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Abstract. The Stern–Brocot tree is a method of generating or or-

ganizing all fractions in the interval (0, 1) by starting with the end-

points 0
1

and 1
1

and repeatedly applying the mediant operation:

m
(
a
b
, c
d

)
= a+c

b+d
. A recent paper of Aiylam considers two gener-

alizations: one is to apply the mediant operation starting with an
arbitrary interval

(
a
b
, c
d

)
(the fractions must be non-negative), and

the other is to allow arbitrary reduction of generated fractions to

lower terms. In the present paper, we give simpler proofs of some
of Aiylam’s results, and we give a simpler method of generating just

the portion of the tree that leads to a given fraction.

1. Introduction

The Stern–Brocot tree is a method of generating all non-negative frac-
tions reduced to lowest terms and without repetition (see for example [3,
pp. 116–123]). The classical Stern–Brocot tree starts with the two fractions
0
1 and 1

0 (think of 1
0 as +∞) and repeatedly applies the mediant operation.

Definition 1.1. If 0 ≤ a
b < c

d are fractions which may or may not be

reduced to lowest terms, the mediant of
(
a
b ,

c
d

)
is denoted by m

(
a
b ,

c
d

)
and

is defined by m
(
a
b ,

c
d

)
= a+c

b+d .

The fractions can be organized in a binary tree, where each fraction has
two offspring, both formed as a mediant of that fraction and the nearest
fraction to its left or right.

The tree is in two symmetric halves because the first mediant is 0+1
1+0 = 1

1 ,
and as a fraction is generated on the left, its reciprocal is generated on the
right. Therefore, we could also think of it as a way of generating all the
fractions in the interval (0, 1) starting with the fractions 0

1 and 1
1 . The

Farey series Fn is formed by pruning the tree to omit all fractions with
denominators greater than n; see [3, pp. 118–119].

Historically, the Stern–Brocot tree arose as a method of approximating
fractions with large denominators closely by fractions with much smaller
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denominators, in particular in the context of designing collections of gears
for clocks; see for example [2].

A recent paper by Aiylam [1] considers the generalization of this process,
starting with arbitrary non-negative fractions 0 ≤ a

b <
c
d . One intriguing

feature of the classical Stern–Brocot tree is that the mediants are always
in lowest terms and do not need to be reduced. In the generalization, this
is no longer true, even if the starting fractions are in lowest terms; see
Example 4.4 below. Different trees are generated according to whether we
reduce some or all of the fractions to lower or lowest terms. We distinguish
two cases or methods: the “easy” case never reduces any mediants, and the
“harder” case may reduce some mediants.

In this paper it does not matter whether the end points are reduced to
lowest terms or not. However, for convenience only we will reduce a

b ,
c
d to

lowest terms.
In the “easy” first part of this paper (Sections 2–4), we agree not to

reduce any of the mediants to lower terms, if the mediant is not already
reduced to lowest terms. Then, in the “harder” part of the paper (Section
5), we generalize the theory so that the reader can decide for himself which
mediants he wishes to reduce to lowest terms, and also decide if he wishes
to partially or completely reduce any of the mediants to lowest terms. The
second part is harder to prove.

Definition 1.2. We call ∆
(
a
b ,

c
d

)
= bc− ad the delta-value or the ∆-value

of the interval
(
a
b ,

c
d

)
.

We note that if a+c
b+d is not reduced to lowest terms then ∆

(
a
b ,

a+c
b+d

)
=

∆
(
a+c
b+d ,

c
d

)
= ∆

(
a
b ,

c
d

)
= bc − ad. We see that if ∆

(
a
b ,

c
d

)
= bc − ad = 1,

then a+c
b+d is reduced to lowest terms, since b (a+ c)−a (b+ d) = bc−ad = 1.

Also, it is easy to show that 0 ≤ a
b < a+c

b+d < c
d . That is, m

(
a
b ,

c
d

)
∈(

a
b ,

c
d

)
. In this paper, we show that the Stern–Brocot type fractions that are

generated from
(
a
b ,

c
d

)
, uniquely compute all rational numbers x

y ∈
(
a
b ,

c
d

)
,

and this is true whether the mediants are reduced to lowest terms or not.
When

(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
, the mediants generate the Stern–Brocot fractions

in (0, 1).

