
TRANSLATIONAL SURFACES

ANDREW CRUTCHER

Abstract. A translational surface is a rational surface generated
from two rational space curves by translating one curve along the
other curve. In this paper, we utilize matrices to represent transla-
tional surfaces, and give necessary and sufficient conditions for a real
rational surface to be a translational surface.

1. Introduction

A translational surface is a rational surface generated from two rational
space curves by translating either one of these curves parallel to itself in such
a way that each of its points describes a curve that is a translation along
the other curve. Since translational surfaces are generated from two space
curves, translational surfaces have simple representations. The simplest
and perhaps the most common representation of a translational surface is
given by the rational parametric representation h◦(s; t) = f◦(s) + g◦(t),
where f◦(s) and g◦(t) are two rational space curves. The goal of this paper
is to utilize matrices to represent and identify translational surfaces.

Translational surfaces are being studied since they have uses within com-
puter graphics and computer aided design. Naturally, finding ways to repre-
sent these surfaces along with identifying them using these representations
is going to be an area of interest for study. Previous work has been done
to find two space curves to generate a given translational surface which
revolves around finding a parametrization of a curve that could help gen-
erate the translational surface and then finding the second curve needed,
based on the first [2]. Other work has focused on taking the parametric
representation of a translational surface and finding the implicit equation
of the surface by utilizing a support function for the surface [1]. In this pa-
per, we study translational surfaces via matrix representations. We utilize
elementary matrix operations to provide necessary and sufficient conditions
for a real rational surface to be a translational surface. As a by-product,
we also obtain two generating space curves if the given rational surface is
a translational surface.
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This paper is structured in the following fashion. In Section 2, we intro-
duce our notation, define translational surfaces, and provide several exam-
ples of translational surfaces. In Section 3, we give matrix representations
for translational surfaces to prepare for the proof in the following section.
In Section 4, we identify translational surfaces, that is to give necessary and
sufficient conditions for a real rational surface to be a translational surface.
In Section 5, we conclude the paper. We provide illustrative examples
throughout the paper.

2. Translational Surfaces in Real 3-Space

Throughout this paper, let R[s] be the polynomial ring in one variable
s, and R[s, t] the polynomial ring in two variables s and t. The following
notation denotes the polynomial and rational forms of the same vector
valued function a:

a(s) = [a0(s), a1(s), a2(s), a3(s)] ∈ R
4[s], polynomial form,

a◦(s) =

(

a1(s)

a0(s)
,
a2(s)

a0(s)
,
a3(s)

a0(s)

)

∈ R
3(s), rational form.

In real 3-space, a rational surface

h◦(s; t) = f◦(s) + g◦(t), (1)

is called the translational surface generated by the rational space curves
f◦(s) and g◦(t)

f◦(s) =

(

f1(s)

f0(s)
,
f2(s)

f0(s)
,
f3(s)

f0(s)

)

, g◦(t) =

(

g1(t)

g0(t)
,
g2(t)

g0(t)
,
g3(t)

g0(t)

)

, (2)

where fi ∈ R[s] and gi ∈ R[t] with max(deg(fi(s))) = m, max(deg(gi(t))) =
n, and gcd(f) = gcd(f0, f1, f2, f3) = gcd(g) = gcd(g0, g1, g2, g3) = 1.

Translational surfaces are typical modeling surfaces in architecture and
computer aided design. Among the non-degenerate quadratic surfaces, el-
lipsoids, elliptical (and circular) cones, and hyperboloids of one or two
sheets cannot be constructed as translational surfaces, that is, these surfaces
do not admit a rational parametrization given by equation (1). However,
elliptical (and circular) cylinders, parabolic cylinders, hyperbolic cylinders,
elliptical (and circular) paraboloids, and hyperbolical paraboloids can be
constructed as translational surfaces. It is easy to picture that elliptical
(and circular), parabolic, or hyperbolic cylinders are translational surfaces
generated by translating an ellipse (and circle), parabola, or hyperbola
along a straight line. Next, we provide examples of a circular paraboloid,
a parabolic cylinder, and a hyperbolical paraboloid constructed as transla-
tional surfaces.
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Example 2.1. The circular paraboloid z = x2 + y2 +2 is the translational

surface given by the parametric representation:

h◦ = f◦ + g◦, f◦(s) =
(2s, 0, 2s2 + 2)

2s2
, g◦(t) =

(0, 2t, 2t2 + 2)

2t2
,
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Figure 1. Circular paraboloid.

