SOME CONNECTIONS BETWEEN BUNKE-SCHICK DIFFERENTIAL K-THEORY AND TOPOLOGICAL $\mathbb{Z} / k \mathbb{Z}$ K-THEORY

ADNANE ELMRABTY

Abstract

The purpose of this note is to prove some results in Bunke-Schick differential K-theory and topological $\mathbb{Z} / k \mathbb{Z}$ K-theory. The first one is an index theorem for the odd-dimensional geometric families of $\mathbb{Z} / k \mathbb{Z}$-manifolds. The second one is an alternative proof of the Freed-Melrose $\mathbb{Z} / k \mathbb{Z}$-index theorem in the framework of differential K-theory.

1. Introduction

In this note we establish some results in Bunke-Schick differential Ktheory $\hat{K}_{\mathrm{BS}}[7]$ and topological K-theory with $\mathbb{Z} / k \mathbb{Z}$-coefficients $K^{-1} \mathbb{Z} / k \mathbb{Z}$ [2, Section 5]. We first introduce an index theorem in which the indices take value in $\mathbb{Z} / k \mathbb{Z}$. In order to describe this result, we briefly recall some constructions in \hat{K}_{BS} and $K^{-1} \mathbb{Z} / k \mathbb{Z}$.

Let X be a smooth compact manifold. Generators of the K-group $\hat{K}_{\mathrm{BS}}(X)$ are constructed out of real differential forms and geometric families over X [7, Definition 2.2]. A geometric family is roughly the data needed to define the index bundle.

Bunke and Schick [7, Subsection 5.9] pointed out the relevance to the notion of geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds over X of a concrete description of the torsion subgroup of $\hat{K}_{\mathrm{BS}}(X)$. An odd-dimensional geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds $(\mathcal{W}, \mathcal{E}, \beta)$ consists of an odd-dimensional geometric family \mathcal{W} with boundary, an even-dimensional geometric family \mathcal{E} without boundary, and an isomorphism $\beta: k . \mathcal{E} \rightarrow \partial \mathcal{W}[7,2.1 .7]$ from k copies of \mathcal{E} onto the boundary of \mathcal{W}. It defines a k-torsion element $\lceil\mathcal{W}, \mathcal{E}, \beta\rceil \in \hat{K}_{\mathrm{BS}}(X)$ [7, Lemma 5.20]. On the other hand, there is a canonical way to construct a class $\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor \in K^{-1}(X, \mathbb{Z} / k \mathbb{Z})$.

The work of Freed-Melrose [13] has led to the index theorem [13, Corollary 5.4], which expresses the topological index of vector bundles over evendimensional $\mathbb{Z} / k \mathbb{Z}$-manifolds through the reduced eta invariant of [1]. In

A $\mathbb{Z} / k \mathbb{Z}$-INDEX THEOREM

the following we discuss a geometric extension of [13, Corollary 5.4] in which $\mathbb{Z} / k \mathbb{Z}$-manifolds is replaced by odd-dimensional families of $\mathbb{Z} / k \mathbb{Z}$-manifolds.

Let $\pi: X \rightarrow Y$ be a proper submersion with closed fibers of even relative dimension. Suppose that π carries a smooth K-orientation [7, 3.1.9]. From [7, Section 3] we have an analytical $\mathbb{Z} / 2 \mathbb{Z}$-graded push-forward map $\hat{\pi}_{!}$: $\hat{K}_{\mathrm{BS}}(X) \rightarrow \hat{K}_{\mathrm{BS}}(Y)$.

General methods [10, Chapter 1D] show that there is a (topological) direct image $\pi_{!}^{t}: K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \rightarrow K^{-1}(Y, \mathbb{Z} / k \mathbb{Z})$.

We may define two differential K-characters ([5]) $\operatorname{Ind}_{\mathrm{an}}(\mathcal{W}, \mathcal{E}, \beta)$ and
 [4]. We prove that

$$
\operatorname{Ind}_{\mathrm{an}}(\mathcal{W}, \mathcal{E}, \beta)=\operatorname{Ind}_{\mathrm{top}}(\mathcal{W}, \mathcal{E}, \beta)
$$

In the case when \mathcal{E} is a zero-dimensional geometric family, we get an index theorem in $K^{-1} \mathbb{Z} / k \mathbb{Z}$ for families of Dirac operators. Moreover, if $Y=p t$ and X of odd dimension, we may recover the mod k Index Theorem [3, (8.4)].

The second main result of this note is an alternative approach to the Freed-Melrose $\mathbb{Z} / k \mathbb{Z}$-index theorem ([13, Corollary 5.4]).

2. Background Material

2.1. Bunke-Schick Differential K-theory. In this subsection we review \hat{K}_{BS} and the analytical push-forward construction. We refer the reader to [$7,6,8]$ for more details.

Let X be a smooth compact manifold. Let d denote the exterior derivative on the space of real differential forms $\boldsymbol{\Omega}^{*}(X)$. Generators of the differential K-group $\hat{K}_{\mathrm{BS}}(X)$ are pairs (\mathcal{E}, w), where \mathcal{E} is a geometric family over X, and $w \in \frac{\boldsymbol{\Omega}^{*}(X)}{\operatorname{img}(d)}$ ([7, Definition 2.1]. We have a well-defined notion of isomorphism and sum of generators [7, Definitions 2.5,2.6]. Two generators $\left(\mathcal{E}_{1}, w_{1}\right)$ and $\left(\mathcal{E}_{2}, w_{2}\right)$ give rise to the same class in $\hat{K}_{\mathrm{BS}}(X)$ if there is a geometric family \mathcal{E}^{\prime} such that $\left(\mathcal{E}_{1}, w_{1}\right)+\left(\mathcal{E}^{\prime}, 0\right)$ is paired with $\left(\mathcal{E}_{2}, w_{2}\right)+\left(\mathcal{E}^{\prime}, 0\right)$, two generators $\left(\mathcal{E}_{1}^{\prime}, w_{1}^{\prime}\right)$ and $\left(\mathcal{E}_{2}^{\prime}, w_{2}^{\prime}\right)$ are paired ($[7$, Definition 2.10]) if the disjoint union $\mathcal{E}_{1}^{\prime} \sqcup_{X} \mathcal{E}_{2}^{\prime-}$ is tamed ($[7,2.2 .2]$), and

$$
w_{1}^{\prime}-w_{2}^{\prime}=\eta^{\mathrm{B}}\left(\mathcal{E}_{1}^{\prime} \sqcup_{X} \mathcal{E}_{2}^{\prime-}\right)_{t}
$$

where η^{B} is the Bunke eta form [6, Subsection 4.4].
The group $\hat{K}_{\mathrm{BS}}(X)$ is $\mathbb{Z} / 2 \mathbb{Z}$-graded ([7, Definition 2.4]). Moreover, it has a $\mathbb{Z} / 2 \mathbb{Z}$-graded ring structure $\hat{K}_{\mathrm{BS}}(X) \otimes \hat{K}_{\mathrm{BS}}(X) \rightarrow \hat{K}_{\mathrm{BS}}(X)$ [7, Definition 4.1].

