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Abstract. A proper embedding of a graph G in a pseudosurface P

is an embedding in which the regions of the complement of G in P are
homeomorphic to discs and a vertex of G appears at each pinchpoint

of P ; we say that a proper embedding of G in P is self dual if there

exists an isomorphism from G to its topological dual. We determine
five possible graphs with 7 vertices and 13 edges that could be self-

dual embeddable in the pinched sphere, and we establish, by way

of computer-powered methods, that such a self-embedding exists for
exactly two of these five graphs.

1. Introduction

This article addresses embeddings of graphs in pseudosurfaces. We as-
sume the reader is familiar with basic topological graph theory, including
surfaces, embeddings, and dual graphs; see [8] for more information.

Following [3], a closed, connected pseudosurface is a connected topo-
logical space obtained from a disjoint union of surfaces via a finite num-
ber of point identifications, called pinches; the identified points are called
pinchpoints. Therefore, a surface is a special case of a pseudosurface. A
small-enough neighborhood of a pinchpoint is homeomorphic to the union
of discs identified at a point; each identified disc is called an umbrella of
the pinchpoint. A proper embedding of a graph G in a pseudosurface P is
an embedding in which each of the regions of the complement of G in P is
homeomorphic to a disc and a vertex of G appears at each pinchpoint in P .
We shall let G→ P denote a proper embedding of G in P ; the definitions of
the dual graph G∗ and the dual embedding (G→ P )∗ are immediate nat-
ural extensions of the definitions of dual graph and dual embedding for an
embedding in a surface. However, as evidenced by Figure 1, ((G → P )∗)∗

is not necessarily well-defined since (G → P )∗ is not a proper embedding.
Two embeddings of the same graph in the same space are equivalent if there
is a homeomorphism of the space that maps one embedding to the other.

Some computational resources were provided by the Mason Experimental Geometry
Lab at George Mason University.
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G→ P (G→ P )∗

Figure 1. An example of a self-dual embedding of a graph
in the pinched sphere, and the corresponding dual embed-
ding.

So, in the case that P has at least one pinchpoint, for any graph G and
any proper embedding G→ P , G→ P cannot be equivalent to (G→ P )∗

since there is no homeomorphism that maps a pinchpoint vertex to a non-
pinchpoint vertex. Therefore, we give a weaker notion, first put forward in
[10], of graph self-duality for pseudosurfaces. For a pseudosurface P with
at least one pinchpoint, we say that G→ P is self dual if G∗ is isomorphic
to G, which still requires that the incidence of faces and edges in G→ P is
isomorphic to the incidence of vertices and edges in G.

While there is much research on self-dual embeddability of graphs in
surfaces ([4] contains several references), questions on the self-dual embed-
dability of graphs in pseudosurfaces have only recently been explored. The
second and third authors in [10] proved that every graph of the form K4m,4n

is self-dual embeddable in a pseudosurface, and most of them are embed-
dable in several different orientable and nonorientable pseudosurfaces. The
purpose of this article is to find the smallest self-dual embeddable simple
graph(s) in a pseudosurface. Our approach is similar to that of Whitney’s
planarity criterion in [11] and continued by Abrams and Slilaty in [2, 3].
That is, we are changing a topological question about graph embeddings
into a question of combinatorics: we are exploiting the relationship between
the edges of an appropritately embedded graph and its topological dual. In
order to accomplish this, we build on Abrams’ and Slilaty’s definition of an
algebraic dual, and we use a computer program to analyze all of the permu-
tations of the edges of a graph, looking for those permutations that yield
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a component-split algebraic dual, which we define in Section 2. Section 3
contains the main results of this article.

For a vertex v of G, G − v shall denote the subgraph of G induced by
all edges not incident to v. For a subset X ⊂ E(G), G[X] shall denote the
subgraph of G induced by X. For two graphs G1 and G2, G1 + G2 shall
denote the join of G1 and G2. For more terminology and notation, see [6].

