z - cos? z = {22,(6”" - e”)} [2(6m + e”)}
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= 37(22 sin 5z — 2isin 3z — 4isinx)
i

— 1 1
= Tﬁsin5x+ EsinSaz—l— gsinx.

The main application of this linearization is in computing integrals of trigono-
metric polynomials. We will end this note with an example of the calculation of an
integral.

Example 4. Define the integral

w/2
/ sin® x - cos® zdz.
0
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We linearize the trigonometric polynomial sin® z - cos? z by the method described
previously; computing the integral is straightforward.

/2
1= / sin® z - cos® zdx
0

T2/ 1 1 1
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/2 /2
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T i L voenn - Leosal
= 80 COS O 48 COS o 8COS.’L‘ .
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