MISSOURI J. OF MATH. SCI., SPRING 2018

A. ELMRABTY

From [7, 2.4.5, 2.4.6, Lemma 4.3] we have the exact sequences of rings:

$$
\begin{align*}
0 & \rightarrow \frac{\mathbf{\Omega}^{*-1}(X)}{\mathbf{\Omega}_{0}^{*-1}(X)} \xrightarrow{a} \hat{K}_{\mathrm{BS}}^{*}(X) \xrightarrow{i} K^{*}(X) \rightarrow 0 \\
0 & \rightarrow \hat{K}^{f}(X) \hookrightarrow \hat{K}_{\mathrm{BS}}^{*}(X) \xrightarrow{R} \boldsymbol{\Omega}_{0}^{*}(X) \rightarrow 0 \tag{2.1}
\end{align*}
$$

where

- $\Omega_{0}^{*}(X)$ is the group of forms on X with integer periods, $K^{*}(X)$ is the K-theory of X,
- $a(w)=[\emptyset,-w], i(\mathcal{E}, w)=\operatorname{index}(\mathcal{E})$,
- $R(\mathcal{E}, w)=\Omega(\mathcal{E})-d w$ with $\Omega(\mathcal{E})$ is the geometric Chern form of \mathcal{E} $[7,2.2 .4]$, and $\hat{K}^{f}(X)=\operatorname{ker}(R)$.
If \mathcal{E} is an even-dimensional geometric family with $\mathbb{Z} / 2 \mathbb{Z}$-graded kernel bundle $K^{\mathcal{E}}=K_{+}^{\mathcal{E}} \oplus K_{-}^{\mathcal{E}}[7,5.3 .1]$, then $\operatorname{index}(\mathcal{E})=\left[K_{+}^{\mathcal{E}}\right]-\left[K_{-}^{\mathcal{E}}\right]$.

Recall from [7, Definition 5.19] that a geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds over X is a triple $(\mathcal{W}, \mathcal{E}, \beta)$, where \mathcal{W} is a geometric family with boundary, \mathcal{E} is a geometric family without boundary, and $\beta: k . \mathcal{E} \rightarrow \partial \mathcal{W}$ is an isomorphism of geometric families over X. Its corresponding class in $\hat{K}^{f}(X)$ is $\lceil\mathcal{W}, \mathcal{E}, \beta\rceil:=\left[\mathcal{E},-\frac{1}{k} \Omega(\mathcal{W})\right]([7$, Definition 5.19]).

Let Y be a smooth compact manifold, and let $\pi: X \rightarrow Y$ be a proper submersion with closed fibers, of even relative dimension. Suppose that π is topologically K-oriented [7, Definition 3.2]. Fix a representative of a smooth K-orientation $o(\pi)$ [7, Definition 3.5], consisting of a geometric refinement of the Spincc-structure on the vertical tangent bundle $T^{\mathrm{v}} X$, and a differential form $\sigma(o) \in \boldsymbol{\Omega}^{\text {odd }}(X)$. The $\mathbb{Z} / 2 \mathbb{Z}$-graded push-forward map $\hat{\pi}_{!}: \hat{K}_{\mathrm{BS}}(X) \rightarrow \hat{K}_{\mathrm{BS}}(Y)([7,3.2 .3])$ evaluated at a generator (\mathcal{E}, w) (whose underlying proper submersion is p) is given by

$$
\begin{equation*}
\hat{\pi}_{!}[\mathcal{E}, w]=\left[\pi_{!}^{\lambda} \mathcal{E}, \int_{X / Y} \hat{A}^{c}(o(\pi)) \wedge w+\tilde{\Omega}(\lambda, \mathcal{E})+\int_{X / Y} \sigma(o) \wedge R(\mathcal{E}, w)\right] \tag{2.2}
\end{equation*}
$$

(which does not depend on $\lambda \in] 0, \infty\left[\right.$), where $\pi_{!}^{\lambda} \mathcal{E}$ is a certain geometric family [7, 3.2.1] (whose underlying submersion is $\pi \circ p$), $\hat{A}^{c}(o(\pi))$ is the even-form in [7, 3.1.11], and

$$
\begin{equation*}
\tilde{\Omega}(\lambda, \mathcal{E}):=\int_{] 0, \lambda[\times Y / Y} \Omega(\mathcal{H}) \tag{2.3}
\end{equation*}
$$

with $\mathcal{H}=\left(i d_{] 0, \infty[} \times \pi\right)_{!}(] 0, \infty[\times \mathcal{E})$ together with an appropriate vertical metric.
2.2. Topological K-theory with $\mathbb{Z} / k \mathbb{Z}$-coefficients. In this subsection we briefly recall the definition of $K^{-1}(X, \mathbb{Z} / k \mathbb{Z})$ and the construction of $\pi_{!}^{t}: K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \rightarrow K^{-1}(Y, \mathbb{Z} / k \mathbb{Z})$. We refer to [2, Section 5] and [10, Chapter 1D] for the details.

A $\mathbb{Z} / k \mathbb{Z}$-INDEX THEOREM

From [2, Proposition 5.5], the K-group $K^{-1}(X, \mathbb{Z} / k \mathbb{Z})$ is generated by triples (E, F, α), where E, F are complex vector bundles over X, and α : $k E \rightarrow k F$ is an isomorphism.

Furthermore, if X is $S \operatorname{Sin}^{c}$ of odd dimension, there is a (topological) direct image $\operatorname{Ind}_{k}: K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \rightarrow \mathbb{Z} / k \mathbb{Z}([2$, Section 5$])$.

Let us explicitly state the construction of the integration along the fiber $\pi_{!}^{t}: K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \rightarrow K^{-1}(Y, \mathbb{Z} / k \mathbb{Z})$. Fix an embedding $i: X \hookrightarrow \mathbb{R}^{2 d}$, and define the embedding $\imath:=i \times \pi: X \hookrightarrow \mathbb{R}^{2 d} \times Y$. Let v be the normal bundle associated to \imath. The homomorphism $\pi_{!}^{t}$ is the composite

$$
\begin{aligned}
& K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \xrightarrow{T h} K^{-1}\left(X^{v}, p t, \mathbb{Z} / k \mathbb{Z}\right) \xrightarrow{c} K^{-1}\left(Y^{\mathbb{R}^{2 d} \times Y}, p t, \mathbb{Z} / k \mathbb{Z}\right) \\
& \xrightarrow{\mathcal{D}} K^{-1}(Y, \mathbb{Z} / k \mathbb{Z})
\end{aligned}
$$

here,

- X^{H} denotes the Thom space of a vector bundle H over $X, T h$ is a Thom isomorphism,
- c is the homomorphism induced by the collapsing map $Y^{\mathbb{R}^{2 d} \times Y} \rightarrow$ X^{v}, and
- \mathcal{D} is a desuspension map.

We shall call a vector bundle E geometric, if E is a Hermitian vector bundle equipped with a unitary connection.