1.1. The plan. Suppose 0 ≤ a
b <

c
d are fractions reduced to lowest terms,

although this assumption is not needed. We first show that the Stern–
Brocot mediants that are generated by a

b ,
c
d , uniquely compute all rational

numbers q ∈
[
a
b ,

c
d

]
in the easy case, where all mediants are not reduced to

any lower terms. We do this by reducing the problem to the known result
when a

b = 0
1 , c

d = 1
1 . This is the result for the classical Stern–Brocot tree

and is well-known; see for example [1, Theorem 1] or [3, pp. 117–118].
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We also put an upper bound T on the number of steps it takes for the
telescoping search path to reach any given q ∈

[
a
b ,

c
d

]
in this easy case. Of

course, T depends on q. Using this easy case and the upper bound T for
each q ∈

[
a
b ,

c
d

]
as our main machinery, we easily extend the easy case to

the harder case, where the mediants can be reduced to lower terms in any
random and arbitrary way, including partially reducing to lower terms.

The idea that we use is that, when we go down a telescoping search path
to try to find a given q ∈

[
a
b ,

c
d

]
, the mediants in the search path can only be

reduced to lower terms at most T times, where T is a known upper bound.
The search path can be as long as it takes to find q. When the number of
steps between these mediant reductions is as big as T , we can use the easy
case, with its upper bound T , to find the given q ∈

[
a
b ,

c
d

]
. We will also

give a crude fast algorithm at the end of Section 5, which will allow the
reader to completely skip the detailed algorithm that follows Section 5, if
he wishes.

Instead of using the mediants of
(
a
b ,

c
d

)
, we have developed an analogous

theory in which we use e
f ∈

(
a
b ,

c
d

)
in place of m

(
a
b ,

c
d

)
, where e

f is the

unique fraction in
(
a
b ,

c
d

)
that has the smallest possible size e + f . When

∆
(
a
b ,

c
d

)
= bc − ad = 1, we can show that e

f = m
(
a
b ,

c
d

)
= a+c

b+d and, of

course, the size of the e
f equals (a+ c) + (b+ d).

This statement has a very easy proof and it gives a trivial solution to the
problem under discussion when bc− ad = 1. It also gives a very easy proof
to Theorems 1 and 2 of [1]. This fact illustrates that the search algorithm
given in [1] is very different from the one in this paper. In the last section,
we use our machinery to classify 0 < a

b ≤
m
n < x

y <
c
d , where bc − ad = 1

and nx−my = 1.

2. Modified Stern–Brocot Fractions

We first define the levels of the modified Stern–Brocot fractions, then
prove some of their properties.

2.1. Construction. If 0 ≤ a
b <

c
d are fractions reduced to lowest terms, we

define the various levels of the modified Stern–Brocot fractions as follows.
We illustrate the pattern first and then we formalize this pattern.
In Sections 2–4, we agree not to reduce any of the mediants to lowest

terms. In other words, we are computing symbolically. Figure 1 shows a
picture of the following.

We denote L0 =
{
a
b ,

c
d

}
and call L0 level 0. L1, level 1, consists of the

single point p1 = m
(
a
b ,

c
d

)
= a+c

b+d . Note that 0 ≤ a
b < p1 <

c
d .

Using the ordering a
b < p1 <

c
d , we define level 2, denoted L2, as follows.

L2 consists of the two points p2 = m
(
a
b , p1

)
= m

(
a
b ,

a+c
b+d

)
= 2a+c

2b+d ∈
(
a
b , p1

)
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•a
b

•

••

c
d

•

•
p1

p2
•
p3

•
p4

•
p7

•
p8

•
p15

•
p9

•
p10

•
p11

•
p12

•
p13

•
p14

p5 p6

Figure 1. Levels of modified Stern–Brocot fractions.

and p3 = m
(
p1,

c
d

)
= m

(
a+c
b+d ,

c
d

)
= a+2c

b+2d ∈
(
p1,

c
d

)
. Note that a

b < p2 <

p1 < p3 <
c
d .