To verify the implicit equation of this parametric representation, we ob-

serve that

(x, y, z) =
(2s, 0, 2s2 + 2)

2s2
+

(0, 2t, 2t2 + 2)

2t2
=

(

1

s
,
1

t
, 2 +

1

s2
+

1

t2

)

,

and therefore,

z =
1

s2
+

1

t2
+ 2 = x2 + y2 + 2.

Hence, the circular paraboloid z = x2 + y2 + 2 is a translational surface.

Example 2.2. The parabolic cylinder z =
−x2

4
is the translational surface

given by the parametric representation:

h◦ = f◦ + g◦, f◦(s) =
(4s2, 0,−s3)

4s
, g◦(t) =

(0, 3t2, 0)

3t
.

142 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 2



TRANSLATIONAL SURFACES

−4
−2

0
2

4
−5

0

5−5

0

Figure 2. Parabolic cylinder.

To verify the implicit equation of this parametric representation, we ob-

serve that

(x, y, z) =
(4s2, 0,−s3)

4s
+

(0, 3t2, 0)

3t
=

(

s, t,
−s2

4

)

,

and therefore,

z =
−s2

4
=

−x2

4
.

Hence, the parabolic cylinder z =
−x2

4
is a translational surface.

Example 2.3. The hyperbolical paraboloid z = y2 − 3x2 +5 is the transla-

tional surface given by the parametric representation:

h◦ = f◦ + g◦, f◦(s) =
(s4, s2, 1 + 3s4)

s4
, g◦(t) =

(t− t2, 0,−3 + 2t2)

t2
.
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Figure 3. Hyperbolical paraboloid.

To verify the implicit equation of this parametric representation, we observe

that

(x, y, z) =
(s4, s2, 1 + 3s4)

s4
+

(t− t2, 0,−3 + 2t2)

t2
=

(

1

t
,
1

s2
,
1

s4
−

3

t2
+ 5

)

,

and therefore,

z =
1

s4
−

3

t2
+ 5 = y2 − 3x2 + 5.

Hence, the hyperbolical paraboloid z = y2−3x2+5 is a translational surface.

3. Matrix Representations of Translational Surfaces

In this paper, we will study translational surfaces using matrices. To do
so, we will first introduce a few notations.

Definition 3.1. Given any two vectors a = [a0, a1, a2, a3] and
b = [b0, b1, b2, b3], we define the following operations:

a• = [a0,−a1,−a2,−a3], a∗b = [a0b0, a0b1+b0a1, a0b2+b0a2, a0b3+b0a3].

We note that there exists an identity element e = [1, 0, 0, 0] as e ∗ a =
[a0, a1, a2, a3] = a. We also note that
a ∗ a• = [a0, a1, a2, a3] ∗ [a0,−a1,−a2,−a3] = [a20, 0, 0, 0] = a20e.

Remark 3.2. Note that the operation ∗ is commutative and associative.
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Proof. To verify this, we check

a ∗ b = [a0b0, a0b1 + b0a1, a0b2 + b0a2, a0b3 + b0a3]

= [b0a0, b0a1 + a0b1, b0a2 + a0b2, b0a3 + a0b3]

= b ∗ a.

Moreover, let c = [c0, c1, c2, c3]. Then

a ∗ (b ∗ c) = a ∗ [b0c0, b0c1 + c0b1, b0c2 + c0b2, b0c3 + c0b3]

= [a0b0c0, a0b0c1 + a0c0b1 + a1b0c0,

a0b0c2 + a0c0b2 + a2b0c0, a0b0c3 + a0c0b3 + a3b0c0]

= [(a0b0)c0, (a0b0)c1 + (a0b1 + a1b0)c0,

(a0b0)c2 + (a0b2 + a2b0)c0, (a0b0)c3 + (a0b3 + a3b0)c0]

= [a0b0, a0b1 + b0a1, a0b2 + b0a2, a0b3 + b0a3] ∗ c

= (a ∗ b) ∗ c.

