SOME OPERATORS IN IDEAL TOPOLOGICAL SPACES

H. AL-SAADI AND A. AL-OMARI

ABSTRACT. In this paper, we give an extensive study of ideal topological spaces and introduce some new types of sets with the help of a local function. Several characterizations of these sets will also be discussed through this paper. Moreover, we obtain characterizations of Ψ_{ω} -operator and ω -codense.

1. INTRODUCTION AND PRELIMINARIES

A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed [5] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well-known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open subsets of a space (X, τ) , denoted by τ_{ω} or $\omega O(X)$, forms a topology on X finer than τ . The ω -closure and ω -interior, that can be defined in the same way as the closure Cl(A) and the interior Int(A) of A in (X, τ) , respectively, will be denoted by $Cl_{\omega}(A)$ and $Int_{\omega}(A)$, respectively. Several characterizations of ω -closed sets were provided in [1, 3].

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

(1) $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.

(2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$ is called the local function of Awith respect to \mathcal{I} and τ (see [4, 7]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$, in case there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generated by the base

MISSOURI J. OF MATH. SCI., SPRING 2018

H. AL-SAADI AND A. AL-OMARI

the base $\beta(\mathcal{I}, \tau) = \{U - J : U \in \tau \text{ and } J \in \mathcal{I}\}$. It is known in [4] that $\beta(\mathcal{I}, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^* . Recall that A is said to be *-dense in itself (resp. τ^* -closed, *-perfect) if $A \subseteq A^*$ (resp. $A^* \subseteq A$, $A = A^*$). For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*) , respectively. Let (X, τ, \mathcal{I}) be an ideal topological space. We say the topology τ is compatible with the ideal \mathcal{I} , denoted $\tau \sim \mathcal{I}$, if the following holds: for every $A \subseteq X$, if for every $x \in A$ there exists a $U \in \tau(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$ [4].

Definition 1.1. [2] Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following set: $A_{\omega}(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I} \text{ for} every \ U \in \tau_{\omega}(x)\}$, where $\tau_{\omega}(x) = \{U \in \tau_w : x \in U\}$. In case there is no confusion, $A_{\omega}(\mathcal{I}, \tau)$ is briefly denoted by A_{ω} and is called the ω -local function of A with respect to \mathcal{I} and τ .

Lemma 1.2. [2] Let (X, τ) be an ideal topological space, \mathcal{I} and \mathcal{J} be ideals on X, and let A and B be subsets of X. Then the following properties hold:

- (1) If $A \subseteq B$, then $A_{\omega} \subseteq B_{\omega}$.
- (2) If $\mathcal{I} \subseteq \mathcal{J}$, then $A_{\omega}(\mathcal{I}) \supseteq A_{\omega}(\mathcal{J})$.
- (3) $A_{\omega} = Cl_{\omega}(A_{\omega}) \subseteq Cl_{\omega}(A)$ and A_{ω} is ω -closed in (X, τ) .
- (4) If $A \subseteq A_{\omega}$, then $A_{\omega} = Cl_{\omega}(A_{\omega}) = Cl_{\omega}(A)$.
- (5) If $A \in \mathcal{I}$, then $A_{\omega} = \phi$.

Theorem 1.3. [2] Let (X, τ, \mathcal{I}) be an ideal topological space and A and B any subsets of X. Then the following properties hold:

(1) $(\phi)_{\omega} = \phi.$ (2) $(A_{\omega})_{\omega} \subseteq A_{\omega}.$ (3) $A_{\omega} \cup B_{\omega} = (A \cup B)_{\omega}.$

Corollary 1.4. [2] Let (X, τ, \mathcal{I}) be an ideal topological space and A and B be subsets of X with $B \in \mathcal{I}$. Then $(A \cup B)_{\omega} = A_{\omega} = (A - B)_{\omega}$.

Remark 1.5. In [2], Al-Omari and Al-Saadi obtained that $Cl^*_{\omega}(A) = A \cup A_{\omega}$ is a Kuratowski closure operator. We will denote by τ^*_{ω} the topology generated by Cl^*_{ω} , that is, $\tau^*_{\omega} = \{U \subseteq X : Cl^*_{\omega}(X - U) = X - U\}.$

Definition 1.6. [2] Let (X, τ) be a topological space and \mathcal{I} an ideal on X. A subset A of X is said to be τ_{ω}^* -closed if and only if $A_{\omega} \subseteq A$.

Theorem 1.7. [2] Let (X, τ) be a topological space and \mathcal{I} an ideal on X. Then β is a basis for τ_{ω}^* , where $\beta(\mathcal{I}, \tau) = \{V - I_0 : V \in \tau_{\omega}, I_0 \in \mathcal{I}\}.$

Definition 1.8. Let (X, τ, \mathcal{I}) be an ideal topological space. Then an ideal \mathcal{I} is said to be ω -codense if $\tau_{\omega} \cap \mathcal{I} = \phi$.

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

Theorem 1.9. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent:

- (1) \mathcal{I} is ω -codense;
- (2) If $I \in \mathcal{I}$, then $Int_{\omega}(I) = \phi$;
- (3) For every $G \in \tau_{\omega}, G \subseteq G_{\omega}$;
- (4) $X = X_{\omega}$.

Proof.

(1) \Rightarrow (2): Let \mathcal{I} be ω -codense and $I \in \mathcal{I}$. Suppose that $x \in Int_{\omega}(I)$. Then there exists $U \in \tau_{\omega}$ such that $x \in U \subseteq I$. Since $I \in \mathcal{I}$, it follows that $\phi \neq \{x\} \subseteq U \in \tau_{\omega} \cap \mathcal{I}$. This contradicts $\tau_{\omega} \cap \mathcal{I} = \phi$. Therefore, $Int_{\omega}(I) = \phi.$

(2) \Rightarrow (3): Let $x \in G$. Suppose that $x \notin G_{\omega}$. Then there exists $U_x \in$ $\tau_{\omega}(x)$ such that $G \cap U_x \in \mathcal{I}$. By (2), $x \in G \cap U_x = Int_{\omega}(G \cap U_x) = \phi$. Hence, $x \in G_{\omega}$ and $G \subseteq G_{\omega}$

(3) \Rightarrow (4): This follows since X is ω -open so $X = X_{\omega}$. $(4) \Rightarrow (1)$:

 $X = X_{\omega} = \{ x \in X : U \cap X = U \notin \mathcal{I} \text{ for each } \omega \text{-open set } U \text{ containing } x \}.$ Hence, $\tau_{\omega} \cap \mathcal{I} = \phi$.

Definition 1.10. [2] Let (X, τ, \mathcal{I}) be an ideal topological space. We say the τ is ω -compatible with the ideal \mathcal{I} , denoted $\tau \sim_{\omega} \mathcal{I}$, if the following holds for every $A \subseteq X$; if for every $x \in A$ there exists $U \in \tau_{\omega}(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Lemma 1.11. [2] Let (X, τ, \mathcal{I}) be an ideal topological space, then $\tau \sim_{\omega} \mathcal{I}$ if and only if $A - A_{\omega} \in \mathcal{I}$ for every $A \subseteq X$.