Using the ordering a
b < p2 < p1 < p3 < c

d , we define level 3 as fol-

lows. Level 3, denoted L3, consists of the four points p4 = m
(
a
b , p2

)
=

m
(
a
b ,

2a+c
2b+d

)
= 3a+c

3b+d ∈
(
a
b , p2

)
and p5 = m (p2, p1) = 3a+2c

3b+2d ∈ (p2, p1) and

p6 = m (p1, p3) = 2a+3c
2b+3d ∈ (p1, p3) and p7 = m

(
p3,

c
d

)
= a+3c

b+3d ∈
(
p3,

c
d

)
.

Note that p4 < p5 < p6 < p7 and a
b < p4 < p2 < p5 < p1 < p6 < p3 <

p7 <
c
d . Using this ordering we define, in a similar way, the eight points

p8 < p9 < p10 < p11 < p12 < p13 < p14 < p15 of level 4.
We continue this construction pattern to create levels L1, L2, L3, L4,

L5, . . ., where each level i ≥ 1 has 2i−1 elements. We emphasize that in
this section we are not reducing our fractions p1, p2, p3, . . . to lowest terms.
We now formalize this pattern.

First, from the construction pattern, we note that the level i ≥ 1 points
alternate with the points of ∪i−1

l=0Ll. Indeed, the members of level Li are the

mediants of the pair of consecutive points of the ordered set ∪i−1
l=0Ll. Also,

by this definition of the construction pattern and by a simple induction, we

can see that each x
y ∈ Li, i ≥ 2, is written as x

y = m
(
x
y ,

x′

y′

)
= x+x′

y+y′ , where

one of x
y ,

x′

y′ is a level i− 1 point and the other x
y ,

x′

y′ lies in the set ∪i−2
k=0Lk.

This follows since the level i− 1 points, i ≥ 2, alternate with the points of
∪i−2
k=0Lk. Figure 1 should make this clear.
As an example of the alternation, we note that the level 4 points are

p8 < p9 < p10 < p11 < p12 < p13 < p14 < p15

and these eight points alternate with the members of

∪k=3
k=0Lk =

{a
b
< p4 < p2 < p5 < p1 < p6 < p3 < p7 <

c

d

}
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as follows:
a

b
< p8 < p4 < p9 < p2 < p10 < p5 < p11

< p1 < p12 < p6 < p13 < p3 < p14 < p7 < p15 <
c

d
.

We now denote level i ≥ 0 by Li, and we denote ∪ik=0Lk = Li. Note that

for i ≥ 1, Li = Li ∪
(
∪i−1
k=0Lk

)
= Li ∪Li−1. Also, we denote ∪∞k=0Lk = L∞.

It is easy to see that the members of L∞ are all distinct since m
(
x
y ,

x
y

)
∈(

x
y ,

x
y

)
and from this we see that the members of L∞ are all distinct since

the members of each Li ∩ Li−1 = φ.

2.2. Properties.

Theorem 2.1. Suppose

Li =

i⋃
k=0

Lk =

{
a

b
= p0 < p1 < p2 < · · · pk =

c

d,

}
, i ≥ 0.

Then ∆
(
pt, pt+1

)
= ∆ = bc − ad for all pairs pt, pt+1 of consecutive

members of the ordered set Li.

Proof. We can assume by induction that if

Li−1 =
{a
b

= p′0 < p′1 < p′2 < · · · < p′s =
c

d

}
then ∆

(
p′t, p

′
t+1

)
= ∆ = bc−ad. First, note from the above that Li = Li∪L.