�

To represent the translational surfaces via matrices, it is necessary to
consider a homogeneous representation of the translational surface h(s, t)
generated by the curves f(s) and g(t), where

f(s) = [f0(s), f1(s), f2(s), f3(s)] ∈ R
4[s],

g(t) = [g0(t), g1(t), g2(t), g3(t)] ∈ R
4[t],

h(s; t) = [h0(s; t), h1(s; t), h2(s; t), h3(s; t)]

= [f0(s)g0(t), f0(s)g1(t) + f1(s)g0(t),

f0(s)g2(t) + f2(s)g0(t), f0(s)g3(t) + f3(s)g0(t)]

= f(s) ∗ g(t) by Definition 3.1.

Observe that the parametrization h(s; t) has matrix representations:

h =
[

f0g0 f0g1 + f1g0 f0g2 + f2g0 f0g2 + f3g0
]

= f ∗ g

=









f0
f1
f2
f3









T 







g0 g1 g2 g3
0 g0 0 0
0 0 g0 0
0 0 0 g0









= fMg, where Mg =









g0 g1 g2 g3
0 g0 0 0
0 0 g0 0
0 0 0 g0









,

or

=









g0
g1
g2
g3









T 







f0 f1 f2 f3
0 f0 0 0
0 0 f0 0
0 0 0 f0









= gMf , where Mf =









f0 f1 f2 f3
0 f0 0 0
0 0 f0 0
0 0 0 f0









.
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Let

Ng =









g0 −g1 −g2 −g3
0 g0 0 0
0 0 g0 0
0 0 0 g0









and Nf =









f0 −f1 −f2 −f3
0 f0 0 0
0 0 f0 0
0 0 0 f0









.

Then MgNg = NgMg = g2
0
I and MfNf = NfMf = f2

0
I, where I is the

identity matrix. In the next section, we will determine whether a given
rational parameterized surface is a translational surface via matrices.

4. When is a Rational Surface a Translational Surface?

In this section, we shall give necessary and sufficient conditions for a
real rational surface to be a translational surface and follow up with some
examples.

Theorem 4.1. Given a parametric representation of a rational surface:

H(s; t) = [H0(s; t), H1(s; t), H2(s; t), H3(s; t)] ∈ R
4[s; t].

Suppose H0(s; t) 6= 0, choose any s0 for which H0(s0; t) 6= 0
and gcd(H(s0; t)) = 1. Set

Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
.

Then H(s; t) is a translational surface if and only if Ĥ(s; t) ∈ R
4[s] and

gcd(Ĥ(s; t)) = 1.

Proof. (⇒) IfH(s; t) is a translational surface, then there exist two rational
space curves f(s) and g(t) such that H(s; t) = f(s) ∗ g(t), and gcd(f(s)) =
gcd(g(t)) = 1. Therefore, H0(s0; t) = f0(s0)g0(t) 6= 0 implies that f0(s0) 6=
0, g0(t) 6= 0, and

Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
=

H(s; t) ∗H•(s0; t)

(f0(s0)g0(t))2

=
f(s) ∗ g(t) ∗H•(s0; t)

(f0(s0)g0(t))2
.
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Note that

g(t) ∗H•(s0; t)

=









g0(t)
g1(t)
g2(t)
g3(t)









∗









H0(s0; t)
−H1(s0; t)
−H2(s0; t)
−H3(s0; t)









=









g0(t)H0(s0; t)
−g0(t)H1(s0; t) + g1(t)H0(s0; t)
−g0(t)H2(s0; t) + g2(t)H0(s0; t)
−g0(t)H3(s0; t) + g3(t)H0(s0; t)









=









f0(s0)(g0(t))
2

−f0(s0)g0(t)g1(t)− f1(s0)(g0(t))
2 + f0(s0)g0(t)g1(t)

−f0(s0)g0(t)g2(t)− f2(s0)(g0(t))
2 + f0(s0)g0(t)g2(t)

−f0(s0)g0(t)g3(t)− f3(s0)(g0(t))
2 + f0(s0)g0(t)g3(t)









=









f0(s0)(g0(t))
2

−f1(s0)(g0(t))
2

−f2(s0)(g0(t))
2

−f3(s0)(g0(t))
2









= (g0(t))
2f•(s0).