Let $(\mathrm{E}, \mathrm{F}, \alpha)$ be a generator of $K^{-1}(X, \mathbb{Z} / k \mathbb{Z})$ where E and F are geometric vector bundles and α is a unitary isomorphism (not required to preserve connections). According to [7, 2.1.4], the $\mathbb{Z} / 2 \mathbb{Z}$-graded geometric bundle $\mathrm{E} \oplus \mathrm{F}$ with grading $\operatorname{diag}(1,-1)$ defines a zero-dimensional geometric family $\mathcal{F}(\mathrm{E} \oplus \mathrm{F})$. Using the isomorphism $k . \mathcal{F}(\mathrm{E} \oplus \mathrm{F}) \cong \mathcal{F}(k(\mathrm{E} \oplus \mathrm{F}))$, we may define a geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds by setting

$$
(k \mathrm{E} \dot{\times}[0,1], \mathcal{F}(\mathrm{E} \oplus \mathrm{~F}), i d)
$$

where $k \mathrm{E} \dot{\times}[0,1]$ is the geometric family whose proper submersion is the projection $X \times[0,1] \rightarrow X$ and the twisting vector bundle is the product $k \mathrm{E} \times[0,1]$ with the identification $k \mathrm{E} \times\{1\} \stackrel{\alpha}{\sim} k \mathrm{~F} \times\{1\}$.

In the following, we identify ($\mathrm{E}, \mathrm{F}, \alpha$) with its associated family of $\mathbb{Z} / k \mathbb{Z}$ manifolds.
2.3. Pairings of $\hat{K}^{\mathrm{ev}, f}, K^{-1} \mathbb{Z} / k \mathbb{Z}$ with Geometric K-homology. Here, we explicitly give analytical and topological pairings

$$
\begin{gathered}
\widetilde{\eta}: K_{\text {odd }}^{\text {geo }}(X) \otimes \hat{K}^{\text {ev }, f}(X) \rightarrow \mathbb{R} / \mathbb{Z} \\
\langle\cdot, \cdot\rangle: K_{\text {odd }}^{\text {geo }}(X) \otimes K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \rightarrow \mathbb{R} / \mathbb{Z}
\end{gathered}
$$

where $K_{*}^{\text {geo }}(X)$ stands for the geometric K-homology group of $X[4$, Section 5].

A. ELMRABTY

Let $x:=(P, \mathrm{H}, f)$ be an odd geometric K-cycle over $X[4$, Definition 5.1]. Here, P is a closed odd-dimensional $S \operatorname{pin}^{c}$-manifold, H is a geometric vector bundle over P (trivially $\mathbb{Z} / 2 \mathbb{Z}$-graded), and $f: P \rightarrow X$ is a smooth map. Let $y:=(\mathcal{E}, w)$ and $z:=(\mathrm{E}, \mathrm{F}, \alpha)$ be generators of $\hat{K}^{\mathrm{ev}, f}(X)$ and $K^{-1}(X, \mathbb{Z} / k \mathbb{Z})$. Let $q: P \rightarrow p t$ be the map to a point. We set

$$
\begin{align*}
\widetilde{\eta}(x, y) & :=\hat{q}_{!}\left([\mathcal{F}(\mathrm{H}), 0] \cup f^{*} y\right) \in \hat{K}_{\mathrm{BS}}^{\mathrm{odd}}(p t)=\mathbb{R} / \mathbb{Z} \tag{2.4}\\
\langle x, z\rangle & :=i_{k}\left(\operatorname{Ind}_{k}\left(\left[\mathrm{H} \otimes f^{*} \mathrm{E}, \mathrm{H} \otimes f^{*} \mathrm{~F}, i d \otimes \alpha\right]\right)\right), \tag{2.5}
\end{align*}
$$

where $f^{*} y$ is the pull-back under $f[7,2.3 .2]$ and $i_{k}: \mathbb{Z} / k \mathbb{Z} \hookrightarrow \mathbb{R} / \mathbb{Z}$ is the embedding which sends $1+k \mathbb{Z}$ to $\frac{1}{k}$.

Proposition 2.1. The assignments $(x, y) \mapsto \widetilde{\eta}(x, y)$ and $(x, z) \mapsto\langle x, z\rangle$ factor through well-defined pairings

$$
\begin{aligned}
& K_{o d d}^{\text {geo }}(X) \otimes \hat{K}^{e v, f}(X) \xrightarrow{\widetilde{\eta}} \mathbb{R} / \mathbb{Z} \\
& K_{\text {odd }}^{\text {geo }}(X) \otimes K^{-1}(X, \mathbb{Z} / k \mathbb{Z}) \xrightarrow{\langle\cdot,\rangle} \mathbb{R} / \mathbb{Z} .
\end{aligned}
$$

Proof. It is obvious that $\widetilde{\eta}$ and $\langle\cdot, \cdot\rangle$ are bi-additive.
From [7, 2.3.2, Lemma 3.14], $\widetilde{\eta}(x, \cdot)$ is well-defined. Let us show that $\widetilde{\eta}(x, y)$ does not depend on the choice of a representative of $[x] \in K_{\text {odd }}^{\text {geo }}(X)$. As noted in [4, Definition 5.7], the equivalence relation on $K_{*}^{\text {geo }}(X)$ is generated by the relations of bordism, direct sum, and vector bundle modification.

Suppose that $\mathcal{W}:=(W, \mathrm{G}, g)$ is a K-chain which bounds $x[4$, Definition 5.5]. We equip $W \rightarrow p t$ with a smooth K-orientation $o(W)$ as in [7, 5.8.2]. By [7, Proposition 5.18, Lemma 4.3], we have

$$
\begin{aligned}
\widetilde{\eta}(\partial \mathcal{W}, y) & \left.=-a\left(\int_{W} \hat{A}^{c}(o(W)) R\left((\mathcal{F}(\mathrm{G}), 0) \cup g^{*} y\right)\right)\right) \\
& =-a\left(\int_{W} \hat{A}^{c}(o(W)) \operatorname{Ch}\left(\nabla^{\mathrm{G}}\right) g^{*} R(y)\right)=0
\end{aligned}
$$

Then $\widetilde{\eta}(x, \cdot)$ depends only on the bordism class of x.
We will rewrite the pairing $\widetilde{\eta}$ in order to show that $\widetilde{\eta}(\cdot, y)$ does not depend on the relations of disjoint sum and vector bundle modification.

Let $r: M \rightarrow X$ be the proper submersion induced from \mathcal{E}. Let $f^{*} M$ be the pull-back of the family of manifolds M along f, and let p_{P} : $f^{*} M \rightarrow P$ and $p_{M}: f^{*} M \rightarrow M$ be the projections. Let \mathcal{S}_{r}^{c} and \mathcal{S}_{P}^{c} denote the geometric spinor bundles associated to the Spin ${ }^{c}$-structures on $T^{\mathrm{v}} M$ and $T P$. We will use L to denote the twisting bundle of \mathcal{E} [6, 4.3.2]. Since $\operatorname{index}\left(q_{!}^{1}\left(\mathcal{F}(\mathrm{H}) \times{ }_{P} f^{*} \mathcal{E}\right)\right) \in K^{1}(p t)=\{0\}$, we can choose a taming $\left(q_{!}^{1}\left(\mathcal{F}(\mathrm{H}) \times_{P} f^{*} \mathcal{E}\right)\right)_{t}$. From (2.2), [7, Lemma 3.11], and [6, Definition 4.16],
we obtain $\widetilde{\eta}(x, y)$ in terms of the reduced eta invariant of $[1], \bar{\eta}(\mathcal{D})$, as follows:

$$
\begin{align*}
& \widetilde{\eta}(x, y)= {\left[\left(f^{*} M \rightarrow p t, p_{P}^{*}\left(\mathrm{H} \otimes \mathcal{S}_{P}^{c}\right) \otimes p_{M}^{*}\left(\mathrm{~L} \hat{\otimes} \mathcal{S}_{r}^{c}\right)\right), \int_{P} \hat{A}^{c}(o(P)) \mathrm{Ch}\left(\nabla^{\mathrm{H}}\right) f^{*} w\right.} \\
&\left.+\tilde{\Omega}\left(\lambda,\left(\mathcal{F}(\mathrm{H}) \times_{P} f^{*} \mathcal{E}\right)\right)\right] \\
&= {\left[\emptyset,-\eta^{B}\left(f^{*} M \rightarrow p t, p_{P}^{*}\left(\mathrm{H} \otimes \mathcal{S}_{P}^{c}\right) \otimes p_{M}^{*}\left(\mathrm{~L} \hat{\otimes} \mathcal{S}_{r}^{c}\right)\right)_{t}\right.} \\
&\left.+\int_{P} \hat{A}^{c}(o(P)) \wedge \operatorname{Ch}\left(\nabla^{\mathrm{H}}\right) f^{*} w+\tilde{\Omega}\left(\lambda,\left(\mathcal{F}(\mathrm{H}) \times_{P} f^{*} \mathcal{E}\right)\right)\right] \\
& \stackrel{\lambda \rightarrow 0}{=}\left[\emptyset, \bar{\eta}\left(\mathcal{D}^{p_{P}^{*} \mathrm{H} \otimes p_{M}^{*} \mathrm{~L}}\right)+\int_{P} \hat{A}^{c}(o(P)) \operatorname{Ch}\left(\nabla^{\mathrm{H}}\right) f^{*} w\right] \\
&= a\left(-\bar{\eta}\left(\mathcal{D}^{\left.p_{P}^{*} \mathrm{H} \otimes p_{M}^{*} \mathrm{~L}\right)}-\int_{P} \hat{A}^{c}(o(P)) \operatorname{Ch}\left(\nabla^{\mathrm{H}}\right) f^{*} w\right)\right. \\
&=-\bar{\eta}\left(\mathcal{D}^{p_{P}^{*} \mathrm{H} \otimes p_{M}^{*} \mathrm{~L}}\right)-\int_{P} \hat{A}^{c}(o(P)) \operatorname{Ch}(\mathrm{H}) f^{*} w \bmod \mathbb{Z} . \tag{2.6}
\end{align*}
$$

From [5, Proposition 5] and $\int_{P} \hat{A}^{c}(o(P)) \mathrm{Ch}(\mathrm{H}) f^{*} w \bmod \mathbb{Z}=\bar{f}_{w}(P, \mathrm{H}, f)$, where \bar{f}_{w} is the differential K-character in [5, Examples], we get $\widetilde{\eta}(\cdot, y)$ is invariant under the relations of disjoint sum and vector bundle modification.

Let us show that $\langle\cdot,[\mathrm{E}, \mathrm{F}, \alpha]\rangle$ is well-defined. Assume that E and F are geometric vector bundles and α is a unitary isomorphism. Since the geometric family $\mathcal{F}(\mathrm{H}) \times{ }_{P} f^{*} \mathcal{F}(\mathrm{E} \oplus \mathrm{F})$ has zero-dimensional fibers, we have $\tilde{\Omega}\left(1, \mathcal{F}\left(\mathrm{H} \otimes f^{*}(\mathrm{E} \oplus \mathrm{F})\right), q\right)=0$. Let $C S\left(k \nabla^{E}, \alpha^{*} k \nabla^{F}\right) \in \frac{\Omega^{\text {odd }}(X)}{\operatorname{img}(d)}$ denote the Chern-Simons class of $\left(k \nabla^{E}, k \nabla^{F}, \alpha\right)[16,(4)]$ and let $S F\left(k \mathcal{D}^{\mathrm{E}}, k \mathcal{D}^{\mathrm{F}}\right)$ denote the spectral flow from $k \mathcal{D}^{\mathrm{E}}$ to $k \mathcal{D}^{\mathrm{F}}[3$, Section 7]. By [15, (4.59)] and [3, Proposition (8.3), Theorems (3.4), (8.4)], we calculate

$$
\begin{align*}
& \widetilde{\eta}(x,\lceil(\mathrm{E}, \mathrm{~F}, \alpha)\rceil)=\hat{q}_{!}\left[\mathcal{F}\left(\mathrm{H} \otimes f^{*}(\mathrm{E} \oplus \mathrm{~F})\right),-\frac{1}{k} \Omega\left(\left(\mathrm{H} \otimes f^{*} k \mathrm{E}\right) \dot{\times}[0,1]\right)\right] \\
&=-\left(\bar{\eta}\left(\mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{E}}\right)-\bar{\eta}\left(\mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{~F}}\right)\right) \\
&+\frac{1}{k} \int_{P} \hat{A}^{c}(o(P))\left(\int _ { 0 } ^ { 1 } \mathrm { Ch } \left(t k \nabla^{\mathrm{H} \otimes f^{*} \mathrm{~F}}\right.\right. \\
&\left.\left.\quad+(1-t)(i d \otimes \alpha)^{*} k \nabla^{\mathrm{H} \otimes f^{*} \mathrm{E}}+d t \partial_{t}\right)\right) \bmod \mathbb{Z} \\
&= \bar{\eta}\left(\mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{~F}}\right)-\bar{\eta}\left(\mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{E}}\right) \\
&-\frac{1}{k} \int_{P} \hat{A}^{c}(o(P)) C S\left(k \nabla^{\mathrm{H} \otimes f^{*} \mathrm{E}},(i d \otimes \alpha)^{*} k \nabla^{\mathrm{H} \otimes f^{*} \mathrm{~F}}\right) \bmod \mathbb{Z} \\
&= \frac{1}{k} S F\left(k \mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{E}}, k \mathcal{D}^{\mathrm{H} \otimes f^{*} \mathrm{~F}}\right) \bmod \mathbb{Z}=\langle x,[\mathrm{E}, \mathrm{~F}, \alpha]\rangle . \tag{2.7}
\end{align*}
$$

A. ELMRABTY

Now, let y be another representative of $[x]$. Then

$$
\langle y,[\mathrm{E}, \mathrm{~F}, \alpha]\rangle=\widetilde{\eta}(y,\lceil(\mathrm{E}, \mathrm{~F}, \alpha)\rceil)=\widetilde{\eta}(x,\lceil(\mathrm{E}, \mathrm{~F}, \alpha)\rceil)=\langle x,[\mathrm{E}, \mathrm{~F}, \alpha]\rangle .
$$