Now, the set Li consists of the set of mediants m
(
p′t, p

′
t+1

)
, where p′t, p

′
t+1

range over the consecutive members of Li−1. Now, if ∆
(
p′t, p

′
t+1

)
= ∆ =

bc− ad, then we know that ∆
(
p′t,m

(
p′t, p

′
t+1

))
= ∆

(
m
(
p′t, p

′
t+1

)
, p′t+1

)
=

∆
(
p′t, p

′
t+1

)
= ∆ = bc − ad. This is because ∆

(
x
y ,

x
y

)
= ∆

(
x
y ,

x+x
y+y

)
=

∆
(
x+x
y+y ,

x
y

)
= yx− xy. Now,

Li = Li ∪ Li−1 =
{a
b

= p0 < p1 < p2 < · · · < pk =
c

d

}
.

Therefore, ∆
(
pt, pt+1

)
= ∆ = bc − ad. Therefore, if pt = x

y , pt+1 = x
y ,

then ∆
(
x
y ,

x
y

)
= xy − xy = ∆ = bc− ad and this implies gcd (x, y) |∆ and

gcd (x, y) ≤ ∆ = bc− ad. We state this again in Section 4. Of course, gcd
means the greatest common divisor. �

In Sections 2–4, we are computing symbolically and not reducing the
mediants to lowest terms, so it is obvious that, for i ≥ 1 and i arbitrary,
that each pt ∈ Li\

{
a
b ,

c
d

}
satisfies pt = φa+θc

φb+θd , where φ, θ ∈ {1, 2, 3, . . .}.
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Also, a
b = 1·a+0·c

1·b+0·d and c
d = 0·a+1·c

0·b+1·d .

Theorem 2.2. We have pt = φa+θc
φb+θd , where (φ, θ) must also be relatively

prime.

Proof. To see this, let pt = φa+θc
φb+θd and pt+1 = φa+θc

φb+θd
, where pt < pt+1 are

consecutive members of the ordered set Li and where φ, θ, φ, θ ∈ {1, 2, 3, . . .}.
We know that ∆

(
pt, pt+1

)
= ∆ = bc− ad.

By a calculation, ∆
(
pt, pt+1

)
=
(
φθ − θφ

)
(bc− ad) = bc − ad, since

∆
(
pt, pt+1

)
= bc − ad. Therefore, φθ − θφ = 1, which implies that both

pairs (φ, θ) and
(
φ, θ
)

are relatively prime. �

By the same calculations, it is easy to show that if φ, θ, φ, θ ∈ {1, 2, 3, . . .}
and both of (φ, θ) and

(
φ, θ
)

are relatively prime, then φa+θc
φb+θd = φa+θc

φb+θd
is

true, if and only if (φ, θ) =
(
φ, θ
)
. This is because φθ− θφ = 0, if and only

if θ
φ = θ

φ
, which is true, if and only if (φ, θ) =

(
φ, θ
)
.

Since the members of L∞ = ∪∞k=0Lk are distinct, we see that if φa+θc
φb+θd 6=

φa+θc

φb+θd
are two different members of L∞, then (φ, θ) 6=

(
φ, θ
)
. In other

words, if φa+θc
φb+θd ∈ L∞, then the ordered pair (φ, θ), φ, θ ∈ {1, 2, 3, . . .},

(φ, θ) are relatively prime, and can appear at most one time in L∞. Since

0 < bc− ad, we see that φa+θc
φb+θd = φa+θc

φb+θd
is true, if and only if 0 < φθ − θφ

which is true, if and only if θ
φ <

θ
φ

.

Theorem 2.3. We have

L∞\
{a
b
,
c

d

}
=

{
φa+ θc

φb+ θd
: φ, θ ∈ {1, 2, 3, . . .} , φ, θ are relatively prime

}
.

In other words, L∞\
{
a
b ,

c
d

}
picks up all ordered pairs (φ, θ), where φ, θ

are relatively prime and φ, θ ∈ {1, 2, 3, . . .}.
To see this on [0, 1], let

(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
. Note that ∆

(
0
1 ,

1
1

)
= 1 · 1 −

0 · 1 = 1. From the theory of Stern–Brocot fractions, we know that when(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
, then

L∞\
{

0

1
,

1

1

}
= {q : 0 < q < 1, q is rational and q is reduced to lowest terms} .

