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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

113
∗. [1998, 46] Proposed by Kamal Jain, Georgia Institute of Technology,

Atlanta, Georgia.

Find all ordered pairs (a, b) such that

tan(aπ) = b

and a and b are rational numbers.

Solution by Bob Prielipp, University of Wisconsin - Oshkosh, Oshkosh, Wis-
consin.

In his article “Rational Values of Trigonometric Functions” [see pp. 507–508
of The American Mathematical Monthly, 52 (1945)], J. M. H. Olmsted proved that
the only rational values of tan(aπ) (where a is a rational number) are 0 and ±1.

Thus, if a and b are rational numbers then (a, b) is a solution of tan(aπ) = b
if and only if (a is an arbitrary integer and b = 0) or (a = 1

4 + k where k is an
arbitrary integer and b = 1) or (a = − 1

4 + k where k is an arbitrary integer and
b = −1).

Also, on the pages leading up to p. 41 of his book Irrational Numbers, (Carus
Monograph #11) The Mathematical Association of America (distributed by John
Wiley and Sons, Inc.), 1963, Ivan Niven proved that if θ is rational in degrees,
say θ = 2πr for some rational number r, then the only rational values of the
trigonometric functions of θ are as follows: sin θ, cos θ = 0,± 1

2 ,±1; sec θ, csc θ =
±1,±2; tan θ, cot θ = 0,±1.

114. [1998, 46] Proposed by Kenneth B. Davenport, 301 Morea Road,
Frackville, Pennsylvania.

(a) Prove that

∫ ∞

0

1

1 + x2
·

4

4 + x2
· · · · ·

n2

n2 + x2
dx =

π

2

n

2n− 1
.
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(b) Prove that

∫ ∞

0

1

1 + x2
·

9

9 + x2
· · · · ·

(2n+ 1)2

(2n+ 1)2 + x2
dx

=
π

2

(Γ(2n+ 2))3

25n(2n+ 1)3(Γ(n+ 1))4
∏n

k=1 k(2k − 1)
.

Solution to part (a) by Paul S. Bruckman, 1518 Vanstone Road # 2, Campbell
River, British Columbia, Canada.

Let

In =

∫ ∞

0

dx

x2 + n2
=

π

2n
and Jn =

∫ ∞

0

Pn(x)dx,

where

Pn(x) =
n
∏

k=1

(x2 + k2)−1.

Now

Pn(x) =

n
∑

k=1

(

Ak

x− ki
+

Ak

x+ ki

)

,

where

Ak = lim
x→ki

(x − ki)Pn(x) = lim
y→0

yPn(y + ki)

= lim
y→0

(

y

(y + ki)2 + k2

n
∏

j=1
j 6=k

[(y + ki)2 + j2]−1

)

= lim
y→0

(

1

y + 2ik
·

n
∏

j=1
j 6=k

(−k2 + j2)−1

)

,
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or

Ak =
1

2ik
·

1

Qk,n

,

where

Qk,n =

n
∏

j=1
j 6=k

(j2 − k2).

Then

Pn(x) =

n
∑

k=1

(

1

2ik
·

1

x− ki
−

1

2ik
·

1

x+ ki

)

1

Qk,n

=

n
∑

k=1

1

x2 + k2
·

1

Qk,n

.

Then,

Jn = π

n
∑

k=1

1

2kQk,n

.

Now,

Qk,n =

k−1
∏

j=1

(j2 − k2)

n
∏

j=k+1

(j2 − k2)

= (−1)k−1 · (k − 1)! ·
(2k − 1)!

k!
(n− k)!

(n+ k)!

(2k)!

= (−1)k−1 (n− k)!(n+ k)!

2k2
.
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Then,

Jn =
π

(2n)!

n
∑

k=1

(−1)k−1 · k

(

2n

n− k

)

=
π

(2n)!

n−1
∑

k=0

(−1)n−1−k(n− k)

(

2n

k

)

=
π

(2n− 1)!

(

1

2

n−1
∑

k=0

(−1)n−1−k

(

2n

k

)

−

n−2
∑

k=0

(−1)n−k

(

2n− 1

k

))

.

