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INDUCED FIBRATIONS ON SPACES

OF FIBER TRANSFERRING MAPS

Manolis Magiropoulos

Abstract. Starting with a continuous map π:E → B, we define several cat-

egories of spaces of fiber transferring maps with respect to π and investigate the

extent to which some basic properties of π are inherited by the induced map p on

the above mentioned spaces.

Let π be a continuous map between two topological spaces E and B, where

π is open and onto, and E and B are T2 and locally compact. If C(E) is the

set of all continuous maps E → E, a map f ∈ C(E) is a fiber transferring map

with respect to π if and only if for each b ∈ B there exists a xb ∈ B such that

f(π−1(b)) ⊂ π−1(xb). Let Cπ(E) denote the subspace of C(E) consisting of all

such maps (all function spaces are given the c.o. topology). Using the Theorem of

Exponential Correspondence (cf. [3]), one proves that the induced correspondence

p:Cπ(E) → C(B),

given by

p(f)(b) = πf(π−1(b)),

is a well defined continuous map.

Employing the same argument outlined in the proof of Proposition 10 in [2],

we obtain the following:

Proposition 1. If π is a fibration (with unique path lifting, regular), then so is

p.

Now let Hπ(E) and H(B) denote the subspaces of Cπ(E) and C(B), respec-

tively, consisting of homotopy equivalences and Topπ(E) and Top(B) denote the

subspaces of Cπ(E) and C(B) consisting of homeomorphisms which, in the case

of Topπ(E), take fibers onto fibers. Once more, the reasoning exhibited at the

appropriate part of the proof of Proposition 10 in [2] will establish the following

propositions.
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Proposition 2. If π is a fibration (with unique path lifting, regular), then the

restriction of p on Hπ(E) gives a map Hπ(E) → H(B) which is a fibration (with

unique path lifting, regular).

Proposition 3. If π is a fibration with unique path lifting (regular), and E is,

in addition, connected and locally path-connected, the restriction of p on Topπ(E)

gives a map Topπ(E) → Top(B) which is a fibration with unique path lifting

(regular).

At this point, it is quite reasonable to ask about the relation between the group

G(E/B) of deck transformations of a regular fibration π:E → B and the groups

G(Cπ(E)/C(B)), G(Hπ(E)/H(B)), G(Topπ(E)/Top(B)) of deck transformations

of the induced regular fibrations p. For this, we have the following.

Proposition 4. If E is connected and locally path-connected, we have the

following commutative diagram of groups and group homomorphisms

G(Cπ(E)/C(B)) −−−−→ G(Hπ(E)/H(B)) −−−−→ G(Topπ(E)/Top(B))
x





i

x





i

x





i

G(E/B) G(E/B) G(E/B)

where the horizontal maps are obtained by restriction on the corresponding sub-

spaces and the i-maps are group embeddings all given by i(f)(h) = f ◦ h, f ∈

G(E/B), h ∈ Cπ(E), Hπ(E),Topπ(E), respectively.

Proof. We prove first that the left horizontal map is a group homomorphism.

But this is immediate once we prove that it is well defined. Let σ ∈ G(Cπ(E)/C(B))

and let f ∈ Homπ(E). We show that σ(f ) ∈ Hπ(E). Let e ∈ E; since π is a regular

fibration and E is connected and locally path-connected there is h ∈ G(E/B) such

that σ(f)(e) = h(f(e)) = (h ◦ f)(e). E is also path-connected and by uniqueness

of liftings we have σ(f ) = h ◦ f ∈ Hπ(E). Now by taking σ−1 we easily show that

the restriction of σ on Hπ(E) is onto (if f ∈ Hπ(E), σ−1(f) ∈ Hπ(E) as we just

saw and f = σ(σ−1(f)).

The same argument proves also that the right horizontal map is well defined

and it is a group homomorphism.

We now show that the maps i are group embeddings. First we show that

they are well defined. We consider the Top case (the same argument works for
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the other two cases). If h1, h2 ∈ Topπ(E) and h1 6= h2, then for f ∈ G(E/B)

we have f ◦ h1 6= f ◦ h2, thus, i(f) is 1-1. Let g ∈ Topπ(E) and e ∈ E; then

f(f
−1

(g(e))) = g(e), that is, i(f)(f
−1

◦ g) = g, that is, i(f) is onto. Now the

map τ : Topπ(E) × E → E, given by τ(h, e) = (f ◦ h)(e) is continuous, and the

Theorem of Exponential Correspondence implies that i(f) is continuous. i(f)−1

is just i(f
−1

), so it is continuous, thus, i(f) is a homeomorphism which obviously

satisfies p(i(f)) = p(f), that is, i(f) ∈ G(Topπ(E)/Top(B)), that is, i is well

defined. Evidently i is a group homomorphism. Now if f1 6= f2, then i(f1) 6= i(f2)

since f1 ◦ 1E 6= f2 ◦ 1E . Thus, i is an embedding; commutativity of the diagram

follows from the definition of the maps, and this proves that the other two i’s are

also group embeddings.