Lemma 1.12. Let (X, τ, \mathcal{I}) be an ideal topological space. If A is ω -open set, then it is ω -codense if and only if $A_{\omega} = Cl_{\omega}(A)$.

Proof. Let A be ω -codense and A be a nonempty ω -open set. Then by Lemma 1.2 (3), we have $A_{\omega} \subseteq Cl_{\omega}(A)$. Let $x \in Cl_{\omega}(A)$. Then for all ω open set U_x containing x, we have $U_x \cap A \neq \phi$. Again $U_x \cap A$ is a nonempty ω -open set, so $U_x \cap A \notin \mathcal{I}$, since \mathcal{I} is ω -codense. Hence, $x \in A_\omega$. Therefore, $A_{\omega} = Cl_{\omega}(A)$. Conversely, for an ω -open set A, we have $A_{\omega} = Cl_{\omega}(A)$. Then $X = X_{\omega}$ and this implies that A is ω -codense by Theorem 1.9.

Theorem 1.13. [2] Let (X, τ, \mathcal{I}) be an ideal topological space, τ be ω compatible with \mathcal{I} , and $\tau_{\omega} \cap \mathcal{I} = \phi$. Let G be a τ_{ω}^* -open set such that G = U - A, where $U \in \tau_{\omega}$ and $A \in \mathcal{I}$. Then $Cl_{\omega}(G_{\omega}) = Cl_{\omega}(G) = G_{\omega} =$ $U_{\omega} = Cl_{\omega}(U) = Cl_{\omega}(U_{\omega}).$

MISSOURI J. OF MATH. SCI., SPRING 2018

2. Ψ_{ω} -operator in Ideal Topological Space

Definition 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. An operator $\Psi_{\omega} : \mathcal{P}(X) \to \tau$ is defined as follows. For every $A \in X$, $\Psi_{\omega}(A) = \{x \in X : \text{ there exists } U \in \tau_{\omega}(x) \text{ such that } U - A \in \mathcal{I}\}$. Observe that $\Psi_{\omega}(A) = X - (X - A)_{\omega}$.

Several basic facts concerning the behavior of the operator Ψ_{ω} are included in the following theorem.

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties hold:

- (1) If $A \subseteq X$, then $\Psi_{\omega}(A)$ is ω -open.
- (2) If $A \subseteq B$, then $\Psi_{\omega}(A) \subseteq \Psi_{\omega}(B)$.
- (3) If $A, B \in \mathcal{P}(X)$, then $\Psi_{\omega}(A \cap B) = \Psi_{\omega}(A) \cap \Psi_{\omega}(B)$.
- (4) If $U \in \tau_{\omega}^*$, then $U \subseteq \Psi_{\omega}(U)$.
- (5) If $A \subseteq X$, then $\Psi_{\omega}(A) \subseteq \Psi_{\omega}(\Psi_{\omega}(A))$.
- (6) If $A \subseteq X$, then $\Psi_{\omega}(A) = \Psi_{\omega}(\Psi_{\omega}(A))$ if and only if $(X A)_{\omega} = ((X A)_{\omega})_{\omega}$.
- (7) If $A \in \mathcal{I}$, then $\Psi_{\omega}(A) = X X_{\omega}$.
- (8) If $A \subseteq X$, then $A \cap \Psi_{\omega}(A) = Int^*_{\omega}(A)$.
- (9) If $A \subseteq X$, $I \in \mathcal{I}$, then $\Psi_{\omega}(A I) = \Psi_{\omega}(A)$.
- (10) If $A \subseteq X$, $I \in \mathcal{I}$, then $\Psi_{\omega}(A \cup I) = \Psi_{\omega}(A)$.
- (11) If $(A B) \cup (B A) \in \mathcal{I}$, then $\Psi_{\omega}(A) = \Psi_{\omega}(B)$.

Proof.

62

- (1) This follows from Lemma 1.2 (3).
- (2) This follows from Lemma 1.2 (1).

(3) It follows from (2) that $\Psi_{\omega}(A \cap B) \subseteq \Psi_{\omega}(A)$ and $\Psi_{\omega}(A \cap B) \subseteq \Psi_{\omega}(B)$. Hence, $\Psi_{\omega}(A \cap B) \subseteq \Psi_{\omega}(A) \cap \Psi_{\omega}(B)$. Now let $x \in \Psi_{\omega}(A) \cap \Psi_{\omega}(B)$. There exist $U, V \in \tau_{\omega}(x)$ such that $U - A \in \mathcal{I}$ and $V - B \in \mathcal{I}$. Let $G = U \cap V \in \tau_{\omega}(x)$. We have $G - A \in \mathcal{I}$ and $G - B \in \mathcal{I}$ by heredity. Thus, $G - (A \cap B) = (G - A) \cup (G - B) \in \mathcal{I}$ by additivity, and hence, $x \in \Psi_{\omega}(A \cap B)$. We have shown $\Psi_{\omega}(A) \cap \Psi_{\omega}(B) \subseteq \Psi_{\omega}(A \cap B)$ and the proof is complete.

(4) If $U \in \tau_{\omega}^*$, then X - U is τ_{ω}^* -closed. This implies $(X - U)_{\omega} \subseteq X - U$. Hence, $U \subseteq X - (X - U)_{\omega} = \Psi_{\omega}(U)$.

- (5) This follows from (4).
- (6) This follows from the facts:
- (1) $\Psi_{\omega}(A) = X (X A)_{\omega}.$

(2)
$$\Psi_{\omega}(\Psi_{\omega}(A)) = X - [X - (X - (X - A)_{\omega})]_{\omega} = X - ((X - A)_{\omega})_{\omega}$$

(7) By Corollary 1.4, we obtain that $(X - A)_{\omega} = X_{\omega}$, if $A \in \mathcal{I}$.

(8) If $x \in A \cap \Psi_{\omega}(A)$, then $x \in A$ and there exists $U_x \in \tau_{\omega}(x)$ such that $U_x - A \in \mathcal{I}$. Then by Theorem 1.7, $U_x - (U_x - A)$ is a τ_{ω}^* -open neighborhood

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

of x and $x \in Int_{\omega}^{*}(A)$. On the other hand, if $x \in Int_{\omega}^{*}(A)$, there exists a basic τ_{ω}^{*} -open neighborhood $V_{x} - I$ of x, where $V_{x} \in \tau_{\omega}$ and $I \in \mathcal{I}$, such that $x \in V_{x} - I \subseteq A$. This implies $V_{x} - A \subseteq I$. Hence, $V_{x} - A \in \mathcal{I}$. Therefore, $x \in A \cap \Psi_{\omega}(A)$.