Now, if

Rn =

n−1
∑

k=0

(−1)n−1−k

(

2n

k

)

and Sn =

n−1
∑

k=0

(−1)n−1−k

(

2n+ 1

k

)

,

then

Jn =
π

(2n− 1)!

(

1

2
Rn − Sn−1

)

.

Note that

Rn =

2n
∑

k=n+1

(−1)n−1−k

(

2n

k

)

,

so

2Rn =

2n
∑

k=0

(−1)n−1−k

(

2n

k

)

+

(

2n

n

)

.

But

2n
∑

k=0

(−1)n−1−k

(

2n

k

)

= (−1)n−1(1− 1)2n = 0 (if n ≥ 1),
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and so

Rn =
1

2

(

2n

n

)

.

Thus,

Jn =
π

(2n− 1)!

(

1

4

(

2n

n

)

− Sn−1

)

.

It remains to show that Sn = nCn, where

Cn =

(

2n
n

)

n+ 1

is the nth Catalan number. For then

Jn =
π

(2n− 1)!

(

1

4

(

2n

n

)

−
n− 1

n

(

2n− 2

n− 1

))

=
π

(2n− 1)!

(

2n(2n− 1)

4n2
−

n− 1

n

)(

2n− 2

n− 1

)

=
π

(2n)!

(

2n− 2

n− 1

)

=
π

2n(2n− 1)[(n− 1)!]2
.

Now,

Sn =
n−1
∑

k=0

(−1)n−1−k

(

2n+ 1

k

)

= (−1)n−1 +
n−1
∑

k=1

(−1)n−1−k

((

2n

k

)

+

(

2n

k − 1

))

= (−1)n−1 +

n−1
∑

k=1

(−1)n−1−k

(

2n

k

)

−

n−2
∑

k=0

(−1)n−1−k

(

2n

k

)

=

(

2n

n− 1

)

=
(2n)!

(n− 1)!(n+ 1)!
=

n

n+ 1

(

2n

n

)

= nCn.
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Therefore,

Jn =
π

2n(2n− 1)[(n− 1)!]2
.

Hence, the result follows.

Solution to part (b) by the proposer. The product is initialized at n = 1, so
begin with

∫ ∞

0

1

x2 + 1

9

x2 + 9
dx.

For simplicity, we could ignore the product in the numerator and treat just the
partial fractions arising from the product,

1

x2 + 1
·

1

x2 + 9
·

1

x2 + 25
· · · .

Observe that

1

x2 + 1
·

1

x2 + 9
=

1/8

x2 + 1
−

1/8

x2 + 9
,

where the numerators of the two partial fractions are given by 1/(9−1) and 1/(1−9)
and

1

x2 + 1
·

1

x2 + 9
·

1

x2 + 25
=

1/192

x2 + 1
−

1/128

x2 + 9
+

1/384

x2 + 25
,

where the numerators of the partial fractions are given by the products 1/[(9 −
1)(25− 1)], 1/[(1− 9)(25− 9)], and 1/[(1− 25)(9− 25)]. Furthermore,

1

x2 + 1
·

1

x2 + 9
·

1

x2 + 25
·

1

x2 + 49
=

1/9216

x2 + 1
−

1/5120

x2 + 9
+

1/9216

x2 + 25
−

1/46080

x2 + 49
,

where the numerators of the partial fractions are given by the products 1/[(9 −
1)(25 − 1)(49− 1)], 1/[(1− 9)(25 − 9)(49 − 9)], 1/[(1− 25)(9 − 25)(49− 25)], and
1/[(1− 49)(9− 49)(25− 49)].
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Multiply the numerators of the partial fractions through by the last term in
the series, in this case by 8, 384, 46080, . . . . The terms in this series are given by

1 · 8, 6 · 82, 90 · 83, 2520 · 84, 113400 · 85, . . .

where the terms 1, 6, 90, 2520, 113400 are given by the product of the consecutive
hexagonal numbers

n
∏

k=1

k(2k − 1).