The comment at the end of Section 1 shows how we proved this. Also, see
Theorem 1, [1].
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Since ∆
(

0
1 ,

1
1

)
= 1, all mediants of L∞\

{
0
1 ,

1
1

}
are automatically re-

duced to lowest terms. Note that L∞\
{

0
1 ,

1
1

}
picks up all rational numbers

q = x
y ∈

(
0
1 ,

1
1

)
, where x

y is reduced to lowest terms.

Now when
(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
, we see that φa+θc

φb+θd = φ·0+θ·1
φ·1+θ·1 = θ

φ+θ , where

φ, θ ∈ {1, 2, 3, . . .} and (φ, θ) are relatively prime and θ
φ+θ is automatically

reduced to lowest terms.
Now each rational number x

y ∈ (0, 1), 0 < x < y, where x
y is reduced

to lowest terms, can be uniquely represented by x
y = θ

φ+θ , where θ = x,

φ = y − x, and θ, φ ∈ {1, 2, 3, . . .} and (θ, φ) are relatively prime.
Conversely, if θ, φ ∈ {1, 2, 3, . . .} are arbitrary and (θ, φ) are relatively

prime, then x
y = θ

φ+θ ∈ (0, 1) and θ
φ+θ is reduced to lowest terms. Since

L∞\
{

0
1 ,

1
1

}
picks up all rational numbers x

y , 0 < x < y, where x
y is reduced

to lowest terms, it is easy to see that

L∞\
{

0

1
,

1

1

}
=

{
θ

φ+ θ
: θ, φ ∈ {1, 2, 3, . . .} , θ, φ are relatively prime

}
.

In other words, L∞\
{

0
1 ,

1
1

}
picks up all θ

φ+θ , where θ, φ ∈ {1, 2, 3, . . .}
and (θ, φ) are relatively prime.

Proof of Theorem 2.3. Using
(
a
b ,

c
d

)
in the place of

(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
, it is

easy to see that θ
φ+θ becomes φa+θc

φb+θd so that L∞\
{

0
1 ,

1
1

}
becomes

L∞\
{a
b
,
c

d

}
=

{
φa+ θc

φb+ θd
: θ, φ ∈ {1, 2, 3, . . .} , θ, φ are relatively prime

}
.

In other words, the symbolic calculation of L∞\
{
a
b ,

c
d

}
and L∞\

{
0
1 ,

1
1

}
are exactly the same.

We now give a second proof of this. We show that all fractions θa+φc
θb+φd ∈

L∞
(
a
b ,

c
d

)
, when gcd(θ, φ) = 1. The proof is by mathematical induction on

θ+φ. It is obvious for n = 1. Therefore, suppose it is true for θ+φ ≤ n−1.

We show that it is true for θ + φ = n. Consider the two subtrees
(
a
b ,

a+c
b+d

)
and

(
a+c
b+d ,

c
d

)
. By symmetry, we may suppose that θ ≥ φ. Then

θa+ φc

θb+ φd
=

(θ − φ)a+ φ(a+ c)

(θ − φ)b+ φ(b+ d)
,

where gcd(θ − φ, φ) = 1. Now (θ − φ) + φ = θ ≤ n − 1. Therefore, by the
induction hypothesis,

θ − φ)a+ φ(a+ c)

(θ − φ)b+ φ(b+ d)
∈ L∞

(
a

b
,
a+ c

b+ d

)
.
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Therefore,
θa+ φc

θb+ φd
∈ L∞

(a
b
,
c

d

)
.

�

Main Theorem. Suppose 0 ≤ a
b <

c
d , where a

b ,
c
d are reduced to lowest

terms and x
y ∈

(
a
b ,

c
d

)
is an arbitrary rational number in

(
a
b ,

c
d

)
reduced to

lowest terms. Then x
y ∈ L∞\

{
a
b ,

c
d

}
.

Note 2.4. Recall that the members of L∞\
{
a
b ,

c
d

}
are not being reduced

to lowest terms. However, when we say that x
y ∈ L∞\

{
a
b ,

c
d

}
, where x

y is

reduced to lowest terms, we mean that x
y = m

n , where m
n ∈ L∞\

{
a
b ,

c
d

}
and

x
y = m

n after m
n is reduced to lowest terms.