(9) This follows from Corollary 1.4 and $\Psi_{\omega}(A-I) = X - [X - (A-I)]_{\omega} = X - [(X - A) \cup I]_{\omega} = X - (X - A)_{\omega} = \Psi_{\omega}(A).$

(10) This follows from Corollary 1.4 and $\Psi_{\omega}(A \cup I) = X - [X - (A \cup I)]_{\omega} = X - [(X - A) - I]_{\omega} = X - (X - A)_{\omega} = \Psi_{\omega}(A).$

(11) Assume $(A - B) \cup (B - A) \in \mathcal{I}$. Let A - B = I and B - A = J. Observe that $I, J \in \mathcal{I}$ by heredity. Also, observe that $B = (A - I) \cup J$. Thus, $\Psi_{\omega}(A) = \Psi_{\omega}(A - I) = \Psi[(A - I) \cup J] = \Psi_{\omega}(B)$ by (9) and (10). \Box

Corollary 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $U \subseteq \Psi_{\omega}(U)$ for every ω -open set $U \in \tau$.

Proof. We know that $\Psi_{\omega}(U) = X - (X - U)_{\omega}$. Now $(X - U)_{\omega} \subseteq Cl_{\omega}(X - U) = X - U$, since X - U is ω -closed. Therefore, $U = X - (X - U) \subseteq X - (X - U)_{\omega} = \Psi_{\omega}(U)$.

Theorem 2.4. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then the following properties hold:

(1)
$$\Psi_{\omega}(A) = \bigcup \{ U \in \tau_{\omega} : U - A \in \mathcal{I} \}.$$

(2) $\Psi_{\omega}(A) \supseteq \bigcup \{ U \in \tau_{\omega} : (U - A) \cup (A - U) \in \mathcal{I} \}.$

Proof.

(1) This follows immediately from the definition of Ψ_{ω} -operator.

(2) Since \mathcal{I} is hereditary, it is obvious that $\cup \{U \in \tau_{\omega} : (U-A) \cup (A-U) \in \mathcal{I}\} \subseteq \cup \{U \in \tau_{\omega} : U - A \in \mathcal{I}\} = \Psi_{\omega}(A)$ for every $A \subseteq X$. \Box

Theorem 2.5. Let (X, τ, \mathcal{I}) be an ideal topological space. If $\sigma = \{A \subseteq X : A \subseteq \Psi_{\omega}(A)\}$. Then σ is a topology for X and $\sigma = \tau_{\omega}^*$.

Proof. Let $\sigma = \{A \subseteq X : A \subseteq \Psi_{\omega}(A)\}$. First, we show that σ is a topology. Observe that $\phi \subseteq \Psi_{\omega}(\phi)$ and $X \subseteq \Psi_{\omega}(X) = X$, and thus, ϕ and $X \in \sigma$. Now if $A, B \in \sigma$, then $A \cap B \subseteq \Psi_{\omega}(A) \cap \Psi_{\omega}(B) = \Psi_{\omega}(A \cap B)$ which implies that $A \cap B \in \sigma$. If $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \sigma$, then $A_{\alpha} \subseteq \Psi_{\omega}(A_{\alpha}) \subseteq \Psi_{\omega}(\cup A_{\alpha})$ for every α and hence, $\cup A_{\alpha} \subseteq \Psi_{\omega}(\cup A_{\alpha})$. This shows that σ is a topology. Now if $U \in \tau_{\omega}^*$ and $x \in U$, then by Theorem 1.7, there exist $V \in \tau_{\omega}(x)$ and $I \in \mathcal{I}$ such that $x \in V - I \subseteq U$. Clearly $V - U \subseteq I$ so that $V - U \in \mathcal{I}$ by heredity and hence, $x \in \Psi_{\omega}(U)$. Thus, $U \subseteq \Psi_{\omega}(U)$ and we have shown $\tau_{\omega}^* \subseteq \sigma$. Now let $A \in \sigma$. Then we have $A \subseteq \Psi_{\omega}(A)$, that is, $A \subseteq X - (X - A)_{\omega}$ and $(X - A)_{\omega} \subseteq X - A$. This shows that X - A is τ_{ω}^* -closed and hence, $A \in \tau_{\omega}^*$.

MISSOURI J. OF MATH. SCI., SPRING 2018

H. AL-SAADI AND A. AL-OMARI

3. Some Properties in ω -Compatible Spaces

Theorem 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim_{\omega} \mathcal{I}$ if and only if $\Psi_{\omega}(A) - A \in \mathcal{I}$ for every $A \subseteq X$.

Proof.

Necessity. Assume $\tau \sim_{\omega} \mathcal{I}$ and let $A \subseteq X$. Observe that $x \in \Psi_{\omega}(A) - A \in \mathcal{I}$ if and only if $x \notin A$ and $x \notin (X - A)_{\omega}$ if and only if $x \notin A$ and there exists $U_x \in \tau_{\omega}(x)$ such that $U_x - A \in \mathcal{I}$ if and only if there exists $U_x \in \tau_{\omega}(x)$ such that $x \in U_x - A \in \mathcal{I}$. Now, for each $x \in \Psi_{\omega}(A) - A$ and $U_x \in \tau_{\omega}(x)$, $U_x \cap (\Psi_{\omega}(A) - A) \in \mathcal{I}$ by heredity and hence, $\Psi_{\omega}(A) - A \in \mathcal{I}$, by assumption that $\tau \sim_{\omega} \mathcal{I}$.

Sufficiency. Let $A \subseteq X$ and assume that for each $x \in A$, there exists $U_x \in \tau_{\omega}(x)$ such that $U_x \cap A \in \mathcal{I}$. Observe that $\Psi_{\omega}(X - A) - (X - A) = \{x : \text{ there exists } U_x \in \tau_{\omega}(x) \text{ such that } x \in U_x \cap A \in \mathcal{I}\}$. Thus, we have $A \subseteq \Psi_{\omega}(X - A) - (X - A) \in \mathcal{I}$ and hence, $A \in \mathcal{I}$ by heredity of \mathcal{I} . \Box

Lemma 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space such that $\tau \sim_{\omega} \mathcal{I}$ and $A \subseteq X$. Then A is a τ_{ω}^* -closed if and only if $A = B \cup I$ such that B is ω -closed and $I \in \mathcal{I}$.

Proof. If A is a τ_{ω}^* -closed set, then $A_{\omega} \subseteq A$. This implies that $A = A \cup A_{\omega} = (A - A_{\omega}) \cup A_{\omega}$. Then from Lemma 1.2, A_{ω} is an ω -closed set and from Lemma 1.11, $A - A_{\omega} \in \mathcal{I}$. Conversely, if $A = B \cup I$ such that B is an ω -closed set and $I \in \mathcal{I}$, then, by Corollary 1.4, we get that $A_{\omega} = (B \cup I)\omega = B_{\omega} \cup I_{\omega} = B_{\omega} \subseteq Cl_{\omega}(B) = B \subseteq A$. This implies that A is a τ_{ω}^* -closed. \Box

Corollary 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space such that $\tau \sim_{\omega} \mathcal{I}$. Then $\beta(\mathcal{I}, \tau)$ is a topology on X and hence, $\beta(\mathcal{I}, \tau) = \tau_{\omega}^*$.

