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SOME GENERALIZATIONS OF PARACOMPACTNESS

Samer Hamed Al Ghour

Abstract. In this paper we introduce the concepts of ω-

paracompactness and countable ω-paracompactness as generalizations of

paracompactness. We characterize each of them. The study deals with

subspaces, products and mappings of each. We conclude this paper with

various counterexamples relevant to the relations among the concepts of

this paper.

1. Introduction. As defined by Dieudonné [4], a Hausdorff space

X is called paracompact if each open covering of X admits a locally finite

open refinement. Generalizations of paracompactness have been studied by

several authors [1, 5, 10]. The purpose of the present paper is to study

some new generalizations of paracompactness, namely ω-paracompactness

and countable ω-paracompactness. We characterize each of them and study

some of their properties. The study deals with subspaces, products and

mappings of each. We conclude this paper with various counterexamples

relevant to the relations among the concepts of this paper.

All spaces in this paper are assumed to be T1. Throughout this paper

we follow the notions and conventions of [7]. Now, we list some main

definitions and results which will be helpful in obtaining the main results.

Definition 1.1. A point x of a space X is called a condensation point

of the set A if any arbitrary neighborhood of the point x contains an un-

countable subset of this set.

Definition 1.2. [9] A subset of a space X is called ω-closed if it contains

all its condensation points. The complement of an ω-closed set is called ω-

open set. Also, if A ⊂ X , then A will denote the intersection of all ω-closed

sets which contain A.

Definition 1.3. [9] A mapping f :X → Y is called ω-closed if it maps

closed sets onto ω-closed sets.

Observe that A is ω-open if and only if for every x in A there is an

open set U and a countable subset C such that x ∈ U − C ⊂ A.
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Definition 1.4. Let X be a space and let A ⊂ X . Then we define the

ω-interior of A; denoted by Intω(A); by

Intω(A) =
⋃

{

B : B is ω-open in X and B ⊂ A

}

.

It is clear that every open set is ω-open. However, the converse is not true.

To see this, let X = R be the set of real numbers with the usual topology.

Let A be the set of irrational numbers, then A is ω-open which is not open.

For any topological space X , it is easy to prove the following facts:

(a) The intersection of any two ω-open sets of X is ω-open.

(b) The arbitrary union of ω-open sets of X is ω-open.

(c) If A is a subset of X , then A is ω-closed if and only if A = A.

(d) If A is a subset of X , then A is ω-open if and only if A = Intω(A).

(e) If A is a subset of X , then x ∈ A if and only if U ∩ A 6= ∅ for any

ω-open set U containing x.

Definition 1.5. [6] A space X is a P-space if the countable intersection

of open sets in X is open. A space X is locally countable if every point in

X has a countable neighborhood.

Definition 1.6. [3] A family {Aα : α ∈ Λ} of subsets of a space X is

locally countable if for each x ∈ X there exists an open neighborhood

U such that the family {α ∈ Λ : U ∩ Aα 6= ∅} is countable. A space X is

paralindelof if every open cover has a locally countable open refinement.

Definition 1.7. [2] A space X is countably metacompact if every count-

able open cover of X has a point finite open refinement.

Theorem 1.8. [2] A topological space is countably metacompact if and

only if every decreasing sequence {Fi} of closed sets with empty intersection

has a sequence {Gi} of open sets with

∞
⋂

i=1

Gi = ∅

and Gi ⊃ Fi.
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2. ω-Local Finiteness, ω-Regularity, and ω-Normality.

Definition 2.1. A family {Aα : α ∈ Λ} of subsets of a topological space

X is ω-locally finite if for every point x ∈ X there exists a ω-open set U

containing x such that {α ∈ Λ : U ∩ Aα 6= ∅} is finite.

The following result follows directly.

Proposition 2.2. If {Aα : α ∈ Λ} is a ω-locally finite family of subsets

of a space X , then

⋃

{Aα : α ∈ Λ} =
⋃

{

Aα : α ∈ Λ
}

.

From now on, for the space X , A
∼

will denote a family of subsets of X .

Theorem 2.3. If A
∼

is a ω-locally finite family of subsets of a space X ,

then A
∼

is locally countable.

Proof. Suppose that A
∼

is ω-locally finite and let x ∈ X . Choose an

open set U and a countable set C such that x ∈ U − C and U − C meets

at most finitely many members of A
∼
. Since A

∼
is point finite, y belongs to

finite members of A
∼

for each y ∈ C. So (U − C) ∪ C must meet at most

countably many members of A
∼
. The result follows since U ⊂ (U − C) ∪C.