Proof of Main Theorem. Let x
y = φa+θc

φb+θd , where we wish to compute θ, φ ∈
{1, 2, 3, . . .} and (θ, φ) are relatively prime.

Now x
y = φa+θc

φb+θd is true, if and only if φbx + θdx = φay + θcy. This is

true, if and only if φ (bx− ay) = θ (cy − dx).

Therefore, φθ = cy−dx
bx−ay , where cy−dx > 0, bx−ay > 0, since a

b <
x
y <

c
d .

We now agree to reduce φ
θ to lowest terms. �

Our proof of the Main Theorem is almost exactly the same as the proof
of Theorem 2 [1], although the latter theorem states ∆ = 1 as a hypothesis.
This means that the proof of Theorem 2 [1] can easily prove far more than
what Theorem 2 [1] actually states. Also, once Theorem 2 [1] has easily
been enhanced, then Theorem 7 [1] (which is our Main Theorem) can easily
be proved in a crude way by using our Sections 3 and 4. See the crude fast
algorithm at the end of Section 5 to see how we do this.

3. Some Useful Lemmas

Lemma 3.1. Suppose 0 ≤ a
b <

c
d are fractions reduced to lowest terms.

Let x
y ∈ Ln, where Ln is the level n of the modified Stern–Brocot fractions

and n ≥ 1. As always, x
y is not reduced to lowest terms. Then y ≥ n.

Proof. We prove this by induction on n. Now L1 =
{
a+c
b+d

}
and b+d ≥ 2 >

1. As stated previously in Section 2, each x
y ∈ Ln, n ≥ 2, can be written

as x
y = m

(
x
y ,

x′

y′

)
= x+x′

y+y′ , where one of x
y ,

x′

y′ is a member. Ln−1 and the

other x
y ,

x′

y′ is a member of Ln−2. By symmetry, assume that x
y ∈ Ln−1,

x′

y′ ∈ Ln−2.

By induction, y ≥ n− 1. Also, y′ ≥ 1. Therefore, y = y + y′ ≥ y + 1 ≥
(n− 1) + 1 = n. �
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Lemma 3.2. Using the hypothesis of Lemma 3.1, suppose x
y ∈ Ln, n ≥ 1,

where, as always, x
y is not reduced to lowest terms. Then gcd (x, y) |∆ and

gcd (x, y) ≤ ∆, where ∆ = bc − ad. Since n ≥ 1 is arbitrary, this implies
that each x

y ∈ L∞\
{
a
b ,

c
d

}
satisfies gcd (x, y) |∆ and gcd (x, y) ≤ ∆.

Proof. The proof was given in Section 2 and used the fact that if n ≥ 1
and Ln =

{
a
b = p0 < p1 < p2 < · · · < pk = c

d

}
, then ∆

(
pi, pi+1

)
= ∆ =

bc − ad. Also, x
y ∈ Ln ⊆ Ln. Let x

y = pi,
x
y = pi+1. Then, ∆

(
pi, pi+1

)
=

∆
(
x
y ,

x
y

)
= xy−xy = ∆ = bc−ad. Therefore, gcd (x, y) |∆ and gcd (x, y) ≤

∆. �

Lemma 3.3. Suppose x
y ∈

(
a
b ,

c
d

)
, where 0 ≤ a

b <
c
d are reduced to lowest

terms and where x
y is a fraction that is now reduced to lowest terms.

Then x
y ∈ L1 ∪ L2 ∪ L3 ∪ · · · ∪ Ly∆, where ∆ = bc − ad. We say that

x
y ∈ L1 ∪L2 ∪L3 ∪ · · · ∪Ly∆ by the meaning of Note 2.4, since x

y is reduced

to lowest terms and the members of L1 ∪ L2 ∪ · · · ∪ Ly∆ are not reduced to
lowest terms.