So now, following the integration of

∫ ∞

0

1

x2 + 1

1

x2 + 9
dx,

we have

π

2
·
1

8
·

(

1−
1

3

)

=
π

2
·
1

8
·
2

3

and for the next 3 fractions in the product, we obtain for

∫ ∞

0

1

x2 + 1
·

1

x2 + 9
·

1

x2 + 25
dx,

that

π

2
·

1

384
·

(

2−
3

3
+

1

5

)

=
π

2
·

1

384
·
6

5

and for four fractions in the product, we obtain

∫ ∞

0

1

x2 + 1
·

1

x2 + 9
·

1

x2 + 25
·

1

x2 + 49

=
π

2
·

1

46080
·

(

5−
9

3
+

5

5
−

1

7

)

=
π

2
·

1

46080
·
20

7
.
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The next two results for a product of 5 and 6 fractions will be

π

2
·

1

2580 · 84

(

14−
28

3
+

20

5
−

7

7
+

1

9

)

=
π

2
·

1

2520 · 84
·
70

9

and

π

2
·

1

113400 · 85

(

42−
90

3
+

75

5
−

35

7
+

9

9
−

1

11

)

=
π

2
·

1

113400 · 85
·
252

11
.

So now the series of fractions of the right-most term, namely

2

3
,
6

5
,
20

7
,
70

9
,
252

11
, . . .

is given by

(2n)!

(n!)2(2n+ 1)
.

Therefore,

∫ ∞

0

1

x2 + 1
·

1

x2 + 9
·

1

x2 + (2n+ 1)2
dx =

π

2
·
1

8n
·

(2n)!

(2n+ 1)(n!)2
·

1
∏n

k=1 k(2k − 1)
.

Now multiplying both sides through by the product 1× 9× 25 · · · which is

[(2n+ 2)!]2

22n+2[(n+ 1)!]2

and recalling that we want the product to begin with 1 × 9, 1 × 9 × 25, etc., it
follows that

π

2
·
1

8n
·

(2n)!

(2n+ 1)(n!)2
·

[(2n+ 2)!]2

22n+2[(n+ 1)!]2
1

∏n

k=1 k(2k − 1)
.
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Simplifying, we get

π

2
·

1

23n
·

(2n)!

(2n+ 1)(n!)2
·
[(2n+ 1)!]2(2n+ 2)2

22n22(n!)2(n+ 1)2
1

∏n

k=1 k(2k − 1)

and

π

2
·

1

25n
·

(2n+ 1)!

(2n+ 1)2(n!)2
·
[(2n+ 1)!]2

(n!)2
1

∏n

k=1 k(2k − 1)

resulting finally in

π

2
·

1

25n
·

[(2n+ 1)!]3

(2n+ 1)2(n!)4
1

∏n

k=1 k(2k − 1)
.

And from here we obtain, as stated, the result in terms of the gamma function,

π

2

[Γ(2n+ 2)]3

25n(2n+ 1)2[Γ(n+ 1)]4
∏n

k=1 k(2k − 1)

for n = 1, 2, . . . .

Remark by the proposer. The integration product formulas are very similar
to theorems discovered by Ramanujan (see e.g. The Man Who Knew Infinity by
Robert Kanigel, Washington Sq. Press, 1991, p. 165). Also, the proposer would
like to express appreciation to George Andrews, Ph.D. Penn State University for
his helpful assistance and encouragement.

115. [1998, 47] Proposed by Kenneth B. Davenport, 301 Morea Road,
Frackville, Pennsylvania.

(a) Prove that

The number of ways of expressing every number of the form 3(2n− 1), n ≥ 1,
as the sum of three numbers is equal to the sum of an nth ranked hexagonal number
and an (n− 1)th square number.

(b) Prove that
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The number of ways of expressing every number of the form 4m, m ≥ 1, as the
sum of four numbers is equal to the sum of the first m tetrahedral numbers, then
subtract the sum of the first m− 3 pentagonal numbers, the first m− 6 pentagonal
numbers, and so on until you reach 0, 1, or 2.

Solution by Paul S. Bruckman, 1518 Vanstone Road # 2, Campbell River,
British Columbia, Canada. The generating function for the number of partitions
of n into at most m parts is the coefficient of xn in

Pm(x) =
1

(1 − x)(1 − x2) · · · (1 − xm)
.

Since

Pm(x) =

m
∏

j=1

∞
∑

k=0

xjk for |x| < 1,

this implies

Pm(x) =
∑

k1,k2,... ,km≥0

xk1+2k2+···+mkm .