Theorem 2.4. Let X be a space and let A
∼

be a family of subsets of X .

(i) If X is P -space then A
∼

is locally finite if and only if A
∼

is ω-locally

finite.

(ii) If X is a locally countable space, then A
∼

is ω-locally finite if and only

if A
∼

is point finite.

Proof. The proof is straightforward.

A mapping f :X → Y is finite to one if f−1(y) is finite for every y ∈ Y .

Theorem 2.5. Let f :X → Y be a finite to one ω- closed mapping from

X onto Y . If A
∼

is ω-locally finite in X , then f(A
∼
) is ω-locally finite in Y .

Proof. Let y ∈ Y , then f−1(y) is a nonempty finite say, f−1(y) =

{x1, x2, . . . , xn}. If A
∼

is ω-locally finite, then for each 1 ≤ i ≤ n there

exists an open set Ui and a countable subset Ci such that x ∈ Ui −Ci and

Ui − Ci meets at most finitely many members of A
∼
. Let

G =

( n
⋃

i=1

Ui

)

−
n
⋃

i=1

(Ci −Di),
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where Di = f−1(y) − {xi}, then G meets at most finitely many members

of A
∼

and f−1(y) ⊂ G. Now V = Y − f(X − G) is ω-open, moreover,

y ∈ V . Finally, if V ∩ f(A) 6= ∅ for some A ∈ A
∼
, pick a ∈ A such that

f(a) ∈ V , then a ∈ f−1(V ) = X − f−1(f(X − G)) ⊂ X − (X − G) = G.

Thus, A∩G 6= ∅. Hence, V meets at most finitely many members of f(A
∼
).

Therefore, f(A
∼
) is ω-locally finite.

Theorem 2.6. Let X be a topological space with the property that

every nonempty open set is uncountable. If A is ω-open in X then A = A.

Proof. Since the result is obvious whenever A = ∅, we may assume

A 6= ∅. Let x ∈ A and let U be any ω-open subset of X containing x.

Let V1 be an open set in X and C1 be a countable subset of X such that

x ∈ V1 − C1 ⊂ U . Since x ∈ V1 ∩ A, V1 ∩ A 6= ∅. Let V2 be an open

set in X and C2 be a countable subset of X such that V2 − C2 ⊂ A and

V1∩ (V2−C2) 6= ∅. From the assumption V1∩V2 6= ∅ is uncountable. Thus,

(V1 − C1) ∩ (V2 − C2) 6= ∅. Therefore, U ∩A 6= ∅ and hence, x ∈ A.

Conversely, clearly that A ⊂ A.

Definition 2.7. A space X is said to be

(i) ω-regular if whenever F is closed in X and x ∈ X − F , then there are

disjoint ω-open and open sets U and V , respectively with x ∈ U and

F ⊂ V .

(ii) ω-normal if whenever A and B are disjoint closed sets in X , there are

disjoint open and ω-open sets U and V , respectively with A ⊂ U and

B ⊂ V .

The following characterization of ω-normal spaces follows easily.

Theorem 2.8. A space X is ω-normal if and only if whenever A is

closed in X and U is open in X with A ⊂ U , then there is an open set V

in X such that A ⊂ V ⊂ V ⊂ U .

Corollary 2.9. If X is a space with the property that every nonempty

open set is uncountable then X is normal if and only if X is ω-normal.

3. ω-Paracompact Spaces.

Definition 3.1. A topological spaceX is called an ω-paracompact space

if X is a Hausdorff space and every open cover of X has an ω-locally finite

open refinement.

Remark 3.2. Paracompact ⇒ ω-paracompact ⇒ metacompact.
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In the last section, we shall see that the converse of each of the above

implications is not true. However, we have the following consequences of

Theorem 2.4.

Theorem 3.3. Let X be a P -space. Then the following are equivalent.

(i) X is paracompact.

(ii) X is ω-paracompact.

Theorem 3.4. Let X be a locally countable space. Then the following

are equivalent.

(i) X is ω-paracompact.

(ii) X is metacompact.

Although paracompact spaces are normal, we shall see later on that

ω-paracompact spaces are not even regular. However, we have the following

result.

Theorem 3.5. Every ω-paracompact space is ω-regular.

Proof. Let X be an ω-paracompact space. Let F be a closed subset of

X and let x ∈ X − F . Since X is Hausdorff we can choose for every y ∈ F

open set Vy containing y such that x /∈ Vy. Then {Vy : y ∈ F}∪ {X − F}

is an open cover of X and thus has an ω-locally finite open refinement W
∼

.