2. Algebraic Duals and Euler Characteristic

We begin by providing an algebraic representation of a graph embedding
and its topological dual. The definitions in this section are adapted for our
purposes from [2, 3, 6]. Let G be a simple graph, and let E(G) be the Z2

vector space of sums of edges of G. For v ∈ V (G), let star(v) denote the set
of all edges incident to v. Lastly, let Z(G) be the cycle space of G, which
is the subspace of E(G) generated by the cycles in G.

Definition 2.1. [2, 3] A graph G∗ is an algebraic dual of another graph G
if there exists a bijection φ : E(G∗) → E(G) such that φ(star(v∗)) ∈ Z(G)
for all v∗ ∈ V (G∗); we say that such a bijection φ is an algebraic duality
correspondence (ADC) between G∗ and G.

Definition 2.2 will allow us to algebraically capture the relationship be-
tween a properly embedded graph and its topological dual.

Definition 2.2. [2, 3] An algebraic dual G∗ of G with ADC φ is a compo-
nent-split algebraic dual of G if for all v∗ ∈ V (G∗), G[φ(star(v∗))] is con-
nected.

We say that a pseudosurface P is face-connected if for any two faces f
and f ′ of a 2-complex homeomorphic to P , there is a sequence of faces
f = f1f2 · · · fn = f ′ such that any two consecutive faces have a common
boundary edge. If a connected graph G has a self-dual embedding in P ,
then P must be face connected.

For a pseudosurface P , we let χ(P ) denote the Euler characteristic of P
which, as an invariant of P , does not depend on a cellular decomposition
of P . For G→ P , we let F (G→ P ) denote the faces of G→ P which are
the regions of the complement of G in P . Therefore, for G→ P ,

χ(P ) = |V (G)| − |E(G)|+ |F (G→ P )|. (2.1)

Following [3, Construction 3.1], given a simple graph G and an algebraic
dual graph G∗ with ADC φ, we may construct a 2-complex K(G,G∗). The
0-cells and 1-cells of K(G,G∗) are the vertices and edges of G, respectively.
The 2-cells of K(G,G∗) appear as follows: for each v∗ ∈ V (G∗), we let
F1, F2, . . ., Fk denote the components of φ(star(v∗)); to each component

MISSOURI J. OF MATH. SCI., SPRING 2018 87



E. RARITY, S. SCHLUCHTER, AND J. Z. SCHROEDER

Figure 2. Examples of a nonsimple dual graph resulting
from an embedded graph containing vertices of degree one
or two. The dual graph is drawn with dashed edges joining
white vertices.

Fi, we make a choice of facial boundary walk, and we glue a 2-cell follow-
ing our chosen facial boundary walk. The resulting 2-complex may have
pinchpoints, but it is not necessarily face connected. Moreover, if G∗ is a
component-split algebraic dual of G, then G∗ is isomorphic to the topolog-
ical dual of G in K(G,G∗).

Lemma 2.3. [9, Theorem 1.2] For any face-connected pseudosurface P
with h handles, c crosscaps, and p pinches needed to produce P from a
surface S with h handles and c crosscaps,

χ(P ) = 2− 2h− c− p.

We will work specifically on the case that χ(P ) = 1, so by Lemma 2.3,
to differentiate between the pinched sphere and the projective plane, it will
suffice to discern the existence of a pinchpoint in P .

3. The Smallest Self-dual Embeddable Graphs in a
Pseudosurface

3.1. The candidate graphs. Lemma 3.1 and Proposition 3.2 provide a
classification of the smallest possible self-dual embeddable graphs in a pseu-
dosurface with at least one pinchpoint.

Lemma 3.1. In terms of the size of its vertex and edge sets, the smallest
simple graphs self-dual embeddable in a pseudosurface P with at least one
pinchpoint have seven vertices and thirteen edges, with one vertex of degree
6 and all other vertices having minimum degree 3.

Proof. Consider G→ P for a face-connected pseudosurface P with at least
one pinchpoint. There are at least two umbrellas of any pinchpoint vertex
v of G. It is easy to deduce (after considering Figure 2) that each umbrella
must intersect at least three edges of a properly embedded graph in order
for that embedding to have a simple dual graph. It follows that a simple
graph that is self-dual embeddable in a pseudosurface must have at least one
vertex of degree at least six and six other vertices of degree at least three.
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H1 H2 H3 H4 H5

Figure 3. All possible seven-edge graphs on six vertices
with minimum degree two.