We seek the coefficient of xn, where

n =

m
∑

j=1

jkj for each kj ≥ 0.

The coefficient of xn in

Qm(x) = Pm(x)− Pm−1(x) =
xm

(1− x)(1 − x2) · · · (1− xm)
(1)

is the number of partitions of n into exactly m parts, which we denote as p(n,m).
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To solve part (a), for m = 3 we have

Q3(x) =
x3

(1− x)(1 − x2)(1− x3)
. (2)

The trick is to decompose this into partial fractions. For m = 3, it’s not too bad.
Thus we find that

Q3(x)=
1

6
(1−x)−3−

1

4
(1−x)−2−

1

72
(1−x)−1−

1

8
(1+x)−1+

1

9
(1−ω2x)−1+

1

9
(1−ωx)−1

where ω = exp(2iπ/3). Then

p(n, 3) =
1

6

(

n+ 2

2

)

−
1

4
(n+ 1)−

1

72
−

1

8
(−1)n +

2

9
cos

2nπ

3
.

After some simplification

p(n, 3) =
n2 − 1 +An

12
(3)

where

An =



















1, if n ≡ 0 (mod 6)

0, if n ≡ ±1 (mod 6)

−3, if n ≡ ±2 (mod 6)

4, if n ≡ 3 (mod 6).

This is the exact expression, but may be more elegantly expressed as

p(n, 3) =

〈

n2

12

〉

where 〈·〉 is the “nearest integer” function. [cf. Vol. 2, p. 160 of Dickson’s History
of the Theory of Numbers.]
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We wish to show p(3(2n − 1), 3) = Hn + Sn−1 where Hn is the nth ranked
Hexagonal number and Sn−1 is the (n− 1)th ranked Square number. A3(2n−1) = 4
since all odd multiples of 3 are congruent to 3 (mod 6). Thus, using (3)

p(3(2n− 1), 3) =
[3(2n− 1)]2 − 1 + 4

12

=
(36n2 − 36n+ 9) + 3

12

= 3n2 − 3n+ 1.

Now,

Hn + Sn−1 = n(2n− 1) + (n− 1)2

= 2n2 − n+ n2 − 2n+ 1

= 3n2 − 3n+ 1

and we are done with part (a).
With part (b), Dickson’s, supra, is in error. That is,

p(n, 4) 6=

〈

n3 + 3n2 − 4

144

〉

.

The general formula based on (1) is

p(n, 4) =
n3 + 3n2 − 9n · on +Bn

144
(4)
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where on = 1
2 (1− (−1)n) and

Bn =



































































0, if n ≡ 0 (mod 12)

5, if n ≡ 1 (mod 6)

−20, if n ≡ 2 (mod 12)

−27, if n ≡ 3 (mod 6)

32, if n ≡ 4 (mod 12)

−11, if n ≡ 5 (mod 6)

−36, if n ≡ 6 (mod 12)

16, if n ≡ 8 (mod 12)

−4, if n ≡ 10 (mod 12).

So now using (4) it can be shown that the following identity holds.

p(4n, 4) =
n
∑

k=1

Tk −

[ 1
3
(n−1)]
∑

j=1

n−3j
∑

k=1

Pk, n = 1, 2, . . .

where Tn is the nth “tetrahedral”. Tn =
(

n+2
3

)

and Pn is the nth “pentagonal”,

with Pn = 3n2−n
2 . Let

f(x) =

∞
∑

n=1

p(4n, 4)xn, (5)

g(x) =

∞
∑

n=1

xn

n
∑

k=1

Tk, (6)

h(x) =

∞
∑

n=1

xn

[ 1
3
(n−1)]
∑

j=1

n−3j
∑

k=1

Pk. (7)

These expressions are assumed valid for all |x| < 1.
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We’re required to prove f(x) = g(x) − h(x) and so substituting 4n for n into
(4) we obtain

p(4n, 4) =
64n3 + 48n2 +B4n

144

where

B4n =





0
32
16



 ,

depending on whether

4n ≡





0
4
8



 (mod 12).

And so,

p(4n, 4) =

4n3 + 3n2 +





0
2
1





9
, n ≡





0
1
2



 (mod 3).