Proof. Let $A \in \tau_{\omega}^*$. Then by Lemma 3.2, $X - A = F \cup I$, where F is ω -closed and $I \in \mathcal{I}$. Then $A = X - (F \cup I) = (X - F) \cap (X - I) = (X - F) - I = V - I$, where $V = X - F \in \tau_{\omega}$. Thus, every τ_{ω} -open set is of the form V - I, where $V \in \tau_{\omega}$ and $I \in \mathcal{I}$. The result follows by Theorem 1.7.

Proposition 3.4. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\omega} \mathcal{I}$ and $A \subseteq X$. If N is a nonempty ω -open subset of $A_{\omega} \cap \Psi_{\omega}(A)$, then $N - A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Proof. If $N \subseteq A_{\omega} \cap \Psi_{\omega}(A)$, then $N - A \subseteq \Psi_{\omega}(A) - A \in \mathcal{I}$ by Theorem 3.1. Hence, $N - A \in \mathcal{I}$ by heredity. Since $N \in \tau_{\omega} - \{\phi\}$ and $N \subseteq A_{\omega}$, we have $N \cap A \notin \mathcal{I}$, by the definition of A_{ω} .

As a consequence of the Theorem 3.2, we have the following.

Corollary 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\omega} \mathcal{I}$. Then $\Psi_{\omega}(\Psi_{\omega}(A)) = \Psi_{\omega}(A)$ for every $A \subseteq X$.

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

Proof. $\Psi_{\omega}(A) \subseteq \Psi_{\omega}(\Psi_{\omega}(A))$ follows from Theorem 2.2 (5). Since $\tau \sim_{\omega} \mathcal{I}$, it follows, from Theorem 3.1, that $\Psi_{\omega}(A) \subseteq A \cup I$ for some $I \in \mathcal{I}$ and hence, $\Psi_{\omega}(\Psi_{\omega}(A)) = \Psi_{\omega}(A)$ by Theorem 2.2 (10).

Theorem 3.6. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\omega} \mathcal{I}$. Then $\Psi_{\omega}(A) = \bigcup \{ \Psi_{\omega}(U) : U \in \tau_{\omega}, \Psi_{\omega}(U) - A \in \mathcal{I} \}.$

Proof. Let $\Phi(A) = \bigcup \{ \Psi_{\omega}(U) : U \in \tau_{\omega}, \Psi_{\omega}(U) - A \in \mathcal{I} \}$. Clearly, $\Phi(A) \subseteq \Psi_{\omega}(A)$. Now let $x \in \Psi_{\omega}(A)$. Then there exists $U \in \tau_{\omega}(x)$ such that $U - A \in \mathcal{I}$. By Corollary 2.3, $U \subseteq \Psi_{\omega}(U)$ and $\Psi_{\omega}(U) - A \subseteq [\Psi_{\omega}(U) - U] \cup [U - A]$. By Theorem 3.1, $\Psi_{\omega}(U) - U \in \mathcal{I}$ and hence, $\Psi_{\omega}(U) - A \in \mathcal{I}$. Hence, $x \in \Phi(A)$ and $\Phi(A) \supseteq \Psi_{\omega}(A)$. Consequently, we obtain $\Phi(A) = \Psi_{\omega}(A)$.

In [8], Newcomb defines $A = B \pmod{\mathcal{I}}$, if $(A - B) \cup (B - A) \in \mathcal{I}$ and observes that mod is an equivalence relation. By Theorem 2.2 (11), we have that if $A = B \pmod{\mathcal{I}}$, then $\Psi_{\omega}(A) = \Psi_{\omega}(B)$.

Definition 3.7. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called a Baire set with respect to τ and \mathcal{I} , denoted $A \in W_r(X, \tau, \mathcal{I})$, if there exists an ω -open set $U \in \tau$ such that $A = U \pmod{\mathcal{I}}$.

Lemma 3.8. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\omega} \mathcal{I}$. If U, $V \in \tau_{\omega}$ and $\Psi_{\omega}(U) = \Psi_{\omega}(V)$, then $U = V \pmod{\mathcal{I}}$.

Proof. Since $U \in \tau_{\omega}$, we have $U \subseteq \Psi_{\omega}(U)$ and hence, $U - V \subseteq \Psi_{\omega}(U) - V = \Psi_{\omega}(V) - V \in \mathcal{I}$ by Theorem 3.1. Similarly, $V - U \in \mathcal{I}$. Now $(U - V) \cup (V - U) \in \mathcal{I}$ by additivity. Hence, $U = V \pmod{\mathcal{I}}$.

Theorem 3.9. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\omega} \mathcal{I}$. If $A, B \in \mathcal{W}_r(X, \tau, \mathcal{I})$, and $\Psi_{\omega}(A) = \Psi_{\omega}(B)$, then $A = B \pmod{\mathcal{I}}$.

Proof. Let $U, V \in \tau_{\omega}$ such that $A = U \pmod{\mathcal{I}}$ and $B = V \pmod{\mathcal{I}}$. Now $\Psi_{\omega}(A) = \Psi_{\omega}(U)$ and $\Psi_{\omega}(B) = \Psi_{\omega}(V)$ by Theorem 2.2(11). Since $\Psi_{\omega}(A) = \Psi_{\omega}(U)$ implies that $\Psi_{\omega}(U) = \Psi_{\omega}(V)$, we have that $U = V \pmod{\mathcal{I}}$ by Lemma 3.8. Hence, $A = B \pmod{\mathcal{I}}$ by transitivity. \Box

4. ω -Codense in Ideal Topological Spaces

Proposition 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space.

- (1) If $B \in W_r(X, \tau, \mathcal{I}) \mathcal{I}$, then there exists $A \in \tau \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$.
- (2) If \mathcal{I} is ω -codense, then $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) \mathcal{I}$ if and only if there exists $A \in \tau \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$.

Proof.

(1) Assume $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$. Then $B \in \mathcal{W}_r(X, \tau, \mathcal{I})$. Now if there

MISSOURI J. OF MATH. SCI., SPRING 2018

does not exist $A \in \tau - \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$, we have $B = \phi \pmod{\mathcal{I}}$. This implies that $B \in \mathcal{I}$, which is a contradiction.

(2) Assume there exists $A \in \tau - \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$. Then $A = (B - J) \cup I$, where $J = B - A, I = A - B \in \mathcal{I}$. If $B \in \mathcal{I}$, then $A \in \mathcal{I}$ by heredity and additivity, which contradicts that \mathcal{I} is ω -codense.

Proposition 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space with \mathcal{I} is ω codense. If $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$, then $\Psi_{\omega}(B) \cap Int_{\omega}(B_{\omega}) \neq \phi$.

