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Abstract. Let Y be a nonempty subset of a set X and let T (X,Y )

be the semigroup (under composition) of all functions X → X whose
range is a subset of Y . We give necessary and sufficient conditions

for elements in T (X,Y ) to be left and right magnifying.

1. Introduction and Preliminary

The notions of left and right magnifying elements of a semigroup were in-
troduced by Ljapin (Chapter 3 in [5]). We recall that an element a of a semi-
group S is called left [right] magnifying if there exists a proper subset M of S
such that S = aM [S = Ma]. For some properties of left and right magnify-
ing elements in semigroups, see [2, 3, 4, 6, 7, 8]. In [2], Catino and Migliorini
gave a necessary and sufficient condition for any semigroup to contain left
magnifying elements and right magnifying elements. In [3], Gutan showed
that every semigroup containing magnifying elements is factorizable. Let
X be a nonempty set and let T (X) denote the set of all transformations
from X into itself, that is, T (X) = {f : X → X | f is a function }. It
is well-known that T (X) is a semigroup under composition (called the full
transformation semigroup). It plays an important role in semigroup theory
(it is known, for example, every semigroup is isomorphic to a subsemigroup
of a suitable full transformation semigroup). In [6], Magill, Jr. studied left
magnifying elements and right magnifying elements in transformation semi-
groups and applied to the linear transformation semigroups over a vector
space V and the semigroup of all continuous selfmaps of a topological space
X.

In this paper, we will write functions from the right, (x)f rather than
f(x) and compose from left to right, (x)(fg) rather than (g ◦ f)(x), for
f, g ∈ T (X) and x ∈ X. Let Y be a fixed nonempty subset of a set X. Let
T (X,Y ) = {f ∈ T (X) | ran f ⊆ Y }. Then T (X,Y ) is a subsemigroup of
T (X). Clearly, if |Y | = 1, then T (X,Y ) contains exactly one element. If

Research supported in part by Algebra and Applications Research Unit, Prince of
Songkla University.

54 MISSOURI J. OF MATH. SCI., VOL. 30, NO. 1



MAGNIFYING ELEMENTS IN A SEMIGROUP OF ...

Y = X, then T (X,Y ) = T (X). In [13], Symons described all the au-
tomorphisms of T (X,Y ). In [9], Nenthein, Youngkhong, and Kemprasit
determined its regular elements. In [12], Sanwong, Singha, and Sullivan
characterized all maximal and minimal congruences on T (X,Y ). In [11],
Sanwong and Sommanee determined the largest regular subsemigroup of
T (X,Y ) when |Y | 6= 1 and Y 6= X and used that to describe Green’s rela-
tions on T (X,Y ). In [10], Sanwong described Green’s relations and ideals
of some subsemigroup of T (X,Y ) and obtained from that all of its maxi-
mal regular subsemigroups when Y is a nonempty finite subset of X. In
[1], Anantayasethi and Koppitz characterized the maximal regular subsemi-
groups of some subsemigroup of T (X,Y ).

Our aim in this paper is to give necessary and sufficient conditions for
elements in T (X,Y ) to be left (respectively right) magnifying elements.

2. Right Magnifying Elements

Lemma 2.1. If f is a right magnifying element in T (X,Y ), then f is onto.

Proof. Assume f is a right magnifying element in T (X,Y ). Then there
exists a proper subset M of T (X,Y ) such that Mf = T (X,Y ). Since
Y ⊆ X, there exists an onto function g in T (X,Y ). Thus, there exists
h ∈M such that hf = g. This implies f is onto. �

Lemma 2.2. Let f ∈ T (X,Y ) be onto but not one-to-one.

(1) If (y)f−1 ∩ Y = ∅ for some y ∈ Y , then f is not right magnifying.
(2) If |(y)f−1 ∩ Y | = 1 for all y ∈ Y , then f is not right magnifying.
(3) If (y)f−1 ∩ Y 6= ∅ for all y ∈ Y and |(y)f−1 ∩ Y | > 1 for some

y ∈ Y , then f is right magnifying.

Proof. Let f ∈ T (X,Y ) be onto but not one-to-one.
(1) Let y0 ∈ Y be such that (y0)f−1 ∩ Y = ∅ and let g ∈ T (X,Y ) be

such that (x)g = y0 for all x ∈ X. Then there is no h ∈ T (X,Y ) such that
hf = g. Therefore, f is not right magnifying.

(2) Assume |(y)f−1 ∩ Y | = 1 for all y ∈ Y . Then f |Y is bijective.
Assume f is right magnifying. Then there exists a proper subset M of
T (X,Y ) such that Mf = T (X,Y ). Hence, Mf = T (X,Y )f . Since f |Y is
bijective, M = T (X,Y ), a contradiction. Then f is not right magnifying.

(3) Assume (y)f−1 ∩ Y 6= ∅ for all y ∈ Y and |(y)f−1 ∩ Y | > 1 for some
y ∈ Y . Let M = {h ∈ T (X,Y ) | h is not onto }. Then M 6= T (X,Y ).
Let g be any function in T (X,Y ). Since f is onto and (y)f−1 ∩ Y 6= ∅
for all y ∈ Y , there exists for each x ∈ X, an element yx ∈ Y such that
(yx)f = (x)g (if (x1)g = (x2)g, we must choose yx1 = yx2). Define h ∈
T (X,Y ) by (x)h = yx for all x ∈ X. We claim that h is not onto. Since
|(y)f−1∩Y | > 1 for some y ∈ Y , there exist an element y′ ∈ Y and distinct

MISSOURI J. OF MATH. SCI., SPRING 2018 55



R. CHINRAM AND S. BAUPRADIST

elements y1, y2 ∈ Y such that (y1)f = (y2)f = y′. If y′ /∈ ran g, we have
y1, y2 /∈ ranh. If y′ ∈ ran g, there is only one between y1 and y2 in ranh.
Then h is not onto. Hence, h ∈M and for all x ∈ X, we have

(x)hf = (yx)f = (x)g.