Proof. By the Main Theorem, we know that x
y ∈ ∪

∞
i=1Li = L∞\

{
a
b ,

c
d

}
(by

the meaning of Note 2.4).
Suppose n ≥ ∆y + 1. We show that x

y /∈ Ln. Let x
y /∈ Ln, where

n ≥ ∆y + 1, and x
y is arbitrary and where, as always, the members x

y

of Ln have not been reduce to lowest terms. We show that x
y 6=

x
y by

Note 2.4. Now by Lemma 3.1, y ≥ n ≥ ∆y + 1. Also, by Lemma 3.2,
gcd (x, y) ≤ ∆. Therefore, when x

y is reduced to lowest terms, we have

x
y =

(
x

gcd(x,y)

)
/
(

y
gcd(x,y)

)
and y

gcd(x,y) ≥
y
∆ ≥

∆y+1
∆ = y + 1

∆ > y (where

x
y is reduced to lowest terms). That is, y

gcd(x,y) > y. Therefore, if x
y ∈ Ln

and n ≥ ∆y + 1, then x
y 6=

x
y . This implies x

y ∈ Ln, when n ≥ ∆y + 1.

Therefore, x
y ∈ L1 ∪ L2 ∪ · · · ∪ Ly∆. �

Application 3.4. Suppose x
y ∈

(
a
b ,

c
d

)
, where 0 ≤ a

b <
c
d are reduced to

lowest terms and x
y is a fraction that is reduced to lowest terms. Also,

suppose ∆ = bc−ad = 1. Then x
y ∈ L1∪L2∪· · ·∪Ly, since ∆y = y. Thus,

all fractions x
y ∈

(
a
b ,

c
d

)
, where x

y is reduced to lowest terms and y ≤ n are

picked up in L1 ∪ L2 ∪ · · · ∪ Ln. This is very important in the theory of
Stern–Brocot fractions where

(
a
b ,

c
d

)
=
(

0
1 ,

1
1

)
and ∆ = 1 · 1− 0 · 1 = 1.

4. An Algorithm for Computing x
y ∈

(
a
b ,

c
d

)
as a Member of

L∞\
{
a
b ,

c
d

}
We now define telescoping sequences.
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Let 0 ≤ a
b < c

d , where a
b ,

c
d are reduced to lowest terms. The reader

needs to draw a picture of the following.

Definition 4.1. A telescoping sequence is a sequence x0, x0, x1, x2, x3, . . .,
where x0 = a

b , x0 = c
d , x1 = m (x0, x0) = p1 = a+c

b+d . Also, x2 = m (x0, x1)

or x2 = m (x1, x0), where we make a binary choice for x2.
In general, if xi = m (x, y), x < y, then xi+1 = m (x, xi) or xi+1 =

m (xi, y). Note again that we make a binary choice for each of x2, x3, x4, . . ..

Also, we know that x0 = a
b and x0 = c

d are on level L0. Also, x1 = p1 =
a+c
b+d is on level L1. Also, x2 is on level L2. Also, x3 is on level L3. We now
show that each xi, i ≥ 1, is on level Li.

Indeed, the following additional facts are easy to prove by definition and
by induction. We simply observe that the simple pattern that we now give
repeats itself over and over as we go higher. (The reader may need to
review the definitions of Li, Li, i ≥ 1). The pattern is the following. If
xi+1 = m (x, y), x < y, then xi+1 ∈ Li+1 (that is, xi+1 is on level Li+1).
Also, x, y ∈ Li and x and y are consecutive members of the ordered set
Li. Also, x < xi+1 < y are consecutive members of the ordered set Li+1,
where Li+1 = Li+1∪Li. Now, xi+2 = m (x, xi+1) or xi+2 = m (xi+1, y). In
either case, xi+2 ∈ Li+2. If xi+2 = m (x, xi+1), then x < xi+2 < xi+1 are
consecutive members of the ordered set Li+2, where Li+2 = Li+2 ∪ Li+1

and if xi+2 = m (xi+1, y), then xi+1 < xi+2 < y are consecutive members
of the ordered set Li+2.

This pattern repeats itself as we go higher.
In conclusion, we also note that each xi is automatically associated with

an interval (x, y), where xi = m (x, y) , xi ∈ (x, y). Also, if xi+1 = m (x, xi),
we associate xi+1 with the interval (x, xi) and if xi+1 = m (xi, y), we asso-
ciate xi+1 with the interval (xi, y).