Proof. Assume $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$. Then by Proposition 4.1 (1), there exists $A \in \tau - \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$. This implies that $\phi \neq A \subseteq A_\omega = ((B - J) \cup I)_\omega = B_\omega$, where J = B - A and $I = A - B \in \mathcal{I}$, by Theorem 1.3 and Corollary 1.4. Also, $\phi \neq A \subseteq \Psi_\omega(A) = \Psi_\omega(B)$ by Theorem 2.2 (11), so that $A \subseteq \Psi_\omega(B) \cap Int_\omega(B_\omega)$.

Given an ideal topological space (X, τ, \mathcal{I}) , let $\mathcal{U}(X, \tau, \mathcal{I})$ denote $\{A \subseteq X :$ there exists $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A\}$.

Proposition 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space, where \mathcal{I} is ω -codense. The following properties are equivalent:

(1) $A \in \mathcal{U}(X, \tau, \mathcal{I});$

- (2) $\Psi_{\omega}(A) \cap Int_{\omega}(A_{\omega}) \neq \phi;$
- (3) $\Psi_{\omega}(A) \cap A_{\omega} \neq \phi;$
- (4) $\Psi_{\omega}(A) \neq \phi;$
- (5) $Int^*_{\omega}(A) \neq \phi;$
- (6) There exists $N \in \tau_{\omega} \{\phi\}$ such that $N A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Proof.

(1) \Rightarrow (2): Let $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A$. Then $Int_{\omega}(B_{\omega}) \subseteq Int_{\omega}(A_{\omega})$ and $\Psi_{\omega}(B) \subseteq \Psi_{\omega}(A)$ and hence, $Int_{\omega}(B_{\omega}) \cap \Psi_{\omega}(B) \subseteq Int_{\omega}(A_{\omega}) \cap \Psi_{\omega}(A)$. By Proposition 4.2, we have $\Psi_{\omega}(A) \cap Int_{\omega}(A_{\omega}) \neq \phi$.

 $(2) \Rightarrow (3)$: The proof is obvious.

 $(3) \Rightarrow (4)$: The proof is obvious.

 $(4) \Rightarrow (5): \text{ If } \Psi_{\omega}(A) \neq \phi, \text{ then there exists } U \in \tau_{\omega} - \{\phi\} \text{ such that} \\ U - A \in \mathcal{I}. \text{ Since } U \notin \mathcal{I} \text{ and } U = (U - A) \cup (U \cap A), \text{ we have } U \cap A \notin \mathcal{I}. \\ \text{By Theorem 2.2, } \phi \neq (U \cap A) \subseteq \Psi_{\omega}(U) \cap A = \Psi_{\omega}((U - A) \cup (U \cap A)) \cap A = \\ \Psi_{\omega}(U \cap A) \cap A \subseteq \Psi_{\omega}(A) \cap A = Int^*_{\omega}(A). \text{ Hence, } Int^*_{\omega}(A) \neq \phi.$

 $(5) \Rightarrow (6)$: If $Int^*_{\omega}(A) \neq \phi$, then by Theorem 1.7 there exists $N \in \tau_{\omega} - \{\phi\}$ and $I \in \mathcal{I}$ such that $\phi \neq N - I \subseteq A$. We have $N - A \in \mathcal{I}$, $N = (N - A) \cup (N \cap A)$ and $N \notin \mathcal{I}$. This implies that $N \cap A \notin \mathcal{I}$.

(6) \Rightarrow (1): Let $B = N \cap A \notin \mathcal{I}$ with $N \in \tau_{\omega} - \{\phi\}$ and $N - A \in \mathcal{I}$. Then $B \in \mathcal{W}_r(X, \tau, \mathcal{I}) - \mathcal{I}$, since $B \notin \mathcal{I}$ and $(B - N) \cup (N - B) = N - A \in \mathcal{I}$. \Box

Theorem 4.4. Let (X, τ, \mathcal{I}) be an ideal topological space, where \mathcal{I} is ω codense. Then for $A \subseteq X$, $\Psi_{\omega}(A) \subseteq A_{\omega}$.

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

Proof. Suppose $x \in \Psi_{\omega}(A)$ and $x \notin A_{\omega}$. Then there exists a nonempty neighborhood $U_x \in \tau_{\omega}(x)$ such that $U_x \cap A \in \mathcal{I}$. Since $x \in \Psi_{\omega}(A)$, by Theorem 2.4, $x \in \bigcup \{U \in \tau_{\omega} : U - A \in \mathcal{I}\}$ and there exists $V \in \tau_{\omega}$ such that $x \in V$ and $V - A \in \mathcal{I}$. Now we have $U_x \cap V \in \tau_{\omega}(x)$, $U_x \cap V \cap A \in \mathcal{I}$, and $(U_x \cap V) - A \in \mathcal{I}$ by heredity. Hence, by finite additivity, we have $(U_x \cap V \cap A) \cup (U_x \cap V - A) = (U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V) \in \tau_{\omega}(x)$, this is contrary to \mathcal{I} is ω -codense. Therefore, $x \in A_{\omega}$. This implies that $\Psi_{\omega}(A) \subseteq A_{\omega}$.

Corollary 4.5. Let (X, τ, \mathcal{I}) be an ideal topological space, where \mathcal{I} is ω codense. Then for $A \subseteq X$, $\Psi_{\omega}(A) \subseteq Cl_{\omega}(A_{\omega})$.

Theorem 4.6. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent:

- (1) \mathcal{I} is ω -codense;
- (2) $\Psi_{\omega}(\phi) = \phi;$
- (3) If $A \subseteq X$ is ω -closed, then $\Psi_{\omega}(A) A = \phi$;
- (4) If $I \in \mathcal{I}$, then $\Psi_{\omega}(I) = \phi$.

Proof.

(1) \Rightarrow (2): Since \mathcal{I} is ω -codense, by Theorem 2.4, we have $\Psi_{\omega}(\phi) = \bigcup \{U \in \tau_{\omega} : U \in \mathcal{I}\} = \phi$.

(2) \Rightarrow (3): Suppose $x \in \Psi_{\omega}(A) - A$. Then there exists $U_x \in \tau_{\omega}(x)$ such that $x \in U_x - A \in \mathcal{I}$ and $U_x - A \in \tau_{\omega}$. But $U_x - A \in \{U \in \tau_{\omega} : U \in \mathcal{I}\} = \Psi_{\omega}(\phi)$, which implies that $\Psi_{\omega}(\phi) = \phi$. Hence, $\Psi_{\omega}(A) - A = \phi$.

(3) \Rightarrow (4): Let $I \in \mathcal{I}$. Since ϕ is ω -closed, $\Psi_{\omega}(I) = \Psi_{\omega}(I \cup \phi) = \Psi_{\omega}(\phi) = \phi$.