Then hf = g, hence, Mf = T (X,Y ). Therefore, f is right magnifying. �

Theorem 2.3. A function f in T (X,Y ) is right magnifying if and only if
f is onto but not one-to-one and is such that (y)f−1 ∩ Y 6= ∅ for all y ∈ Y
and |(y)f−1 ∩ Y | > 1 for some y ∈ Y .

Proof. Assume f is right magnifying. By Lemma 2.1, f is onto. Suppose
f is one-to-one. Since f is right magnifying, there exists a proper subset
M of T (X,Y ) such that Mf = T (X,Y ). This implies Mf = T (X,Y )f .
Since f is one-to-one, M = T (X,Y ), this is a contradiction. Hence, f
is not one-to-one. By Lemma 2.2, we have f is onto but not one-to-one
such that (y)f−1 ∩ Y 6= ∅ for all y ∈ Y and |(y)f−1 ∩ Y | > 1 for some
y ∈ Y . Conversely, assume f is onto but not one-to-one and such that
(y)f−1 ∩ Y 6= ∅ for all y ∈ Y and |(y)f−1 ∩ Y | > 1 for some y ∈ Y . By
Lemma 2.2, f is right magnifying. �

Corollary 2.4. Let f ∈ T (X). Then f is right magnifying in T (X) if and
only if f is onto but not one-to-one.

Proof. This follows directly from Theorem 2.3. �

3. Left Magnifying Elements

Lemma 3.1. Suppose |Y | < |X|, then T (X,Y ) has no left magnifying
element.

Proof. If |Y | = 1, then |T (X,Y )| = 1, and so T (X,Y ) has no left mag-
nifying element. Assume |Y | > 1. Let f be a left magnifying element
in T (X,Y ). Then there exists a proper subset M of T (X,Y ) such that
fM = T (X,Y ). Since |Y | < |X|, f is not one-to-one and so there exist
y ∈ Y and distinct elements x1, x2 ∈ X such that (x1)f = (x2)f = y. Let
y′ ∈ Y be such that y′ 6= y and define a function g : X → Y by

(x)g =

{
y if x = x1

y′ if x 6= x1.

Then there is no h ∈ T (X,Y ) such that fh = g, a contradiction. Hence,
T (X,Y ) has no left magnifying element. �

Lemma 3.2. Assume |Y | = |X|. If f is a left magnifying element in
T (X,Y ), then f is one-to-one.
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Proof. Assume f is a left magnifying element in T (X,Y ). Then there exists
a proper subset M of T (X,Y ) such that fM = T (X,Y ). Since |X| = |Y |,
there exists a one-to-one function h in T (X,Y ). Therefore there exists
g ∈M such that fg = h. This implies f is one-to-one. �

Lemma 3.3. Assume |Y | = |X| but Y 6= X. If f is one-to-one in T (X,Y ),
then f is a left magnifying element in T (X,Y ).

Proof. Assume |Y | = |X|, Y 6= X, and f is one-to-one. Let y0 ∈ Y and
M = {h ∈ T (X,Y ) | (x)h = y0 for all x /∈ ran f}. We claim that fM =
T (X,Y ). To see that, let g ∈ T (X,Y ) and define a function h : X → Y by

(x)h =

{
(x′)g if x ∈ ran f and (x′)f = x,

y0 if x /∈ ran f.

Then h ∈M and for x ∈ X, we have

(x)fh = (x)g.

Hence, fh = g, and so fM = T (X,Y ). Since M is a proper subset of
T (X,Y ), f is a left magnifying element in T (X,Y ). �

Theorem 3.4. Assume |X| = |Y | and Y 6= X. Then f is left magnifying
of T (X,Y ) if and only if f is one-to-one.

Proof. This follows from Lemma 3.2 and Lemma 3.3. �

Theorem 3.5. A function f in T (X) is a left magnifying element if and
only if f is one-to-one but not onto.

Proof. Assume f is one-to-one but not onto. Let y0 ∈ X and M = {h ∈
T (X) | (x)h = y0 for all x /∈ ran f}. We claim that fM = T (X). Let
g ∈ T (X). Define a function h : X → X by

(x)h =

{
(x′)g if x ∈ ran f and (x′)f = x,

y0 if x /∈ ran f.

Then h ∈M and for x ∈ X, we have

(x)fh = ((x)f)h = (x)g.

Hence, fh = g, and so fM = T (X). Since M is a proper subset of T (X),
f is a left magnifying element in T (X). Conversely, assume f is a left
magnifying element in T (X). By Lemma 3.2, f is one-to-one. Assume f is
onto. Since f is bijective, its inverse function f−1 exists. Since f is a left
magnifying element in T (X), there exists a proper subset M of T (X) such
that fM = T (X). We have T (X) = f−1T (X) = f−1fM = M , this is a
contradiction. Hence, f is not onto. �
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