Problem 4.2. Suppose 0 ≤ a
b <

c
d are given fractions reduced to lowest

terms and m
n ∈

(
a
b ,

c
d

)
is a given rational number reduced to lowest terms.

Show how to calculate, step-by-step, the construction of mn as a member of

L∞\
{
a
b ,

c
d

}
. Of course, we say that m

n ∈ L∞\
{
a
b ,

c
d

}
by the meaning of

Note 2.4 of Section 2.

Solution. Of course, by the Main Theorem, we know that m
n ∈ L∞\

{
a
b ,

c
d

}
.

We now calculate a telescoping sequence

x0 =
a

b
, x0 =

c

d
, x1 = m (x0, x0) , x2, x3, . . . , xt−1, xt,

such that, for each xi, if xi = m (x, y), x < y (which means that xi is
associated with (x, y)), then m

n ∈ (x, y).
If m

n = xi, then, of course, we are done. If m
n 6= xi, then we define

xi+1 = m (x, xi), if m
n ∈ (x, xi) and xi+1 = m (xi, y), if m

n ∈ (xi, y).
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Likewise, if mn = xi+1, then we are done. If mn 6= xi+1, we then calculate
xi+2 the same way that we calculated xi+1. This process will calculate a
telescoping sequence x0, x0, x1, x2, . . . , xt−1, xt, where each xi is on level Li
and, by Lemma 3.3 of Section 3, we know that m

n = xt for some t, where
1 ≤ t ≤ ∆n, ∆ = bc − ad. This is because m

n ∈ L1 ∪ L2 ∪ · · · ∪ Ln∆,
∆ = bc− ad.

Note 4.3. Of course, usually we will reach m
n = xt much sooner than

t = ∆n, since the denominators y of most members x
y ∈ Ln are much

bigger than y = n.

Example 4.4. Calculate 15
31 ∈

(
1
3 ,

3
5

)
as a member of L∞\

{
1
3 ,

3
5

}
.

Solution. x0 = 1
3 , x0 = 3

5 , x1 = m
(

1
3 ,

3
5

)
= 4

8 . Note that we do not reduce
4
8 to lowest terms.

15
31 ∈

(
1
3 ,

3
5

)
, x1 = m

(
1
3 ,

3
5

)
= 4

8 ,

15
31 ∈

(
1
3 ,

4
8

)
, x2 = m

(
1
3 ,

4
8

)
= 5

11 ,

15
31 ∈

(
5
11 ,

4
8

)
, x3 = m

(
5
11 ,

4
8

)
= 9

19 ,

15
31 ∈

(
9
19 ,

4
8

)
, x4 = m

(
9
19 ,

4
8

)
= 13

27 ,

15
31 ∈

(
13
27 ,

4
8

)
, x5 = m

(
13
27 ,

4
8

)
= 17

35 ,

15
31 ∈

(
13
27 ,

17
35

)
, x6 = m

(
13
27 ,

17
35

)
= 30

62 = 15
31 .

Note that in the last step 30
62 = 15

31 , we must reduce 30
62 to lowest terms.

5. A Crude Fast Algorithm

Suppose that when we carry out the above telescoping search algorithm,
we agree to reduce the search mediants to lower terms in any possible way
that we choose, including always reducing or never reducing or partially
reducing. We can use induction on ∆ = bc − ad to show that the search
algorithm will still pick up the rational number q = x

y in
[
a
b ,

c
d

]
for which

we are searching. If ∆ = 1, then the result is obvious, since all mediants are
already reduced to lowest terms. If we never reduce our search mediants
to lower terms, then we know that we will find x

y . If we reduce a search

mediant to lower terms before we find x
y , the induction on ∆ will show that

we must eventually find x
y . Note that if ∆ (q, q) = ∆ and q is reduced to q′,

then ∆ (q, q′) < ∆ (q, q′). If we find x
y before we reduce any search mediants

to lower terms, there is nothing to prove since we have found x
y .
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