3. The First Main Result

Let $(\mathcal{W}, \mathcal{E}, \beta)$ be an odd-dimensional geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds over X. Let $\left(\mathcal{D}_{x}\right)_{x \in X}$ denote the family of Dirac operators associated to \mathcal{E}. We assume that $\operatorname{dim}\left(\operatorname{ker}\left(\mathcal{D}_{x}\right)\right)$ is constant. This condition can always be satisfied $([6,9.2 .4])$. So, we can form the $\mathbb{Z} / 2 \mathbb{Z}$-graded geometric index bundle $\mathcal{K}^{\mathcal{E}}=\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathcal{K}_{-}^{\mathcal{E}}$ [7, 5.3.1]. Let $K^{\mathcal{E}}=K_{+}^{\mathcal{E}} \oplus K_{-}^{\mathcal{E}}$ be the topological $\mathbb{Z} / 2 \mathbb{Z}$-graded vector bundle induced from $\mathcal{K}^{\mathcal{E}}$. In $K^{0}(Y)$ we have

$$
\left[k K_{+}^{\mathcal{E}}\right]-\left[k K_{-}^{\mathcal{E}}\right]=\operatorname{index}(k . \mathcal{E})=\operatorname{index}(\partial \mathcal{W})=0
$$

A unitary isomorphism $\alpha: k\left(\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right) \rightarrow k\left(\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)$, for some trivial vector bundle $\mathbf{1}^{\ell}$ (of rank ℓ), can be induced by a taming $(\partial \mathcal{W})_{t}([7,2.2 .2])$. We set

$$
\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor:=\left[K_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}, K_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}, \alpha\right] \in K^{-1}(X, \mathbb{Z} / k \mathbb{Z})
$$

Let $\pi: X \rightarrow Y$ be a proper submersion with closed fibers, of even relative dimension. Suppose that π has a smooth K-orientation represented by $o(\pi)$. We define

$$
\begin{aligned}
\operatorname{Ind} d_{\mathrm{an}}(\mathcal{W}, \mathcal{E}, \beta) & :=\widetilde{\eta}\left(\cdot, \hat{\pi}_{!}\lceil\mathcal{W}, \mathcal{E}, \beta\rceil\right), \\
\operatorname{Ind}_{\mathrm{top}}(\mathcal{W}, \mathcal{E}, \beta) & :=\left\langle\cdot, \pi_{!}^{t}\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor\right\rangle
\end{aligned}
$$

$\left(\in \operatorname{Hom}\left(K_{\text {odd }}^{\text {geo }}(Y), \mathbb{R} / \mathbb{Z}\right) \cong \hat{K}^{f, \mathrm{ev}}(Y)\right.$ [7, Proposition $\left.\left.2.25,(10)\right]\right)$.
Proposition 3.1. The following identity holds.

$$
\begin{equation*}
\operatorname{Ind}_{a n}(\mathcal{W}, \mathcal{E}, \beta)=\operatorname{Ind}_{t o p}(\mathcal{W}, \mathcal{E}, \beta) \tag{3.1}
\end{equation*}
$$

Proof. Let $x=[N, \mathrm{~F}, f]$ for some generator $(N, \mathrm{~F}, f)$ of $K_{\mathrm{odd}}^{\text {geo }}(Y)$. According to [14], we can assume that $\mathrm{F}=\mathbf{1}_{N}$. From definitions (2.4) and (2.5), we pull everything back to N and we can assume Y is an arbitrary closed odd-dimensional $S p i n^{c}$-manifold. Thus, (3.1) is equivalent to

$$
\begin{equation*}
\widetilde{\eta}\left([Y], \hat{\pi}_{!}\lceil\mathcal{W}, \mathcal{E}, \beta\rceil\right)=\left\langle[Y], \pi_{!}^{t}\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor\right\rangle \tag{3.2}
\end{equation*}
$$

where $[Y] \in K_{\text {odd }}^{\text {geo }}(Y)$ is the fundamental class of Y.
Let X have the $S p i n^{c}$-structure which is induced from combining those on $T^{\mathrm{v}} X$ and $T Y$. There is a homomorphism $\pi^{!}: K_{\text {odd }}^{\text {geo }}(Y) \rightarrow K_{\text {odd }}^{\text {geo }}(X)$
which is dual to the integration along the fiber $\pi_{!}^{t}$, and we have $\pi^{!}[Y]=[X]$. Then

$$
\begin{aligned}
\left\langle[Y], \pi_{!}^{t}\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor\right\rangle & =\left\langle\pi^{!}[Y],\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor\right\rangle=\langle[X],\lfloor\mathcal{W}, \mathcal{E}, \beta\rfloor\rangle \\
& =\frac{1}{k} S F\left(k \mathcal{D}^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}, k \mathcal{D}^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right) \bmod \mathbb{Z}
\end{aligned}
$$

Fix a representative $o(Y)$ of a differential S pin c-structure on $T Y$, and let $o(X)$ be the composite $o(Y) \circ o(\pi)$ [7, Definition 3.21]. Let $q_{Y}: Y \rightarrow p t$ be the map to a point. By $\left[7\right.$, Theorem 3.23] and $\tilde{\Omega}(1, \mathcal{E}, \pi)\left(=\frac{1}{k} \tilde{\Omega}(1, \partial \mathcal{W}, \pi)\right)$ is exact from (2.3), we calculate

$$
\begin{aligned}
\widetilde{\eta}\left([Y], \hat{\pi}_{!}\lceil\mathcal{W}, \mathcal{E}, \beta\rceil\right) & =\left(\hat{q}_{Y}\right)!\left(\hat{\pi}_{!}\lceil\mathcal{W}, \mathcal{E}, \beta\rceil\right)=\left(\hat{q}_{X}\right)!\left[\mathcal{E},-\frac{1}{k} \Omega(\mathcal{W})\right] \\
& =\left[\left(q_{X}^{1}\right)!\mathcal{E},-\frac{1}{k} \int_{X} \hat{A}^{c}(o(X)) \Omega(\mathcal{W})\right] \\
& =-\bar{\eta}\left(\mathcal{D}^{E}\right)+\frac{1}{k} \int_{X} \hat{A}^{c}(o(X)) \Omega(\mathcal{W}) \bmod \mathbb{Z}
\end{aligned}
$$

Here, E is the twisting bundle of \mathcal{E}.
Let $\left(k .\left(\mathcal{E} \sqcup_{X} \mathcal{F}\left(\mathcal{K}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)^{-}\right)\right)_{t}$ be the taming induced by the isomorphisms α, β. From [7, Theorem 3.12], [6, 4.2.1, Theorem 4.13], and the definition of η^{B} [6, Definition 4.16], we have

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \eta^{B}\left(\left(q_{X}^{\lambda}\right)!\left(k .\left(\mathcal{E} \sqcup_{X} \mathcal{F}\left(\mathcal{K}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)^{-}\right)\right)\right)_{t} \\
& =\int_{X} \hat{A}^{c}(o(X)) \eta^{B}\left(\partial \mathcal{W} \sqcup_{X} \mathcal{F}\left(k\left(\mathcal{K}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)\right)^{-}\right)_{t} \\
& =-\int_{X} \hat{A}^{c}(o(X)) \Omega(\mathcal{W})-\int_{X} \hat{A}^{c}(o(X)) \eta^{B}\left(\mathcal{F}\left(k\left(\mathcal{K}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)\right)_{t}\right. \\
& =-\int_{X} \hat{A}^{c}(o(X)) \Omega(\mathcal{W})-\int_{X} \hat{A}^{c}(o(X)) C S\left(k \nabla^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}, \alpha^{*} k \nabla^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right),
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow 0} \eta^{B}\left(\left(q_{X}^{\lambda}\right)!\left(k \cdot\left(\mathcal{E} \sqcup_{X} \mathcal{F}\left(\mathcal{K}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}\right)^{-}\right)\right)\right)_{t} \\
& =-k \bar{\eta}\left(\mathcal{D}^{E}\right)+k\left(\bar{\eta}\left(\mathcal{D}^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right)-\bar{\eta}\left(\mathcal{D}^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right)\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widetilde{\eta}\left([Y], \hat{\pi}_{!}\lceil\mathcal{W}, \mathcal{E}, \beta\rceil\right)=\bar{\eta}\left(\mathcal{D}^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right)-\bar{\eta}\left(\mathcal{D}^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right) \\
& \quad-\frac{1}{k} \int_{X} \hat{A}^{c}(o(X)) C S\left(k \nabla^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}, \alpha^{*} k \nabla^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right) \bmod \mathbb{Z} \\
& = \\
& \frac{1}{k} S F\left(k \mathcal{D}^{\mathcal{K}_{+}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}, k \mathcal{D}^{\mathcal{K}_{-}^{\mathcal{E}} \oplus \mathbf{1}^{\ell}}\right) \bmod \mathbb{Z}
\end{aligned}
$$

which implies that (3.2) holds.

