
VOLUME 16, NUMBER 1, WINTER 2004 3

A BOUND FOR THE SQUARE OF THE ZEROS

José Luis Dı́az-Barrero

Abstract. In this note we use matrix methods for obtaining an explicit bound
for the moduli of the square of the zeros of a polynomial.

1. Introduction. It is well-known that matrix methods can be used to
obtain certain root-location theorems for polynomial equations. That the zeros of
the monic polynomial

An(z) = a0 + a1z + · · ·+ an−1z
n−1 + zn,

are the eigenvalues of its companion matrix leads to easier methods in obtaining
bounds for the zeros of polynomials [1,2]. Among others, Aziz and Mohammad [3],
by making use of Gershgorin’s Theorem [4], have derived some bounds as a direct
consequence of the above fact. In this note we apply Gershgorin’s result to obtain,
as far as we know, a new explicit bound for the squares of the zeros of An(z).

Theorem 1. (Gershgorin). Let A = (aij) be an n× n complex matrix, and let
Ri be the sum of the moduli of the off-diagonal elements in the ith row. Then each
eigenvalue of A lies in the union of the circles

|z − aii| ≤ Ri, i = 1, 2, . . . , n.

The analogous result holds if columns of A are considered.

2. The Main Result. In what follows an explicit expression of the coefficients
of the polynomials whose zeros are the squares of those of An(z) in terms of their
coefficients is given, and one theorem on location of the zeros is proved. It can be
stated as the following theorem.

Theorem 2. Let z1, z2, . . . , zn be the zeros of the monic complex polynomial

An(z) =

n
∑

k=0

akz
k.

Then, z2i , i = 1, 2, . . . , n lies in the disk C = {z ∈ C : |z| ≤ r}, where

r = 2 max
0≤k≤n−1

{

|ak|
2 +

∑n−k+1

j=1 |ak−jak+j |

|ak+1|2

}
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with al = 0 if l < 0 or l > n.

Proof. The preceding statement is a consequence of Gershgorin’s result. In
order to prove it, we will use the larger circles

|z| ≤ |aii|+Ri, i = 1, 2, . . . , n,

instead of the ones given in Theorem 1. Let

Bn(z) =

n
∑

k=0

bkz
k

be the monic complex polynomial whose zeros are z21 , z
2
2 , . . . , z

2
n and let

F (Bn) =









0 0 · · · 0 −b0
1 0 · · · 0 −b1
...

...
. . .

...
...

0 0 · · · 1 −bn−1









be its companion matrix. Setting

D = diag(|a1|
2, |a2|

2, . . . , |an−1|
2, |an|

2),

we form the matrix

D−1FD =













0 0 · · · 0 −b0/|a1|
2

|a1|
2

|a2|2
0 · · · 0 −b1/|a2|

2

...
...

. . .
...

...
0 0 · · · |an−1|

2

|an|2
−bn−1/|an|

2













.

Since the eigenvalues of D−1FD are the same as those of F , i.e., the zeros of Bn(z);
by direct application of Theorem 1, we have

|z2i | ≤ max
1≤k≤n−1

{

|b0|

|a1|2
,

|ak|
2

|ak+1|2
+

|bk|

|ak+1|2

}

, i = 1, 2, . . . , n. (2.1)
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On the other hand, the coefficients of Bn(z) are related to coefficients of An(z) by
the expressions [5]:

bk = (−1)n−k

(

a2k + 2

n−k+1
∑

j=1

(−1)jak−jak+j

)

, k = 0, 1, . . . , n

with al = 0 if l < 0 or l > n. Substituting (2.2) into (2.1), we have

|z2i | ≤ max
1≤k≤n−1

{

|b0|

|a1|2
,
|ak|

2 + |bk|

|ak+1|2

}

= max
1≤k≤n−1

{

|a0|
2

|a1|2
,
|ak|

2 + |(−1)n−k
(

a2k + 2
∑n−k+1

j=1 (−1)jak−jak+j

)

|

|ak+1|2

}

≤ max
1≤k≤n−1

{

|a0|
2

|a1|2
,
2|a2k|+ 2

∑n−k+1

j=1 |ak−jak+j |

|ak+1|2

}

≤ max
0≤k≤n−1

{

|a2k|+
∑n−k+1

j=1 |ak−jak+j |

|ak+1|2

}

, i = 1, 2, . . . , n.

Note that the equality holds only when a0 = 0.
Finally, we have to prove (2.2). We argue by mathematical induction. The

first cases when n = 1, 2, 3 can be checked by inspection. Next, we assume that the
following expression holds

Bn(z) =

n
∑

k=0

(−1)n−k

[

a2k + 2

n−k+1
∑

j=1

(−1)jak−jak+j

]

zk.

We have to prove that

Bn+1(z) = zn+1 +

n
∑

k=0

(−1)n−k+1

[

a2k + 2

n−k+2
∑

j=1

(−1)jak−jak+j

]

zk.
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In fact,

Bn+1(z) = Bn(z)(z − z2n+1)

=

{ n
∑

k=0

(−1)n−k

[

a2k + 2

n−k+1
∑

j=1

(−1)jak−jak+j

]

zk
}

(z − z2n+1)

=

n
∑

k=0

(−1)n−k

[

a2k + 2

n−k+1
∑

j=1

(−1)jak−jak+j

]

zk+1

− z2n+1

{ n
∑

k=0

(−1)n−k

[

a2k + 2

n−k+1
∑

j=1

(−1)jak−jak+j

]

zk
}

= (−1)n+1a20z
2
n+1 + (−1)n

[

a20 + z2n+1(a
2
1 + 2(−1)1a0a2)

]

z + · · ·

+ (−1)1
[

a2n−1 + 2(−1)1an−2 + z2n+1

]

zn + zn+1. (2.3)

Finally, taking into account that

An+1(z) = An(z)(z − zn+1) = zn+1 +

n
∑

k=1

(ak−1 − akzn+1)z
k − a0zn+1

=

n+1
∑

k=0

an+1,kz
k, an+1,n+1 = 1,

and (2.3), we have

Bn+1(z) = (−1)n+1a2n+1,0 + (−1)n[a2n+1,1 + 2(−1)1an+1,0an+1,2]z + · · ·

+ (−1)1[a2n+1,n + 2(−1)1an+1,n−1]z
n + zn+1

= zn+1 +

n
∑

k=0

(−1)n+1−k
[

a2n+1,k + 2

n−k+2
∑

j=1

(−1)jan+1,k−jan+1,k+j

]

zk
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and (2.2) is proved. Note that the first subscript in the preceding expressions has
been used for pointing out the polynomial degree. This completes the proof of
Theorem 2.

For example, if we consider the polynomial

A(z) = z3 − 1.1z2 − 1.2z + 1.3,

the squares of all its zeros lie in the disk C = {z ∈ C : |z| < r} where r ≃ 4.82.
This bound is sharper than the explicit bound of Cauchy D = {z ∈ C : |z| < 5.3}.
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