This implies that

f(s) ∗ g(t) ∗H•(s0; t)

(f0(s0)g0(t))2
=

f(s) ∗ (g0(t))
2f•(s0)

(f0(s0)g0(t))2
=

f(s) ∗ f•(s0)

(f0(s0))2

= Ĥ(s) ∈ R
4[s].

Therefore,

Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
=

f(s) ∗ f•(s0)

(f0(s0))2
= Ĥ(s) ∈ R

4[s].

Moreover, since

f(s) ∗ f•(s0) =









f0(s)f0(s0)
f1(s)f0(s0)− f0(s)f1(s0)
f2(s)f0(s0)− f0(s)f2(s0)
f3(s)f0(s0)− f0(s)f3(s0)









,

the entries of f(s)∗ f•(s0) are linear combinations of the entries of f(s). We
must have that

gcd(Ĥ(s)) = gcd(f(s) ∗ f•(s0)) = gcd(f(s)) = 1.

Thus, we have shown that if H(s; t) is a translational surface, then

Ĥ(s; t) ∈ R
4[s] and gcd(Ĥ(s; t)) = 1.

(⇐) If Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
∈ R

4[s], then let f(s) = Ĥ(s),

and g(t) = H(s0; t). By assumption, gcd(f(s)) = gcd(Ĥ(s)) = 1, and
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gcd(g(t)) = gcd(H(s0; t)) = 1. Furthermore,

f(s) ∗ g(t) = Ĥ(s; t) ∗H(s0; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
∗H(s0; t)

=
H(s; t) ∗ (H•(s0; t) ∗H(s0; t))

H0(s0; t)2

=
H(s; t)H0(s0; t)

2

H0(s0; t)2
(by Definition 3.1)

= H(s; t).

Thus, we have shown that if Ĥ(s; t) ∈ R
4[s] and gcd(Ĥ(s; t)) = 1, then the

rational surface H(s; t) is a translational rational surface. �

We will provide two examples to illustrate our theorem.

Example 4.2. Consider the rational surface

H(s; t) = [s2t3, s2t+ t3s, st3 + t3 + s2t2, s2 + t3].

Since H(1; t) = (t3, t+ t3, 2t3 + t2, 1 + t3), H0(1; t) = t3, gcd(H(1; t)) = 1,

Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
= (s2,−s2 + s,−2s2 + s+1,−s2 + 1) ∈ R

4[s],

and gcd(Ĥ(s; t)) = 1, this rational surface H is a translational surface given

by

H(s; t) = f(s) ∗ g(t), where

f(s) = Ĥ(s; t) = [s2,−s2 + s,−2s2 + s+ 1,−s2 + 1],

g(t) = H(1; t) = [t3, t+ t3, 2t3 + t2, 1 + t3].

Remark 4.3. As shown in the above example, if a rational surface is a

translational surface, then Ĥ(s; t) ∈ R
4[s] and H(s0; t) ∈ R

4[t] are the

generating curves of this translational surface.

Example 4.4. Consider the rational surface

H(s; t) = [s3t3 − s2t2 − st− 1, s2t3 + s3t2 − t+ s,

st3 + t2 + s3t− s2, t3 − st2 + s2t+ s3].

Since H(0; t) = (−1,−t, t2, t3), H0(1; t) = −1, gcd(Ĥ(0; t)) = 1, and
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Ĥ(s; t) =
H(s; t) ∗H•(s0; t)

H0(s0; t)2
= H(s; t) ∗H•(s0; t)

=









s3t3 − s2t2 − st− 1
s2t3 + s3t2 − t+ s

st3 + t2 + s3t− s2

t3 − st2 + s2t+ s3









∗









−1
−t

t2

t3









=









−s3t3 + s2t2 + st+ 1
s3t4 − s3t2 − 2s2t3 − st2 − s

−s3t5 + s2t4 − s3t+ s2

−s3t6 + s2t5 + st4 − s3 − s2t+ st2









6∈ R
4[s],

this rational surface H is not a translational surface.

5. Conclusion

In this paper, we have given a matrix representation for a translational
surface. Utilizing this representation and simple matrix operations, we pro-
vided necessary and sufficient conditions to identify translational surfaces.
For future study, we would want to investigate if the set of translational
surfaces form some sort of algebraic structure with this matrix representa-
tion. Also, while we represent the surfaces as matrices, we can also look to
identify operations which will preserve the property of being a translational
surface.
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