(4) \Rightarrow (1): Suppose $A \in \tau_{\omega} \cap \mathcal{I}$, then $A \in \mathcal{I}$ and by (4), $\Psi_{\omega}(A) = \phi$. Since $A \in \tau_{\omega}$, by Corollary 2.3, we have $A \subseteq \Psi_{\omega}(A) = \phi$. Hence, \mathcal{I} is ω -codense.

Theorem 4.7. Let (X, τ, \mathcal{I}) be an ideal topological space. Then \mathcal{I} is ω codense if and only if $[\Psi_{\omega}(A)]_{\omega} = Cl_{\omega}[\Psi_{\omega}(A)]$ for every $A \subseteq X$.

Proof. Let \mathcal{I} be ω -codense. It is obvious that $[\Psi_{\omega}(A)]_{\omega} \subseteq Cl_{\omega}[\Psi_{\omega}(A)]$. For the reverse inclusion, let $x \in Cl_{\omega}[\Psi_{\omega}(A)]$. Then for every ω -open sets U_x containing $x, U_x \cap \Psi_{\omega}(A) \neq \phi$ implies that $U_x \cap \Psi_{\omega}(A) \notin \mathcal{I}$, since \mathcal{I} is ω -codense. Hence, $x \in [\Psi_{\omega}(A)]_{\omega}$. Hence, $[\Psi_{\omega}(A)]_{\omega} = Cl_{\omega}[\Psi_{\omega}(A)]$. Conversely, suppose that $[\Psi_{\omega}(A)]_{\omega} = Cl_{\omega}[\Psi_{\omega}(A)]$, for every $A \subseteq X$. Then for $X \subseteq X$, $[\Psi_{\omega}(X)]_{\omega} = Cl_{\omega}[\Psi_{\omega}(X)]$. Hence, $[X - (X - X)_{\omega}]_{\omega} = Cl_{\omega}[X - (X - X)_{\omega}]$, implies that $X_{\omega} = Cl_{\omega}(X) = X$. Hence, \mathcal{I} is ω -codense. \Box

Theorem 4.8. Let (X, τ, \mathcal{I}) be an ideal topological space such that $\tau \sim_{\omega} \mathcal{I}$ and \mathcal{I} is ω -codense. Then

MISSOURI J. OF MATH. SCI., SPRING 2018

H. AL-SAADI AND A. AL-OMARI

- (1) (X, τ_{ω}) is Hausdorff or Urysohn if and only if (X, τ_{ω}^*) is respectively so.
- (2) If (X, τ_{ω}^*) is regular then $\tau_{\omega} = \tau_{\omega}^*$.
- (3) (X, τ_{ω}) is connected if and only if (X, τ_{ω}^*) is connected.

Proof.

(1) Let (X, τ_{ω}^{*}) be Hausdorff and x and y be any two distinct points of X. Then there exists disjoint τ_{ω}^{*} -open sets G and H containing x and y, respectively. Then by Corollary 3.3, $G = U - I_1$ and $H = V - I_2$, where $U, V \in \tau_{\omega}$ and $I_1, I_2 \in \mathcal{I}$. Since U and V are ω -open sets containing x and y, respectively, it remains to show that $U \cap V = \phi$. Now $G \cap H = [U - I_1] \cap [V - I_2] = [U \cap V] - [I_1 \cup I_2] = \phi$. Then $U \cap V \subseteq I_1 \cup I_2$ and hence, $[U \cap V]_{\omega} \subseteq [I_1 \cup I_2]_{\omega} = [I_1]_{\omega} \cup [I_2]_{\omega} = \phi$, by Lemma 1.2 and Theorem 1.3. Since \mathcal{I} is ω -codense, we have, by Lemma 1.12, that $U \cap V \subseteq [U \cap V]_{\omega} = \phi$, so that $U \cap V = \phi$. The converse is trivial.

Next, let (X, τ_{ω}^*) be Urysohn and x and y be two distinct points of X. Then there exists τ_{ω}^* -open sets G and H containing x and y, respectively and $Cl_{\omega}^*(G) \cap Cl_{\omega}^*(H) = \phi$, where by Corollary 3.3, we can take $G = U - I_1$ and $H = V - I_2$, where $U, V \in \tau_{\omega}$ and $I_1, I_2 \in \mathcal{I}$. Then $x \in U, y \in V$, and by Theorem 1.13, $Cl_{\omega}(U) \cap Cl_{\omega}(V) = \phi$. Hence, (X, τ_{ω}) is Urysohn.

Conversely, if (X, τ_{ω}) is Urysohn, then for $x, y \in X$ with $x \neq y$, there exist $U, V \in \tau_{\omega}$ such that $Cl_{\omega}(U) \cap Cl_{\omega}(V) = \phi$. Then U and V are τ_{ω}^* -open and, by Theorem 1.13, $Cl_{\omega}(U) = Cl_{\omega}^*(U)$ and $Cl_{\omega}(V) = Cl_{\omega}^*(V)$. Hence, (X, τ_{ω}^*) is Urysohn.

(2) For any $A \subseteq X$, we clearly have $Cl^*_{\omega}(A) \subseteq Cl_{\omega}(A)$. Let $x \notin Cl^*_{\omega}(A)$. Then for some τ^*_{ω} -open neighborhood of G of x, we have $G \cap A = \phi$. By regularity of (X, τ^*_{ω}) , there exists $H \in \tau^*_{\omega}$ with H = U - I, where $U \in \tau_{\omega}$ and $I \in \mathcal{I}$, such that $x \in H \subseteq Cl^*_{\omega}(H) \subseteq G$. Now, $U \cap A \subseteq Cl_{\omega}(U) \cap A = Cl^*_{\omega}(H) \cap A \subseteq G \cap A = \phi$ by Theorem 1.13, and hence, $U \cap A = \phi$, where $x \in U \in \tau_{\omega}$ and $x \notin Cl_{\omega}(A)$. Hence, $Cl^*_{\omega}(A) = Cl_{\omega}(A)$ for each $A \subseteq X$ and $\tau_{\omega} = \tau^*_{\omega}$.

(3) If (X, τ_{ω}^{*}) is connected, then so is (X, τ_{ω}) . Suppose (X, τ_{ω}^{*}) is not connected. Then there exists a nonempty τ_{ω}^{*} -clopen set $A \neq X$ and $X = A \cup (X - A)$ such that $X = X_{\omega} = [A \cup (X - A)]_{\omega} = A_{\omega} \cup (X - A)_{\omega}$. Now A and X - A are τ_{ω}^{*} -closed, $A_{\omega} \cup (X - A)_{\omega} \subseteq A \cup (X - A)_{\omega}$, and hence, $A_{\omega} \cup (X - A)_{\omega} = \phi$. Again as A is τ_{ω}^{*} -open, by Theorem 1.13, $A_{\omega} = Cl_{\omega}(A) \neq \phi$. Similarly, $(X - A)_{\omega} = Cl_{\omega}(X - A) \neq \phi$. Thus, $X = Cl_{\omega}(A) \cup Cl_{\omega}(X - A)$ and $Cl_{\omega}(A) \cap Cl_{\omega}(X - A) = \phi$ and $Cl_{\omega}(A) \neq \phi \neq Cl_{\omega}(X - A)$. Hence, (X, τ_{ω}) is not connected. \Box

We recall that a topological space X is called quasi H-closed (QHC, for short) [9] if every open cover of X has a finite subcollection, the union of its closures cover of X.

