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AN INFORMAL APPROACH TO FORMAL INNER PRODUCTS

Richard Hammack

The fact that linear algebra is a distillation of our perception of physical space

gives teachers and students of the subject a vast source of heuristic arguments.

Almost every concept or result in finite-dimensional linear algebra can be illustrated

or explained with a well-chosen geometric figure or schematic diagram.

The formal definition of an inner product seems to be an exception. Students

who appreciate geometric reasoning are often mystified when, usually in their sec-

ond linear algebra course, they first encounter this definition. They agree that an

inner product gives a space a sense of length and orthogonality, but they are per-

plexed by the fact that its formal properties seem to have no geometric rationale.

“Why,” they ask, “is the definition phrased the way it is?”

In teaching a second-semester course recently, I devised an answer to that

question. My strategy is the reverse of the standard one. I begin with intuitive

notions about length and orthogonality, and derive the formal inner product from

them, rather than the other way around. This article is an outline of my approach.

When introducing the formal definition of an inner product, I first remind

the students of the standard inner product on Rn. They have been exposed to

it in their previous courses, and have an understanding of how it gives Rn metric

properties. Then I give the formal definition of an inner product, pointing out that

the standard inner product on R
n satisfies this definition.

An inner product on a vector space V over a field F, where F is either the real

numbers R or the complex numbers C, is a function 〈 , 〉:V × V → F with the

following properties. If u, v, w ∈ V , and c ∈ F, then

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈cv, w〉 = c〈v, w〉

3. 〈w,w〉 > 0 if w 6= 0

4. 〈v, w〉 = 〈w, v〉.

Further, from properties 1, 2, and 4, it follows that

5. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

6. 〈v, cw〉 = c〈v, w〉.

The bar represents complex conjugation, which is superfluous when F = R [1].
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To explain the reasons behind properties 1–6, I tell my students to first consider

the case of real vector spaces, that is to assume V is a finite dimensional vector

space over F = R. (We momentarily postpone the complex case F = C.) I ask

them to imagine that V is magically endowed with length and orthogonality. I

then explain that we are going to make three intuitively reasonable assumptions

about the behavior of this length and orthogonality, and that these assumptions

will lead naturally to a function 〈 , 〉:V × V → R satisfying properties 1–6.

The first assumption involves length. Intuitively, the length of a vector w in

V should be a nonnegative real number which we will denote as ‖w‖. If w 6= 0,

we view the span of w as a copy of the real line in V . Multiplying w by a number

c ∈ R scales w along this line, and we expect that the length of w gets scaled by a

factor of |c|. This means ‖cw‖ = |c| ‖w‖. This is our first assumption.

Assumption A: There is a length function ‖ ‖:V → R satisfying ‖w‖ > 0

whenever w 6= 0, and ‖cw‖ = |c| ‖w‖ for all w ∈ V and c ∈ F.

Next, consider orthogonality. Our experience with physical space suggests that

two vectors v and w can be orthogonal, and we express this relationship as v ⊥ w.

Intuition demands that a nonzero vector w is not orthogonal to itself, nor to any of

its nonzero scalar multiples. Moreover, the set span(w)⊥ of all vectors orthogonal

to every element of span(w) is a subspace of V having dimension dim(V ) − 1.

Therefore, V = span(w)⊕ span(w)⊥, and the following assumption is reasonable.

Assumption B: There is a symmetric relation ⊥ on V with the property that

for any vector w ∈ V , the set span(w)⊥ = {v ∈ V |v ⊥ cw for all c ∈ F} is a

subspace, and V = span(w) ⊕ span(w)⊥.

A triangle in V can be thought of as two independent vectors v and w (regarded

as “sides”), plus the additional side v−w. A triangle is right if two of its sides are

orthogonal. Our final assumption is that similarity of right triangles is a meaningful

concept.

Assumption C: If two right triangles share a common (nonright) angle, then

they are similar in the usual Euclidean sense. That is, ratios of corresponding sides

are equal.