If we let G1 be a simple graph with exactly one vertex of degree six and six
other vertices of degree three, then G1 has exactly seven vertices and twelve
edges. If G1 is self-dually embedded in a face-connected pseudosurface P1,
then equation 2.1 and Lemma 2.3 imply that

χ(P1) = 7− 12 + 7 = 2 = 2− 2 · 0− 0− 0,

and so P1 must really be a sphere. To add an additional vertex to G1 would
mean adding at least three additional edges. So, we conclude that a self-
dual embeddable graph in P must have the same vertex degree requirements
as G1, but it must have at least thirteen edges. �

For the remainder of this article we let Fi denote a graph of the form
described in Lemma 3.1; Proposition 3.2 describes all possible Fi’s.

Proposition 3.2. There are exactly five graphs Fi, and each one is the
result of joining one of the graphs Hi in Figure 3 to K1.

Proof. Let v be the vertex of degree six in a graph of the form Fi, and
let Hi = Fi − v. The graph Hi has six vertices of minimum degree two,
has seven edges, and is connected. We leave it to the reader to verify that
there are five graphs of the form Hi, which are given in Figure 3. Thus,
the five candidate graphs for a self-dual embedding in the pinched sphere
are Fi = Hi +K1 for 1 ≤ i ≤ 5. �

3.2. The algorithm. By the discussion in Section 2, if we can find, among
all permutations of the edges of a graph, an ADC φ : E(Fi)→ E(Fi) making
Fi a component-split algebraic dual of itself, then we know that Fi can
be made the 1-skeleton of a 2-complex K(Fi, F

∗
i ) for which Fi is both

the 1-skeleton and isomorphic to the topological dual F ∗i . However, we
do not know if the facial boundary walks of K(Fi, F

∗
i ) and the relevant

choices that may be made in constructing it may produce a pseudosurface
with at least one pinchpoint. It is straightforward enough to reconstruct
the embeddings for these small graphs (indeed, see Figures 4-6), but the
presence of a pinchpoint vertex can also be determined by checking for the
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Figure 4. Self-dual embeddings of F2 in the pinched
sphere P and the projective plane P 2; the two black ver-
tices labeled a in the left-hand embedding correspond to
the points that are identified to produce a pinched sphere.

existence of what Bruhn and Diestel call a cluster or a local cluster (see [5]
for more details).

3.3. The results. For each graph Fi, we first tested all 13! possible per-
mutations of the edges of Fi to determine the set of ADCs that make Fi

a component-split algebraic dual of itself. For any such maps, we then
checked for the existence of a cluster or local cluster to determine whether
the reconstructed embedding is in the pinched sphere or the projective
plane. The results of our search are summarized in the following theorem.
We advise the reader that the code we developed and the results we ob-
tained may be found at [1]; the reader should consult the file README.txt
before trying to read the code, the graph files, or the results.

Theorem 3.3. Let Fi = Hi + K1, where Hi is one of the graphs from
Figure 3.

• The graphs F2 and F5 have a self-dual embedding in the pinched
sphere, and thus are the smallest graphs to have a self-dual embed-
ding in any pseudosurface with at least one pinchpoint (see Figures
4 and 6).

• The graphs F2, F4, and F5 have a self-dual embedding in the pro-
jective plane (see Figures 4-6).
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F4 → P 2

Figure 5. A self-dual embedding of F4 in the projective
plane P 2.
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Figure 6. Self-dual embeddings of F5 in the pinched
sphere P and the projective plane P 2; the two black ver-
tices labeled a in the left-hand embedding correspond to
the points that are identified to produce a pinched sphere.
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• The graphs F1 and F3 have no self-dual embeddings in any surface
or pseudosurface.

Remark 3.1. The self-dual embedding of Fi (i = 2, 5) in the projective
plane can be obtained from the self-dual embedding of Fi in the pinched
sphere via a surgery of Edmonds [7]; see [10] for another application of this
surgery.
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