We are about ready to establish our basic result. In addition to the require-

ments of Proposition 3, each point of E and B is asked to possess a basis of open

contractible neighborhoods whose topological closure is path-connected. This re-

quirement is certainly met by manifolds. Then we have:

Theorem 5. If π:E → B is a regular covering map, the induced maps

p:Cπ(E) → p(Cπ(E)), Hπ(E) → p(Hπ(E)),Topπ(E) → p(Topπ(E)) are all reg-

ular covering maps.

Proof. The proof is given for the C-case; the same proof works for the other

two cases.

For convenience, we use the term open ball for a basic open contractible neigh-

borhood, and closed ball for the compact closure of an open ball (since the spaces

are T2, locally compact, we have at each point a basis of open contractible neigh-

borhoods whose closures are path-connected and compact at the same time).

Before we continue with the proof we establish three claims.

Claim 1. If S(C,A) denotes the standard subbasic element for the c.o. topol-

ogy, then the collection A = {S(C,A)/C is an evenly covered, closed ball of B,

A is an evenly covered open ball of B}, is a subbasis for the c.o. topology of C(B).

Proof of Claim 1. Obviously, the open balls A of the form described above

form a basis for the topology of B. Now let K be a compact set of B and U an

open set, such that K ⊂ U ; for each k ∈ K, choose an evenly covered closed ball

Ck ⊂ U , with k ∈ intCk; the collection {intCk, k ∈ K}, is an open cover of K.

Let {intCki
}ni=1 be a finite subcover of K; then we have K ⊂ Un

i=1Cki
⊂ U ; this

completes the proof of Claim 1, because of statement 5.1 in [1].
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Claim 2. The collection B = {S(C̃, Ã)/C̃ is a slice of an evenly covered,

closed ball C of B, Ã is a slice of an open ball A which is evenly covered } is a sub-

basis for the c.o. topology in Cπ(E).

Proof of Claim 2. Replica of the proof of Claim 1.

Claim 3. Let f ∈ S(C,A), where C,A are taken as in Claim 1. Let c ∈ C and

let c be a pre-image of c contained in some slice C̃ of C. If f ∈ Cπ(E) is a lifting

of f with f(c) ∈ Ã, where Ã is some slice of A, then f(C̃) ⊂ Ã.

Proof of Claim 3. Let c1 be another element of C̃; we set c1 = π(c1). Join c to

c1 by a path ϕ lying in C; then f ◦ϕ is a path lying in A. The path (π/C̃)−1 ◦ϕ is

the unique lifting of ϕ starting at c, and lies entirely in C̃. The path f(π/C̃)−1 ◦ϕ

is a lifting of f ◦ ϕ starting at f(c). The path (π/Ã)−1 ◦ (f ◦ ϕ) is also a lifting of

f ◦ϕ starting at f(c). By uniqueness of path lifting we have that f ◦ (π/C̃)−1 ◦ϕ =

(π/Ã)−1 ◦ (f ◦ ϕ) so the ends are the same, and, consequently, f(c1) ∈ Ã. Since c1

was chosen arbitrarily, f(C̃) ⊂ Ã.

Back now to the proof of the theorem. From now on if Ã is a subset of E, then

A is its projection, that is, A = π(Ã).

Let f ∈ p(Cπ(E)), let b ∈ B and let f(b) ∈ A, where A is an evenly covered

open ball; then f ∈ S(b, A). Let e ∈ π−1(b) and let f be a lifting of f in Cπ(E);

then f ∈ S(e, Ã), where Ã is an appropriate slice of A. Our goal is to prove that

the restriction of p, p′:S(e, Ã) → S(b, A) is a homeomorphism. We show first that

it is 1-1. If f, g ∈ S(e, Ã) and f 6= g, then f, g cannot be liftings of the same map

B → B, for if this were the case, then f(e) = g(e), since Ã is a slice of A. But E is

connected and uniqueness of the lifting implies f = g which is a contradiction. Next

we show that p′ is onto. Let h ∈ S(b, A); since E is locally contractible and π is

regular, the group G(E/B) of deck transformations acts transitively on the fibers.

Let h1 ∈ Cπ(E) is a lifting of h (subbasic elements S(C,A) are always meant with

respect to appropriate subspaces; hence, h ∈ S(b, A) means h ∈ S(b, A)∩p(Cπ(E)))

and set a = Ã ∩ π−1(h(b)). If r ∈ G(E/B) satisfies r(h1(e)) = a, then h = r ◦ h1 is

the lifting of h we need, and we are done.

We now prove that p′
−1

is continuous. This will finish the proof since p′ is

continuous.