Suppose now that these assumptions hold for our finite-dimensional space V

over R. If w ∈ V is a nonzero vector, then Assumption B guarantees the existence

of a projection operator Ew:V → V whose range is the one-dimensional space



VOLUME 17, NUMBER 3, FALL 2005 155

span(w), and whose kernel is the hyperplane span(w)⊥. Notice that for any v ∈ V ,

the vector Ew(v) is a scalar multiple of w. This observation leads to the definition

of a function 〈 , 〉:V × V → F. We will subsequently verify that this function

satisfies Properties 1–6, so we call it the inner product on V .

Definition 1: Given Assumptions A, B, and C, the inner product on V is the

function 〈 , 〉:V ×V → F defined as follows. If w is zero, then 〈v, w〉 = 0. Otherwise,

Ew(v) = 〈v, w〉
w

‖w‖
2
.

Here is the intuitive picture. The vector Ew(v) is in the one-dimensional space

span(w) = span(w/‖w‖
2
). The inner product 〈v, w〉 is the real number that w/‖w‖

2

must be multiplied by to equal Ew(v). This is illustrated in Figure 1.

Figure 1.

The number 〈v, w〉 gives information about the spatial relationship between v

and w. Notice that 〈v, w〉 = 0 if and only if v ∈ ker(Ew), meaning v ∈ span(w)⊥,

so v is orthogonal to w. Also, since w = Ew(w) = 〈w,w〉w/‖w‖2, we have 〈w,w〉 =

‖w‖
2
.

Now we verify that 〈 , 〉 satisfies properties 1–4. Properties 1 and 2 are just

rephrasings of the fact that the projection Ew is linear. By Definition 1, properties

1 and 2 are obviously valid when w = 0, so let us assume w 6= 0. To justify property

1, just notice that since Ew(u+ v) = Ew(u) + Ew(v), Definition 1 gives

〈u+ v, w〉
w

‖w‖2
= 〈u,w〉

w

‖w‖2
+ 〈v, w〉

w

‖w‖2
,
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so 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉. Likewise, since Ew(cv) = cEw(v), we have

〈cv, w〉
w

‖w‖
2
= c〈u,w〉

w

‖w‖
2
,

so 〈cv, w〉 = c〈v, w〉, which is property 2.

Property 3 states the intuitively obvious fact that the projection of a nonzero

vector to its own span produces a nonzero vector. If w is nonzero, then

w = Ew(w) = 〈w,w〉
w

‖w‖
2
,

which means 〈w,w〉 = ‖w‖
2
, so 〈w,w〉 > 0 by Assumption A.

We will next prove Property 4, which, in our case F = R, states that 〈v, w〉 =

〈w, v〉. This property is certainly true if v ⊥ w, because both 〈v, w〉 and 〈w, v〉

are zero. Thus, assume that v and w are not orthogonal, that is neither Ev(w)

nor Ew(v) is zero. There are two possible configurations that can happen here,

illustrated in Figures 2A and 2B. In Figure 2A, Ew(v) and Ev(w) are both positive

scalar multiples of w and v, respectively, and in Figure 2B they are both negative

scalar multiples. Thus, 〈v, w〉 and 〈w, v〉 are either both positive or both negative.

In either case, Assumption C gives

‖Ew(v)‖

‖v‖
=

‖Ev(w)‖

‖w‖
,

and using Definition 1 and Assumption 1, this becomes

|〈v, w〉|

‖w‖ ‖v‖
=

|〈w, v〉|

‖v‖ ‖w‖
.

From this it follows that 〈v, w〉 = 〈w, v〉, which is property 4 in the case F = R.

(It should be mentioned that Assumption C suggests right triangles conform to our

usual Euclidean expectations. For instance, in Figure 2A, Ev(w) is not a negative
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scalar multiple of v. Assumption C can be made more mathematically precise, but

its informal wording is better suited to classroom exposition.)

Figure 2A. Figure 2B.

We have now justified properties 1–4 for real vector spaces (that is for F = R),

and properties 5 and 6 follow immediately from these.

The remainder of this article concerns the complex case F = C. It turns

out that in this case Assumptions A, B, and C are still reasonable, but we need

to be thoughtful about their interpretation. If w is a nonzero vector, then we

view span(w) as a copy of the complex plane V . Multiplication of w by a scalar

c = reiθ ∈ C should be a rotation of w by theta radians in this plane, followed by a

scaling by the factor r = |c| (see Figure 3). Thus, as in the case F = R, we expect

that ‖cw‖ = |c| ‖w‖, which is the content of Assumption A.