Take

V =
⋃

{

W ∈ W
∼

: W ∩ F 6= ∅
}

,

then V is open in X and by Proposition 2.2,

V =
⋃

{

W ∈ W
∼

: W ∩ F 6= ∅
}

.

Now F ⊂ V , x ∈ U , and U ∩ V = ∅. Therefore, X is ω-regular.

Question 3.6. Is every ω-paracompact space ω-normal?

Theorem 3.7. If X is ω-paracompact with the property that every

nonempty open set is uncountable, then X is normal.

Proof. Using Theorem 2.6 and a proof similar to that used in Theorem

3.5 we can conclude that X is regular.

Now, suppose A and B are disjoint closed sets in X . For each y ∈ A,

by regularity, find open Vy such that y ∈ Vy and Vy ∩ B = ∅. Now using

ω-paracompactness and Theorem 2.6 we can produce an open set V such

that A ⊂ V and V ∩B = ∅. Thus, X is normal.
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The following relation between ω-paracompact and paralindelof follows

from Theorem 2.3.

Theorem 3.8. Every ω-paracompact space is paralindelof.

Question 3.9. Is every paralindelof space ω-paracompact?

4. Countably ω-Paracompact Spaces.

Definition 4.1. A Hausdorff space X is countably ω-paracompact if

every countable open cover has an ω-locally finite open refinement.

Remark 4.2. Countably paracompact⇒ countably ω−paracompact⇒

countably metacompact.

It will be seen that the converse of each of the above implications is

not true in general. The following results follow from Theorem 2.4.

Theorem 4.3. Let X be a P -space. Then the following are equivalent.

(i) X is countably paracompact.

(ii) X is countably ω-paracompact.

Theorem 4.4. Let X be a locally countable space. Then the following

are equivalent.

(i) X is countably ω-paracompact.

(ii) X is countably metacompact.

Theorem 4.5. For every Hausdorff spaceX the following are equivalent.

(i) The space X is countably ω-paracompact.

(ii) For every countable open cover {Ui}
∞

i=1 of the space X there exists

an ω-locally finite open cover {Vi}
∞

i=1 of X such that Vi ⊂ Ui for

i = 1, 2, . . . .

(iii) For every increasing sequence W1 ⊂ W2 ⊂ . . . of open subsets of X

satisfying

∞
⋃

i=1

Wi = X,

there exists a sequence F1, F2, . . . of closed subsets of X such that

Fi ⊂ Wi for i = 1, 2, . . . and

∞
⋃

i=1

Intω(Fi) = X.



70 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

(iv) For every decreasing sequence F1 ⊃ F2 ⊃ . . . of closed subsets of X

satisfying

∞
⋂

i=1

Fi = ∅,

there exists a sequence W1,W2, . . . of open subsets of X such that

Fi ⊂ Wi for i = 1, 2, . . . and

∞
⋂

i=1

Wi = ∅.

Proof. (i) ⇒ (ii) Let {Ui}
∞

i=1 be any countable open cover for X . Let

V
∼

be an open ω-locally finite refinement of {Ui}
∞

i=1, for every V ∈ V
∼

choose

a natural number i(V ) such that V ⊂ Ui(V ), and let Vi =
⋃

{V : i(V ) = i}.

Then {Vi}
∞

i=1 is an open ω-locally finite cover of X with Vi ⊂ Ui for i =

1, 2, . . . .

(ii) ⇒ (iii) Let W1 ⊂ W2 ⊂ · · · be an increasing sequence of open

subsets of X such that

∞
⋃

i=1

Wi = X.

By (ii), there exists an ω-locally finite open cover {Vi}
∞

i=1 of X such that

Vi ⊂ Wi for i = 1, 2, . . . , let

Fi = X −
⋃

j>i

Vj ,

then Fi is closed and

Fi ⊂
⋃

j≤i

Vj ⊂
⋃

j≤i

Wj = Wi

for i = 1, 2, . . . . Let x ∈ X . Since {Vi}
∞

i=1 is ω-locally finite, there exists an

ω-open set Ux containing x which meets at most finitely many members of
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{Vi}
∞

i=1 say, Vi1 , Vi2 , . . . , Vim . Let t = max {i1, i2, . . . , im}, then Ux ⊂ Ft.

Thus, x ∈ Intω(Ft) and hence,

∞
⋃

i=1

Intω(Fi) = X.