Then

f(x) =
1

9

∞
∑

n=1

(

4n3 + 3n2 +





0
2
1





)

xn

=
1

9

∞
∑

n=1

(4n3 + 3n2)xn +
1

9

∞
∑

n=0

(2x+ x2)x3n.

Now,

4n3 + 3n2 = 4n(3) + 15n(2) + 7n(1)

= 24

(

n

3

)

+ 30

(

n

2

)

+ 7

(

n

1

)

.
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Then,

f(x) =
1

9

∞
∑

n=0

(

24

(

n+ 3

3

)

xn+3 + 30

(

n+ 2

2

)

xn+2 + 7

(

n+ 1

1

)

xn+1

)

+
1

9
(2x+ x2)(1− x3)−1

=
1

9

(

24x3(1 − x)−4 + 30x2(1− x)−3 + 7x(1 − x)−2 + (2x+ x2)(1 − x3)−1

)

.

After some simplification,

f(x) =
x(1 + x)(1 + x+ 2x2)

(1 − x)4(1 + x+ x2)
, |x| < 1. (8)

Next,

g(x) =

∞
∑

k=1

Tk

∞
∑

n=k

xn =

∞
∑

k=1

Tk

∞
∑

n=0

xn+k

=
∞
∑

n=0

xn

∞
∑

k=1

Tkx
k = (1− x)−1

∞
∑

k=0

(

k + 3

3

)

xk+1

= x(1 − x)−1(1 − x)−4 = x(1 − x)−5

so
g(x) = x(1− x)−5, |x| < 1. (9)

Finally,

h(x) =

∞
∑

j=1

∞
∑

n=3j+1

xn

n−3j
∑

k=1

Pk =

∞
∑

j=1

x3j
∞
∑

n=1

xn

n
∑

k=1

Pk

= x3(1− x3)−1
∞
∑

k=1

Pk

∞
∑

n=0

xn+k = x3(1− x)−1(1− x3)−1
∞
∑

k=1

Pkx
k.
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Now,

∞
∑

k=1

Pkx
k =

∞
∑

k=1

(

3

(

k

2

)

+

(

k

1

))

xk =

∞
∑

k=0

(

3

(

k + 2

2

)

xk+2 +

(

k + 1

1

)

xk+1

)

= 3x2(1− x)−3 + x(1 − x)−2 = x(1 + 2x)(1 − x)−3.

Then,

h(x) =
x4(1 + 2x)

(1 − x)5(1 + x+ x2)
, |x| < 1. (10)

From here, it is a fairly straight-forward exercise to show

f(x) = g(x)− h(x)

which establishes the given identity.
Also, it might be noted that the expression in Dickson’s, supra, is valid for n

even, in which case a more concise expression is

p(n, 4) =

〈

n3 + 3n2

144

〉

but for odd n

p(n, 4) =

〈

n3 + 3n2 − 9n

144

〉

.

116. [1998, 47] Proposed by Russell Euler and Jawad Sadek, Northwest
Missouri State University, Maryville, Missouri.

Let n be a fixed positive real number and let

In(t) =

∫ 1

0

[

log

(

1− rt

1− r

)]n
1− r

(1 − rt)2
dr,
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where 0 < t < 1.

Find an upper bound for In(t) as a function of n in terms of the gamma and
zeta functions.

Solution by the proposers. Let

u = log

(

1− tr

1− r

)

.

Then

du =
1− t

(1 − tr)(1 − r)
dr

and we get

In(t) =

∫ ∞

0

une−u

eu − t
du.

Since 0 < t < 1, eu − t > eu − 1 and so

In(t) <

∫ ∞

0

un

eu(eu − 1)
du =

∫ ∞

0

(

−un

eu
+

un

eu − 1

)

du

= −Γ(n+ 1) +

∫ ∞

0

un

eu − 1
du = −Γ(n+ 1) +

∫ ∞

0

∞
∑

k=0

une−(k−1)udu

= −Γ(n+ 1) + Γ(n+ 1)

∞
∑

k=0

1

(k + 1)n−1
= −Γ(n+ 1) + Γ(n+ 1)ζ(n+ 1).