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

Theorem 4.9. Let (X, τ, \mathcal{I}) be an ideal topological space such that \mathcal{I} is ω -codense. Then (X, τ_{ω}) is QHC if and only if (X, τ_{ω}^*) is QHC.

Proof. Let (X, τ_{ω}) be QHC and let $\mathcal{U} = \{U_{\alpha} - I_{\alpha} : U_{\alpha} \in \tau_{\omega}, I_{\alpha} \in \mathcal{I}, \alpha \in \mathcal{I}\}$ Λ } be a τ_{ω}^* -basic open cover of X. Then $\{U_{\alpha} : \alpha \in \Lambda\}$ is a τ_{ω} -open cover of X. By quasi H-closedness of (X, τ_{ω}) , there exist finitely many α , say, $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda$, such that $X = \bigcup_{i=1}^n Cl_{\omega}(U_{\alpha_i})$. We are to show that $X = \bigcup_{i=1}^{n} Cl_{\omega}^{*}(U_{\alpha_{i}} - I_{\alpha_{i}})$. Suppose $x \in X = \bigcup_{i=1}^{n} Cl_{\omega}(U_{\alpha_{i}})$ such that $x \notin \bigcup_{i=1}^{n} Cl_{\omega}^{*}(U_{\alpha_{i}} - I_{\alpha_{i}})$. Then $x \notin Cl_{\omega}^{*}(U_{\alpha_{i}} - I_{\alpha_{i}})$ for each $i = 1, 2, \ldots, n$, while for some $\alpha_k \in \{\alpha_1, \alpha_2, \ldots, \alpha_n \in \Lambda\}, x \in Cl_{\omega}(U_{\alpha_k}).$ Since $x \notin Cl^*_{\omega}(U_{\alpha_i} - I_{\alpha_i})$, we get $G_i = V_i - I_i$ with $V_i \in \tau_{\omega}$ and $I_i \in \mathcal{I}$ such that $x \in G_i$ and $G_i \cap [U_{\alpha_i} - I_{\alpha_i}] = \phi$ for $i = 1, 2, \ldots, n$. Now $x \in G = G_1 \cap G_2 \cap \dots \cap G_n = [V_1 \cap V_2 \cap \dots \cap V_n] - [I_1 \cup I_2 \cup \dots \cup I_n] \in \tau_{\omega}^*.$ This implies that $G \cap [U_{\alpha_k} - I_{\alpha_k}] = \phi$ and $U_{\alpha_k} \cap [V_1 \cap V_2 \cap \cdots \cap V_n] \neq \phi$, and so, $U_{\alpha_k} \cap [V_1 \cap V_2 \cap \cdots \cap V_n] \notin \mathcal{I}$. To arrive at a contradiction, we only show that $U_{\alpha_k} \cap [V_1 \cap V_2 \cap \cdots \cap V_n] \subseteq I_{\alpha_k} \cup [I_1 \cup I_2 \cup \cdots \cup I_n] \in \mathcal{I}$. Let $z \in U_{\alpha_k} \cap [V_1 \cap V_2 \cap \cdots \cap V_n]$. Then, as $\phi = G \cap [U_{\alpha_k} - I_{\alpha_k}] = [(V_1 \cap V_2 \cap V_1 \cap V_$ $\cdots \cap V_n$ – $(I_1 \cup I_2 \cup \cdots \cup I_n)$] $\cap [U_{\alpha_k} - I_{\alpha_k}]$, we have $z \in (I_1 \cup I_2 \cup \cdots \cup I_n)$ or $z \in I_{\alpha_k}$. Hence, $z \in (I_1 \cup I_2 \cup \cdots \cup I_n) \cup I_{\alpha_k}$. This completes the proof. \Box

Definition 4.10. A subset A in an ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_{ω} -dense if $A_{\omega} = X$.

Definition 4.11. A topological space (X, τ) is said to be ω -hyperconnected if and only if every pair of nonempty ω -open sets U and V has a nonempty intersection, i.e., $U \cap V \neq \emptyset$.

Proposition 4.12. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties are equivalent:

- (1) Every nonempty ω -open set is \mathcal{I}_{ω} -dense;
- (2) (X, τ) is ω -hyperconnected and \mathcal{I} is ω -codense.

Proof.

(1) \Rightarrow (2): Clearly every nonempty ω -open set which is \mathcal{I}_{ω} -dense is ω -hyperconnected. Let A be ω -open, nonempty and a member of the ideal. By (1), $A_{\omega} = X$. On the other hand, since $A \in \mathcal{I}$, $A_{\omega} = \phi$. Hence, $X = \phi$. By contradiction, \mathcal{I} is ω -codense.

 $(2) \Rightarrow (1)$: Let $\phi \neq A \in \tau_{\omega}$. Let $x \in X$. Due to the ω -hyperconnectedness of (X, τ) , every ω -open neighborhood V of x meets A. Moreover, $A \cap V$ is an ω -open non-ideal set, since \mathcal{I} is ω -codense. Thus, $x \in A_{\omega}$. This shows that $A_{\omega} = X$ and A is \mathcal{I}_{ω} -dense. \Box

Definition 4.13. An ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I} -resolvable (resp. \mathcal{I}_{ω} -resolvable) if X has two disjoint \mathcal{I} -dense (resp. \mathcal{I}_{ω} -dense) subsets.

Lemma 4.14. If (X, τ, \mathcal{I}) is \mathcal{I}_{ω} -resolvable, then \mathcal{I} is ω -codense.

MISSOURI J. OF MATH. SCI., SPRING 2018

Proof. If $X = A \cup B$, where A and B are disjoint \mathcal{I}_{ω} -dense, then $A_{\omega} = X$ and $B_{\omega} = X$. Therefore, $\tau_{\omega}(X) \cap A \notin \mathcal{I}$ and $\tau_{\omega}(X) \cap B \notin \mathcal{I}$. Hence, $\tau_{\omega} \cap \mathcal{I} = \phi$, and \mathcal{I} is ω -codense.

Proposition 4.15. Every \mathcal{I}_{ω} -resolvable ideal topological space (X, τ, \mathcal{I}) is \mathcal{I} -resolvable.

Proof. If $X = A \cup B$, where A and B are disjoint \mathcal{I}_{ω} -dense, then $A_{\omega} = X$ and $B_{\omega} = X$. Therefore, $X = A_{\omega} \subseteq A^*$ and $X = B_{\omega} \subseteq B^*$, and we get $X = A^*$ and $X = B^*$. Hence, $X = A \cup B$, where A and B are disjoint \mathcal{I} -dense and (X, τ, \mathcal{I}) is \mathcal{I} -resolvable.