(iii) ⇒ (iv) Let F1 ⊃ F2 ⊃ · · · be any decreasing sequence of closed

subsets of X satisfying

∞
⋂

i=1

Fi = ∅,

then X − F1 ⊂ X − F2 ⊂ · · · and

∞
⋃

i=1

(X − Fi) = X,

so by (iii) there exists a sequence M1,M2, . . . of closed subsets of X such

that Mi ⊂ X − Fi for each i and

∞
⋃

i=1

Intω(Mi) = X.

Let Wi = X−Mi, then Wi is open and Fi ⊂ Wi for each i. Moreover, since

X −Mi = X − Intω(Mi) for each i and

∞
⋃

i=1

Intω(Mi) = X

we get

∞
⋂

i=1

Wi = ∅.
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(vi) ⇒ (iii) Mimic the proof of (iii) ⇒ (iv).

(iii) ⇒ (i) Let {Ui}
∞

i=1 be any countable open cover for X . Consider

the increasing sequence W1 ⊂ W2 ⊂ . . . of open subsets of X , where

Wi =
⋃

j≤i

Uj .

Since

∞
⋃

i=1

Wi = X,

there exists a sequence F1, F2, . . . of closed subsets of X such that Fi ⊂ Wi

for i = 1, 2, . . . and

∞
⋃

i=1

Intω(Fi) = X.

The set

Vi = Ui −
⋃

j<i

Fj ⊂ Ui

is open for i = 1, 2, . . . since

⋃

j<i

Fj ⊂
⋃

j<i

Wj ⊂
⋃

j<i

Uj ,

it follows that

Ui −
⋃

j<i

Uj ⊂ Vi

and hence, the family {Vi}
∞

i=1 is a cover of X . Every point x ∈ X is

contained in an ω-open set of the form Intω(Fj) with Intω(Fj) ∩ Vi = ∅ for

all i > j. Therefore, the cover {Vi}
∞

i=1 is ω-locally finite.

Corollary 4.6. LetX be a Hausdorff space with the property that every

nonempty open subset of X is uncountable then X is countably paracom-

pact if and only if X is countably ω-paracompact.
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Theorem 4.7. For every ω-normal spaceX the following are equivalent.

(i) X is countably ω-paracompact.

(ii) X is countably metacompact.

Proof. (i) ⇒ (ii) The proof is obvious.

(ii) ⇒ (i) Suppose X is ω-normal countably metacompact space and

let F1 ⊃ F2 ⊃ · · · be a decreasing sequence of closed subsets of X with

∞
⋂

i=1

Fi = ∅.

Since X is countably metacompact, then by Theorem 1.8, it follows that

there exists a sequence S1, S2, . . . of open subsets of X such that Fi ⊂ Si

for i = 1, 2, . . . and

∞
⋂

i=1

Si = ∅.

Since X is ω-normal, for each i, we pick an open subset Wi of X such that

Fi ⊂ Wi ⊂ Wi ⊂ Si. Since

∞
⋂

i=1

Si = ∅ ,

∞
⋂

i=1

Wi = ∅.

Therefore, by Theorem 4.5, X is countably ω-paracompact.

5. Subspaces, Maps and Products.

The following result concerning subspaces can be obtained easily.

Theorem 5.1.

(i) Each of ω-paracompactness and countable ω-paracompactness is hered-

itary with respect to closed subspaces.

(ii) If every open subspace of the topological space X is ω-paracompact

(countably ω-paracompact) then every subspace of X is ω-

paracompact (countably ω-paracompact).

Question 5.2. Is ω-paracompactness (countable ω-paracompactness)

hereditary with respect to Fσ sets?
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Hanai [8] proved that paracompactness and countable paracompact-

ness are inverse invariant under perfect mappings. In the last section, we

shall see that each of ω-paracompactness and countable ω-paracompactness

is not inverse invariant under perfect mappings.

Definition 5.3. A function f :X → Y is said to be strongly continuous

if f is continuous and f−1(U) is ω-open whenever U is ω-open. A strongly

perfect map is just a strongly continuous map which is perfect.

Theorem 5.4. Let X be a Hausdorff space and let f :X → Y be a

strongly perfect map from X onto Y . If Y is ω-paracompact then so is X .

Proof. Let Y be ω-paracompact and let U
∼

be an open cover of X . For

each y ∈ Y , let U
∼y

be a finite subcollection of U
∼

that covers f−1(y), for

every y ∈ Y , choose an open neighborhood Vy of y such that

f−1(Vy) ⊂ Uy =
⋃

{

U : U ∈ U
∼y

}

.