A. ELMRABTY

Remark 3.2. The formula (3.1) may be considered as a geometric extension of the Freed-Melrose $\mathbb{Z} / k \mathbb{Z}$-index theorem [13, Corollary 5.4] to the odd-dimensional geometric families of $\mathbb{Z} / k \mathbb{Z}$-manifolds.

Let X be a closed manifold of finite fundamental group $\pi_{1}(X)$. Let θ be a unitary representation of $\pi_{1}(X)$. Denote the flat vector bundle over X defined by θ, equipped with a Hermitian metric and a flat connection compatible with the metric, by V_{θ}. We choose $k \in \mathbb{N}^{*}$ and a unitary isomorphism $\alpha: k V_{\theta} \rightarrow \mathbf{1}^{k r}$.

Let

$$
\pi_{!}^{a}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right] \in K^{-1}(Y, \mathbb{Z} / k \mathbb{Z})
$$

such that

$$
\left\lceil\pi_{!}^{a}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]\right\rceil=\hat{\pi}_{!}\left\lceil\left(V_{\theta}, \mathbf{1}^{r}, \alpha\right)\right\rceil
$$

Proposition 3.3. We have

$$
\pi_{!}^{a}\left[V_{\theta}, \boldsymbol{1}^{r}, \alpha\right]=\pi_{!}^{t}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right] .
$$

Proof. From (3.2) and (2.7), we get

$$
\begin{equation*}
\left\langle[x], \pi_{!}^{a}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]-\pi_{!}^{t}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]\right\rangle=0 \quad\left(\text { for } \quad \text { all }[x] \in K_{\text {odd }}^{\text {geo }}(Y)\right) . \tag{3.3}
\end{equation*}
$$

We consider the \mathbb{R} / \mathbb{Z}-pairing $[3,(5.2)]$ with the identification $K^{1}(T Y) \cong$ $K_{\text {odd }}^{\text {geo }}(Y)$ obtained by duality and the Thom isomorphism. It is perfect as a direct consequence of the universal coefficient theorem for \mathbb{R} / \mathbb{Z} K-theory together with \mathbb{R} / \mathbb{Z} is divisible, and its torsion part coincides with $\langle\cdot, \cdot\rangle$ by [3, Theorem 8.4] and the construction [3, Section 5:(i)-(iv)]. Thus, (3.3) yields $\pi_{!}^{a}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]=\pi_{!}^{t}\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]$.

Remark 3.4.

- From [7, Lemma 3.20, Theorem 3.23, and Proposition 5.18], the assignment $\pi \mapsto \pi_{!}^{t}$ is natural, functorial under the composition of smooth K-oriented proper submersions, and bordism invariant.
- Let $\hat{K}_{F L}(X)$ be the Freed-Lott differential K-group of X, and let $\bar{\pi}_{!}^{a}, \bar{\pi}_{!}^{t}: \hat{K}_{F L}(X) \rightarrow \hat{K}_{F L}(Y)$ denote, respectively, the analytical and topological index homomorphisms [12].
We set
$\overline{\left(V_{\theta}, \boldsymbol{1}^{r}, \alpha\right)}$
$:=\left(V_{\theta}, \nabla^{V_{\theta}}, \frac{1}{k} C S\left(\nabla^{k V_{\theta}}, \alpha^{*} \nabla^{1^{k r}}\right)\right)-\left(1^{r}, \nabla^{1^{r}}, 0\right) \in \hat{K}_{F L}(X)$.
We will identify $\overline{\left(V_{\theta}, \mathbf{1}^{r}, \alpha\right)}$ with $\left[V_{\theta}, \mathbf{1}^{r}, \alpha\right]$. From [7, 5.3.5], [12, Definition 3-11], and the variational formula of the Bismut-Cheeger
eta form in the proof of [17, Proposition 3], it is not hard to see that

$$
\pi_{!}^{a}\left[V_{\theta}, \boldsymbol{1}^{r}, \alpha\right]=\bar{\pi}_{!}^{a} \overline{\left(V_{\theta}, \mathbf{1}^{r}, \alpha\right)}
$$

Then, [12, Theorem 6-2] yields

$$
\pi_{!}^{t}\left[V_{\theta}, \boldsymbol{1}^{r}, \alpha\right]=\bar{\pi}_{!}^{t} \overline{\left(V_{\theta}, \mathbf{1}^{r}, \alpha\right)}
$$

4. The Second Main Result

Let (M, N, α) be an even-dimensional compact Spin $^{c} \mathbb{Z} / k \mathbb{Z}$-manifold ([11, Definition (1.7)]). Here, $\alpha: \partial M \rightarrow N$ is the induced map from an orientation preserving diffeomorphism $\partial M=\sqcup_{i=1}^{k}(\partial M)_{i} \rightarrow k . N$. We equip $M \rightarrow p t$ with a smooth K-orientation $o(M)$ as in [7, 5.8.2]. Let ($\mathrm{E}, \mathrm{F}, \beta$) be a geometric $\mathbb{Z} / k \mathbb{Z}$-vector bundle over (M, N, α). More precisely, E and F are two geometric vector bundles over M and N, respectively, and $\beta:\left.\mathrm{E}\right|_{\partial M} \rightarrow k \alpha^{*} \mathrm{~F}$ is a unitary isomorphism which preserves the unitary connection.