Let h ∈ S(e, Ã); a typical basic neighborhood of h in S(e, Ã) looks like S(e, Ã)∩

(∩n
i=1S(D̃i, Ãi)), where D̃i and Ãi are balls of the type described in Claim 2. Hence,
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it is sufficient to find a neighborhood Wi of h = p′(h), i = 1, 2, . . . , n, such that

p′
−1

(Wi) ⊂ S(e, Ã) ∩ S(D̃i, Ãi), i = 1, 2, . . . , n.

So, to simplify notation, we take a neighborhood S(e, Ã)∩S(D̃, Ṽ ) of h, where

D̃, Ṽ are as in Claim 2. Let d ∈ D̃; we join e and d by a path ϕ. Then π ◦ ϕ

is a path from b to d = π(d) (E, B are locally path-connected; since they are

also connected, then are path-connected). The composition h ◦ ϕ defines a path

starting at some point in Ã and ending at some point in Ṽ . We cover (h ◦ϕ)([0, 1])

by a finite number of open balls of the type of Claim 2, say Ã0, Ã1, . . . , Ãk; then

M = {(h ◦ ϕ)−1(Ãi)}
k
i=0 is an open cover of [0, 1] and as such it has a Lebesgue

number, that is, there is n ∈ N such that [j/n, (j + 1)/n] is a subset of some

element in M , where j = 0, 1, . . . , n − 1. By rearranging and allowing repetitions

if necessary, we may say that [j/n, (j + 1)/n] ⊂ (h ◦ ϕ)−1(Ãj), j = 0, 1, . . . , n− 1,

and so (h ◦ ϕ)([j/n, (j + 1)/n]) ⊂ Ãj , j = 0, 1, . . . , n − 1. Let Ã00 be the path-

component of Ã∩Ã0 containing (h◦ϕ)(0), Ãj,j+1 the path component of Ãj ∩Ãj+1

containing (h ◦ ϕ)((j + 1)/n), j = 0, 1, . . . , n − 2, Ãn−1,n the path component of

Ãn−1 ∩ Ṽ containing (h ◦ ϕ)(1). All these path-components are open sets, since

they are path-components of locally path-connected sets. Now taking projections,

we have that the set

W = S(ϕ(0), A00)∩

[∩n−1
j=0 [S(ϕ[j/n, (j + 1)/n]), Aj) ∩ S[ϕ((j + 1)/n), Aj,j+1)] ∩ S(D,V )

is a neighborhood of h. Let σ ∈ W . We need to prove that the lifting σ of σ, such

that σ(e) ∈ Ã, satisfies σ(d) ⊂ Ṽ ; then Claim 3 will give σ(D̃) ⊂ Ṽ and we will

be done. We join first (σ ◦ ϕ)(0) and (h ◦ ϕ)(0) by a path β lying entirely in A00.

Then we join (σ ◦ϕ)(1/n) and (h ◦ϕ)(1/n) by a path γ lying entirely in A01. After

reparametrization, we obtain paths σ ◦ϕ and β ⋆ (h ◦ϕ) ⋆ γ−1 which start and end

at the same point (by ⋆ is meant the obvious composition of paths). But A0 is

contractible, so σ ◦ϕ is homotopic to β ⋆ (h◦ϕ)⋆γ−1. Let β and γ be the liftings of

β and γ which lie in Ã00 and Ã01, respectively; then β ⋆ (h ◦ ϕ) ⋆ γ−1 is a lifting of

β ⋆ (h ◦ ϕ) ⋆ γ−1 (reparametrize). Reparametrizing (σ ◦ ϕ)/[0, 1/n], we are getting

a lifting of σ ◦ ϕ which starts at the same point with β ⋆ (h ◦ ϕ) ⋆ γ−1, and since

σ◦ϕ ∼ β⋆(h◦ϕ)⋆γ−1 it must end at the same point, thus, (σ◦ϕ)(1/n) ∈ Ã01. In a

similar way we show that (σ ◦ϕ)(2/n) ∈ Ã12 (using [1/n, 2/n] and contractibility of

A1 and path-connectivity of A12) and finally following the path all the way down, we
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will get that (σ◦ϕ)(1) ∈ Ãn−1,n ⊂ Ṽ , so σ(d) ∈ Ṽ . Thus, the continuity of p′
−1

has

been established and S(e, Ã) is homeomorphic to S(b, A). Let {Ãj}, j ∈ J be the

family of all slices of A. As we saw above, since π is regular, for each j ∈ J there is a

lifting f j of f satisfying f j(e) ∈ Ãj ; then for each j ∈ J , S(e, Ãj) is homeomorphic

to S(b, A) (we just proved it). On the other hand p−1(S(b, A)) = ∐j∈JS(e, Ãj).

Thus, S(b, A) is an evenly covered neighborhood of f , and p is a covering map.

Regularity follows from Propositions 1, 2, and 3.
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