Then V
∼

= {Vy : y ∈ Y } is an open cover of the ω-paracompact space Y and

so it has an ω-locally finite open refinement W
∼

. Take

B
∼

=
{

f−1(W ) : W ∈ W
∼

}

.

Then B
∼

is ω-locally finite open cover of X .

For each W ∈ W
∼

choose a point yW ∈ Y such that W ⊂ VyW
.

Take

A
∼

=
{

f−1(W ) ∩ U : U ∈ U
∼yW

,W ∈ W
∼

}

.

Then A
∼

is an ω-locally finite open refinement of U
∼
. Therefore, X ω-

paracompact.

Corollary 5.5. If X is compact and countable and Y is ω- paracompact

then X × Y is ω-paracompact.

The proof of the following result follows using a method similar to that

used in Theorem 5.4.
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Theorem 5.6. If f is a strongly continuous closed map of a Hausdorff

space X onto a countably ω-paracompact space Y such that the inverse im-

age f−1(y) is countably compact for every point y ∈ Y then X is countably

ω-paracompact.

Corollary 5.7. If X is compact and countable and Y is countably ω-

paracompact then X × Y is countably ω-paracompact.

6. Counter Examples.

In this section, we introduce three examples which answer the converse

of many implications and many questions throughout this paper.

Example 6.1. [10] Let ω1 denote the first uncountable ordinal and let

[0, ω1] be the space of all ordinal α ≤ ω1 endowed with the order topology.

This example gives us that countable ω-paracompactness does not imply

ω-paracompactness, ω-paracompactness is not hereditary under open sub-

spaces and ω-normal spaces need not be ω-paracompact spaces.

Example 6.2. [11] The irrational slope topology with the set X =

{(x, y) : y ≥ 0, x, y are rationals} gives us that ω-paracompactness does not

imply countable paracompactness, ω-paracompactness does not imply para-

compactness, ω-paracompactness does not imply regularity, ω-normality

does not imply regularity and countable ω-paracompactness does not im-

ply countable paracompactness.

Hanai [8] proved that in the realm of Hausdorff spaces, countable para-

compactness is invariant of closed continuous mappings with countably

compact fibers. This result is useful to study the following example.

Example 6.3. Let Y = [0, 1]×X be the product space of the subspace

[0, 1] of the usual topology and the irrational slope topology X . If Y is ω-

normal then by Corollary 2.9, it must be normal, thus X is normal which

is not true. If Y is countably ω-paracompact then by Corollary 4.6, it will

be countably paracompact. Therefore, X must be countably paracompact

which is not true.

From the previous example we conclude the following.

1. Metacompactness does not imply ω-paracompactness.

2. Countable metacompactness does not imply countable ω-paracompactness.

3. The product of two ω-normal spaces one of which is compact and

metric need not be ω-normal.
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4. The product of two countably ω-paracompact spaces one of which is

compact and metric need not be countably ω-paracompact.

5. The product of two ω-paracompact spaces one of which is compact and

metric need not be ω-paracompact.

6. Countable ω-paracompactness need not be inverse invariant of perfect

open mappings.

7. ω-paracompactness need not be inverse invariant under perfect open

mappings.

8. Continuity does not imply strong continuity.

9. Perfectness of mappings does not imply strong perfectness.

At the end of this section we raised the following question.

Question 6.4. Is every ω-paracompact regular space paracompact?
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4. J. Dieudonné, “Uni Généralization des Espaces Compact,” J. Math.

Pures. Appl., 23 (1944), 65–76.

5. C. H. Dowker, “On Countably Paracompact Spaces,” Canada J. Math,

3 (1951), 219–224.

6. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nos-
trand, Princeton, NJ, 1960.

7. R. Engelking, General Topology, Hilderman, Berlin, 1989.

8. S. Hanai, “On Closed Mappings,” Proc. Japan Acad., 32 (1956), 388–
391.

9. H. Z. Hdeib, “ω-closed Mappings,” Revista Colombiana de Mathemat-

icas, Vol. XVI (1982), 65–78.

10. T. Ishii, “Some Characterizations of m-paracompact Spaces,” Proc.

Japan Acad., 38 (1962), 480–483.

11. L. A. Steen and J. Seebach, Counterexamples in Topology, Holt, New
York, 1970.



VOLUME 18, NUMBER 1, 2006 77

Mathematics Subject Classification (2000): 54D20

Samer Hamed Al Ghour
Department of Mathematics and Statistics
Jordan University of Science and Technology
Irbid 22110, Jordan
email: algore@just.edu.jo