Let $\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}, \alpha^{\prime}\right)$ be the $\mathbb{Z} / k \mathbb{Z}$-manifold obtained by removing k open balls B^{n} from the n-sphere \mathbb{S}^{n} with α^{\prime} induced from $I d_{\mathbb{S}^{n-1}}$. Fix a $\mathbb{Z} / k \mathbb{Z}$ embedding $(\imath, \jmath):(M, N, \alpha) \hookrightarrow\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}, \alpha^{\prime}\right)$ with n even, i.e. $\imath: M \hookrightarrow$ $\mathbb{S}^{n, k}$ and $\jmath: N \hookrightarrow \mathbb{S}^{n-1}$ are two embeddings such that $\left.\alpha^{\prime} \circ \imath\right|_{\partial M}=\jmath \circ \alpha$. There is a (topological) direct image $(\imath, \jmath)!(\mathrm{E}, \mathrm{F}, \beta):=(\imath!\mathrm{E}, \jmath!\mathrm{F}, \tilde{\beta})$ which lies in the reduced K-theory $\widetilde{K}\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}\right)$. The topological $\mathbb{Z} / k \mathbb{Z}$-index of $(\mathrm{E}, \mathrm{F}, \beta)$ is given by

$$
\operatorname{ind}_{k}(\mathrm{E}, \mathrm{~F}):=[(\imath, \jmath)!(\mathrm{E}, \mathrm{~F}, \beta)] \in \mathbb{Z} / k \mathbb{Z}=\widetilde{K}\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}\right)
$$

It is independent of (\imath, \jmath) with respect to the topological \mathbb{Z}-index.
Proposition 4.1. ([11],[13]) The following identity holds.

$$
\operatorname{ind}_{k}(\mathrm{E}, \mathrm{~F})=\int_{M} \hat{A}^{c}(o(M)) C h\left(\nabla^{\mathrm{E}}\right)-k \bar{\eta}\left(\mathcal{D}_{N}^{\mathrm{F}}\right) \bmod k \mathbb{Z}
$$

Proof. Let $\left(\mathcal{S}_{M}^{c}, \mathcal{S}_{N}^{c}\right)$ be the $\mathbb{Z} / k \mathbb{Z}$ geometric spinor bundle associated to the $S_{\text {Pin }}{ }^{c}$-structure of (M, N). We denote, by $f(\mathrm{E}, \mathrm{F})$, the geometric family of $\mathbb{Z} / k \mathbb{Z}$-manifolds over $p t$

$$
f(\mathrm{E}, \mathrm{~F}):=\left(\left(M \rightarrow p t, \mathrm{E} \otimes \mathcal{S}_{M}^{c}\right),\left(N \rightarrow p t, \mathrm{~F} \otimes \mathcal{S}_{N}^{c}\right), \beta\right)
$$

From (2.6), we have

$$
\begin{equation*}
\lceil f(\mathrm{E}, \mathrm{~F})\rceil=i_{k}\left(\int_{M} \hat{A}^{c}(o(M)) \mathrm{Ch}\left(\nabla^{\mathrm{E}}\right)-k \bar{\eta}\left(\mathcal{D}_{N}^{\mathrm{F}}\right) \bmod k \mathbb{Z}\right) . \tag{4.1}
\end{equation*}
$$

We will identify $\imath_{!} \mathrm{E}, \jmath_{!} \mathrm{F}$ with $\mathbb{Z} / 2 \mathbb{Z}$-graded geometric vector bundles, where the geometric structures are defined as in the proof of [12, Lemma 4-3].

A. ELMRABTY

Let us first prove the following Riemann-Roch property:

$$
\begin{equation*}
\lceil f(\mathrm{E}, \mathrm{~F})\rceil=\left\lceil f\left(\imath_{!} \mathrm{E}, \jmath_{!} \mathrm{F}\right)\right\rceil \tag{4.2}
\end{equation*}
$$

We may regard $f(\mathrm{E}, \mathrm{F})$ as a geometric $\mathbb{Z} / k \mathbb{Z}$-cycle of Deleey on $p t[9$, Definition 2.1]. Let $f(\mathrm{E}, \mathrm{F})_{V}$ denote the modification of $f(\mathrm{E}, \mathrm{F})$ by a geometric Spin $^{c} \mathbb{Z} / k \mathbb{Z}$-vector bundle $V \rightarrow(M, N)$ [9, Definition 2.5, Remark 2.6]. More precisely, if $V=\left(V_{M}, V_{N}\right)$ and $\mathcal{E}(\mathrm{E}):=\left(M \rightarrow p t, \mathrm{E} \otimes \mathcal{S}_{M}^{c}\right)$ then

$$
f(\mathrm{E}, \mathrm{~F})_{V}=\left(\mathcal{E}(\mathrm{E})_{V_{M}}, \mathcal{E}(\mathrm{~F})_{V_{N}}, \beta\right),
$$

where $\mathcal{E}(\mathrm{E})_{V_{M}}$ and $\mathcal{E}(\mathrm{F})_{V_{N}}$ are the modifications of the geometric K-chains $\mathcal{E}(\mathrm{E})$ and $\mathcal{E}(\mathrm{F})$ by $V_{M}, V_{N}([4$, Definition 5.6]).

Inspired by [18, Lemma 2.3.4], there is a $\mathbb{Z} / k \mathbb{Z}-$ bordism $z:=((Q, P)$, $(\mathrm{G}, \mathrm{H}),(Q, P) \rightarrow p t)\left[9\right.$, Definition 2.4] between $f(\mathrm{E}, \mathrm{F})_{V}$ and $f\left(\imath_{!} \mathrm{E}, \jmath_{!} \mathrm{F}\right)_{W}$ for certain geometric $S_{p i n}{ }^{c} \mathbb{Z} / k \mathbb{Z}$-vector bundles $V \rightarrow(M, N)$ and $W \rightarrow$ $\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}\right)$. We equip $Q, P \rightarrow p t$ with smooth K-orientations $o(Q), o(P)$ as in $[7,5.8 .2]$, and we equip the $\mathbb{Z} / k \mathbb{Z}$-vector bundle (G, H) with a geometric structure which extends that induced from $f(\mathrm{E}, \mathrm{F})_{V}$ and $f\left(\imath_{!} \mathrm{E}, \jmath_{!} \mathrm{F}\right)_{W}$.

From [9, Definition 2.4, Remark 1.9], and by gluing together geometric K-chains along their common boundaries, we have

$$
\begin{align*}
\partial \mathcal{E}(\mathrm{G}) & \cong\left(\mathcal{E}(\mathrm{E})_{V_{M}} \sqcup \mathcal{E}(\imath!\mathrm{E})_{W_{\mathbb{S}^{n}, k}}\right) \cup_{\partial}(k \cdot \mathcal{E}(\mathrm{H})) \tag{4.3}\\
\partial \mathcal{E}(\mathrm{H}) & \cong \mathcal{E}(\mathrm{F})_{V_{N}} \sqcup \mathcal{E}(\jmath!\mathrm{F})_{W_{\mathbb{S}^{n-1}}} \tag{4.4}
\end{align*}
$$

where $\partial \mathcal{E}(\mathrm{G})$ and $\mathcal{E}(\mathrm{G})^{-}$are the boundary and the opposite of $\mathcal{E}(\mathrm{G})$, and \cong stands for an isomorphism between two geometric families (over $p t$) $[7$, 2.1.7].