Figure 3.

Likewise, Assumption B still makes sense as long as we agree that a nonzero vector

should never be orthogonal to any nonzero multiple of itself. This leads to what is,

at first glance, a somewhat less intuitive phenomenon: Assumption B implies that
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w and iw are not othogonal even though they may “look” orthogonal in span(w).

This is actually reasonable. Intuition suggests that a nonzero scalar multiple of a

vector w should not be orthogonal to w. Thus, in asserting that Assumption B

holds for complex vector spaces, we are abstracting to Cn this “obvious” fact about

Rn.

Again, we define the inner product 〈 , 〉 by Definition 1. The only difference

is that now 〈v, w〉 can be a complex number. Given v, w ∈ V, Ew(v) is in the

one-dimensional space span(w) = span(w/‖w‖
2
). The inner product 〈v, w〉 is the

scalar (possibly a complex number) that w/‖w‖
2
must be multiplied by to equal

Ew(v). This is illustrated in Figure 4. (Compare Figures 1 and 4.)

Figure 4.

Properties 1, 2, and 3 follow exactly as in the real case, but it takes a little

more work to justify property 4. To do this, we first derive property 6.

Property 6 is clearly true if either w or c is zero. Suppose then that neither c

nor w is zero. Notice that the projections Ew and Ecw are equal, for they are both

projections onto the space span(w) = span(cw), and both have null space span(w)⊥

= span(cw)⊥. Thus, Ew(v) = Ecw(v), which by Definition 1 means

〈v, w〉
w

‖w‖
2
= 〈v, cw〉

cw

‖cw‖
2
= 〈v, cw〉

cw

|c|2‖w‖
2

= 〈v, cw〉
cw

cc‖w‖
2
=

〈v, cw〉

c

w

‖w‖
2

.
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(Assumption B was used in the second equality.) Looking at the first and last terms

in this expression, we see 〈v, cw〉 = c〈v, w〉, which is property 6.

Finally, we turn to property 4. First, we are going to show first that property 4

is true when 〈v, w〉 is real, in which case we want to show 〈v, w〉 = 〈w, v〉. Certainly

this is true when v ⊥ w, for then 〈v, w〉 = 0 = 〈w, v〉. So suppose v and w are not

orthogonal, that is neither 〈v, w〉 nor 〈w, v〉 is zero. Now, since 〈v, w〉 is a nonzero

real number, we have a situation that is illustrated in Figure 2, and as in the case

F = R, this gives 〈v, w〉 = 〈w, v〉.

In general, 〈v, w〉 will be a nonreal number, and we want to verify 〈v, w〉 =

〈w, v〉. Since

〈

〈w, v〉w, v
〉

= 〈w, v〉〈w, v〉 ∈ R,

what was said in the previous paragraph implies

〈

〈w, v〉w, v
〉

=
〈

v, 〈w, v〉w
〉

.

Combining this observation with property 6 gives

〈w, v〉〈w, v〉 =
〈

〈w, v〉w, v
〉

=
〈

v, 〈w, v〉w
〉

= 〈w, v〉〈v, w〉.

Comparing the first and last expressions of this equality, we get the desired result

〈v, w〉 = 〈w, v〉.

We have now confirmed that Assumptions A, B, and C lead to a function

〈 , 〉 satisfying properties 1–6. On the other hand, given a function 〈 , 〉 satisfying

properties 1–6, and defining ‖v‖ =
√

〈v, v〉, and v ⊥ w if 〈v, w〉 = 0, one easily

verifies Assumptions A, B and C. Consequently, these assumptions are equivalent

to the existence of an inner product 〈 , 〉.

I believe this geometric presentation of inner products gives students a firmer

conceptual ground on which to build than does the standard axiomatic presentation.

I can introduce inner products from this perspective in a 50-minute class, and still

have some time left over to talk about some related topics, such as the Cauchy-

Schwartz inequality. I have had success with this method, and hope that other

instructors find it useful.
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