The collection of all \mathcal{I}_{ω} -dense in (X, τ, \mathcal{I}) is denoted by $\mathcal{I}_{\omega}D(X, \tau)$. The collection of all dense sets in (X, τ) is denoted by $D(X, \tau)$. Now we show that the collection of dense sets in a topological space (X, τ_{ω}^*) and the collection of \mathcal{I}_{ω} -dense sets in ideal topological space (X, τ, \mathcal{I}) are equal if \mathcal{I} is ω -codense.

Theorem 4.16. Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is ω codense, then $\mathcal{I}_{\omega}D(X, \tau) = D(X, \tau_{\omega}^*)$.

Proof. Let $D \in \mathcal{I}_{\omega}D(X,\tau)$. Then $Cl^*_{\omega}(D) = D \cup D_{\omega} = X$, i.e., $D \in D(X,\tau^*_{\omega})$. Therefore, $\mathcal{I}_{\omega}D(X,\tau) \subseteq D(X,\tau^*_{\omega})$.

Conversely, let $D \in D(X, \tau_{\omega}^*)$. Then $Cl_{\omega}^*(D) = D \cup D_{\omega} = X$. We prove that $D_{\omega} = X$. Let $x \in X$ such that $x \notin D_{\omega}$. Therefore, there exists $\phi \neq U \in \tau_{\omega}$ such that $U \cap D \in \mathcal{I}$. Since $U \notin \mathcal{I}$ and $U \cap (X - D) \notin \mathcal{I}$, $U \cap (X - D) \neq \phi$. Let $x_0 \in U \cap (X - D)$. Then $x_0 \notin D$ and also $x_0 \notin D_{\omega}$. But $x_0 \in D_{\omega}$ implies that $U \cap D \notin \mathcal{I}$. This is contrary to $U \cap D \in \mathcal{I}$. Thus, $x_0 \notin D \cup D_{\omega} = Cl_{\omega}^*(D) = X$. This is a contradiction. Therefore, we obtain $D \in \mathcal{I}_{\omega}D(X,\tau)$. Therefore, $D(X,\tau_{\omega}^*) \subseteq \mathcal{I}_{\omega}D(X,\tau)$. Hence, $\mathcal{I}_{\omega}D(X,\tau) = D(X,\tau_{\omega}^*)$.

Theorem 4.17. Let (X, τ, \mathcal{I}) be an ideal topological space. Then for $x \in X$, $X - \{x\}$ is \mathcal{I}_{ω} -dense if and only if $\Psi_{\omega}(\{x\}) = \phi$.

Proof. The proof follows from the definition of \mathcal{I}_{ω} -dense sets, since $\Psi_{\omega}(\{x\}) = X - (X - \{x\})_{\omega} = \phi$ if and only if $X = (X - \{x\})_{\omega}$.

Proposition 4.18. Let (X, τ, \mathcal{I}) be an ideal topological space. $A \notin Cl_{\omega}[\Psi_{\omega}(A)]$ if and only if there exists $x \in A$ such that there is an ω -open set V_x of x for which X - A is \mathcal{I}_{ω} -dense in V_x .

Proof. Let $A \notin Cl_{\omega}[\Psi_{\omega}(A)]$. There exists $x \in X$ such that $x \in A$, but $x \notin Cl_{\omega}[\Psi_{\omega}(A)]$. Hence, there exists an ω -open set V_x of x such that $V_x \cap \Psi_{\omega}(A) = \phi$. This implies that $V_x \cap [X - (X - A)_{\omega}] = \phi$ and so $V_x \subseteq (X - A)_{\omega}$. Let U be any nonempty ω -open set in V_x . Since $V_x \subseteq (X - A)_{\omega}$,

70

MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1

 $U \cap (X - A) \notin \mathcal{I}$. This implies that X - A is \mathcal{I}_{ω} -dense in V_x . The converse is obvious by reversing process.

Proposition 4.19. Let (X, τ, \mathcal{I}) be an ideal topological space with \mathcal{I} is ω codense. Then $\Psi_{\omega}(A) \neq \phi$ if and only if A contains a nonempty τ_{ω}^* -interior.

Proof. Let $\Psi_{\omega}(A) \neq \phi$. By Theorem 2.4 (1), $\Psi_{\omega}(A) = \bigcup \{U \in \tau_{\omega} : U - A \in \mathcal{I}\}$ and there exists a nonempty set $U \in \tau_{\omega}$ such that $U - A \in \mathcal{I}$. Let U - A = P, where $P \in \mathcal{I}$. Now $U - P \subseteq A$. By Theorem 1.7, $U - P \in \tau_{\omega}^*$ and A contains a nonempty τ_{ω}^* -interior.

Conversely, suppose that A contains a nonempty τ_{ω}^* -interior. Hence, there exists $U \in \tau_{\omega}$ and $P \in \mathcal{I}$ such that $U - P \subseteq A$. So $U - A \subseteq P$. Let $H = U - A \subseteq P$. Then $H \in \mathcal{I}$. Hence, $\cup \{U \in \tau_{\omega} : U - A \in \mathcal{I}\} = \Psi_{\omega}(A) \neq \phi$.

References

- S. Al Ghour and W. Zareer, Omega open sets in generalized topological spaces, J. Nonlinear Sci. Appl., 9 (2016), 3010–3017.
- [2] A. Al-Omari and H. Al-Saadi, A topology via w-local functions in ideal spaces, (submitted).
- [3] A. Al-Omari and M. S. M. Noorani, Regular generalized ω-closed sets, Internat. J. Math. & Math. Sci., Vol. 2007, Article ID 16292, 11 pages.
- [4] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97.4 (1990), 295–310.
- [5] H. Z. Hdeib, ω-closed mapping, Rev. Colomb. Mat., **16.1–2** (1982), 65–78.
- [6] H. Z. Hdeib, ω-continuous functions, Dirasat Journal, 16.2 (1989), 136–142.
- [7] K. Kuratowski, Topology I, Warszawa, 1933.
- [8] R. L. Newcomb, Topologies Which are Compact Modulo an Ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [9] J. P. Porter and J. D. Thomas, On H-closed and minimal Hausdorff spaces, Amer. Math. Soc. Transl., 138 (1969), 159–170.

MSC2010: 54A05, 54C10.

Key words and phrases: Kuratowski closure operator, ideal topological space, ω -closed, Ψ_{ω} -operator, ω -compatible, ω -codense.

Faculty of Applied Sciences, Department of Mathematics, Umm Al-Qura University, P. O. Box 11155, Makkah 21955, Saudi Arabia

Email address: hasa112@hotmail.com

Faculty of Sciences, Department of Mathematics, Al al-Bayt University, P. O. Box 130095, Mafraq 25113, Jordan

Email address: omarimutah1@yahoo.com

MISSOURI J. OF MATH. SCI., SPRING 2018