By (4.3), and because the K-homological Chern character is invariant under the relation of modification [5, Proposition 2] and the form $\hat{A}^{c}(o(Q)) \operatorname{Ch}\left(\nabla^{G}\right)$ is closed, we get

$$
\begin{gather*}
\int_{M} \hat{A}^{c}(o(M)) \operatorname{Ch}\left(\nabla^{\mathrm{E}}\right)-\int_{\mathbb{S}^{n}, k} \hat{A}^{c}\left(o\left(\mathbb{S}^{n, k}\right)\right) \operatorname{Ch}\left(\nabla^{\imath!\mathrm{E}}\right)+k \int_{P} \hat{A}^{c}(o(P)) \operatorname{Ch}\left(\nabla^{\mathrm{H}}\right) \\
=\left.\int_{\partial Q}\left(\hat{A}^{c}(o(Q)) \operatorname{Ch}\left(\nabla^{\mathrm{G}}\right)\right)\right|_{\partial Q}=\int_{Q} d\left(\hat{A}^{c}(o(Q)) \operatorname{Ch}\left(\nabla^{\mathrm{G}}\right)\right)=0 \tag{4.5}
\end{gather*}
$$

Using (4.1), together with [5, Lemma 1], we have $\left\lceil f(\mathrm{E}, \mathrm{F})_{V}\right\rceil=\lceil f(\mathrm{E}, \mathrm{F})\rceil$, and so we may assume that z is a geometric $\mathbb{Z} / k \mathbb{Z}$-bordism between $f(\mathrm{E}, \mathrm{F})$
and $f\left(\imath_{!} \mathrm{E}, \jmath_{!} \mathrm{F}\right)$. Now, (4.4) [7, Proposition 5.17] and (4.5) yield

$$
\begin{aligned}
& \left\lceil f\left(\imath_{!} \mathrm{E}, \jmath!\mathrm{F}\right)\right\rceil=\left[\left(\mathbb{S}^{n-1} \rightarrow p t, \jmath_{!} \mathrm{F} \otimes \mathcal{S}_{\mathbb{S}^{n-1}}^{c}\right),-\frac{1}{k} \int_{\mathbb{S}^{n}, k} \hat{A}^{c}\left(o\left(\mathbb{S}^{n, k}\right)\right) \mathrm{Ch}\left(\nabla^{\imath!\mathrm{E}}\right)\right] \\
& =\left[N \rightarrow p t, \mathrm{~F} \otimes \mathcal{S}_{N}^{c},-\frac{1}{k} \int_{\mathbb{S}^{n}, k} \hat{A}^{c}\left(o\left(\mathbb{S}^{n, k}\right)\right) \operatorname{Ch}\left(\nabla^{\imath!\mathrm{E}}\right)+\int_{P} \hat{A}^{c}(o(P)) \operatorname{Ch}\left(\nabla^{\mathrm{H}}\right)\right] \\
& =\lceil f(\mathrm{E}, \mathrm{~F})\rceil
\end{aligned}
$$

Let $s=\left(s_{1}, s_{2}\right):\left(\mathbb{S}^{2, k}, \mathbb{S}^{1}\right) \hookrightarrow\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}\right)$ be the canonical embedding. By the Thom isomorphism $s!: \widetilde{K}\left(\mathbb{S}^{2, k}, \mathbb{S}^{1}\right) \cong \widetilde{K}\left(\mathbb{S}^{n, k}, \mathbb{S}^{n-1}\right),[(\imath, \jmath)!(\mathrm{E}, \mathrm{F}, \beta)]$ is the direct image $[s!(\overline{\mathrm{E}}, \overline{\mathrm{F}}, \bar{\beta})]$ of a certain $\mathbb{Z} / k \mathbb{Z}$-vector bundle $(\overline{\mathrm{E}}, \overline{\mathrm{F}}, \bar{\beta})$ over $\left(\mathbb{S}^{2, k}, \mathbb{S}^{1}\right)$. We compute, using (4.2) [11, Proposition 1.14] at the marked step, and $\operatorname{ind}_{k}(\mathrm{E}, \mathrm{F})$ is independent of the embedding (\imath, \jmath)

$$
\begin{gathered}
\lceil f(\mathrm{E}, \mathrm{~F})\rceil=\left\lceil f\left(\imath_{!} \mathrm{E}, \jmath!\mathrm{F}\right)\right\rceil=\left\lceil f\left(s_{1!} \overline{\mathrm{E}}, s_{2!} \overline{\mathrm{F}}\right)\right\rceil=\lceil f(\overline{\mathrm{E}}, \overline{\mathrm{~F}})\rceil \stackrel{!}{=} i_{k}\left(\operatorname{ind}_{k}(\overline{\mathrm{E}}, \overline{\mathrm{~F}})\right) \\
\quad=i_{k}\left(\operatorname{ind}_{k}\left(s_{!}(\overline{\mathrm{E}}, \overline{\mathrm{~F}})\right)\right)=i_{k}\left(\operatorname{ind}_{k}((\imath, \jmath)!(\mathrm{E}, \mathrm{~F}))\right)=i_{k}\left(\operatorname{ind}_{k}(\mathrm{E}, \mathrm{~F})\right)
\end{gathered}
$$

Remark 4.2. From (4.2) together with Zhang's description of $\bar{\eta}\left(\mathcal{D}_{S n-1}^{\jmath!}\right)$ [19, Theorem 2.2], we obtain the following geometric formula for ind ${ }_{k}(\mathrm{E}, \mathrm{F})$:

$$
\operatorname{ind}_{k}(\mathrm{E}, \mathrm{~F})=\int_{\mathbb{S}^{n}, k} \hat{A}^{c}\left(o\left(\mathbb{S}^{n, k}\right)\right) C h\left(\nabla^{\imath!\mathrm{E}}\right)+k \int_{\mathbb{S}^{n-1}} \hat{A}^{c}\left(o\left(\mathbb{S}^{n-1}\right)\right) \gamma \bmod k \mathbb{Z}
$$

Here, γ is a certain Chern-Simons current ([19, (2.18)]).

Acknowledgement

The author is grateful to the referees for valuable comments and suggestions.

References

[1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry- I, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69.
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry-II, Math. Proc. Cambridge Philos. Soc., 78 (1975), 405-432.
[3] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry-III. Math. Proc. Cambridge Philos. Soc., 79 (1976), 71-99.
[4] P. Baum, N. Higson, and T. Schick, On the equivalence of geometric and analytic K-homology, Pure Appl. Math. Q., 3 (2007), 1-24.
[5] M. T. Benameur and M. Maghfoul, Differential characters in K-theory, Differential Geom. Appl., 24 (2006), 417-432.
[6] U. Bunke, Index theory, eta forms, and Deligne cohomology, Preprint arXiv: math.DG/0201112.
[7] U. Bunke and T. Schick, Smooth K-theory, Astérisque, 328 (2010), 45-135.

A. ELMRABTY

[8] U. Bunke and T. Schick, Differential K-theory: A Survey, Global Differential Geometry, C. Bar, J. Lohkamp, and M. Schwarz (eds.), pp. 303-357, Springer, Heidelberg, 2012.
[9] R. Deeley, Geometric K-homology with coefficients I: Z/kZ-cycles and Bockstein sequence, J. K-theory, 9 (2012), 537-564.
[10] E. Dyer, Cohomology Theories, Benjamin, New York, 1969.
[11] D. S. Freed, Z/k-manifolds and families of Dirac operators, Invent. Math., 92 (1988), 243-254.
[12] D. S. Freed and J. Lott, An index theorem in differential k-theory, Geometry and Topology, 14 (2010), 903-966.
[13] D. S. Freed and R. B. Melrose, A mod k index theorem, Invent. Math., 107 (1992), 283-300.
[14] M. Hopkins and M. Hovey, Spin cobordism determines real K-theory, Math. Z., 210 (1992), 181-196.
[15] M. Lesch, H. Moscovici, and M. J. Pflaum, Connes-Chern character for manifolds with boundary and eta cochains, arXiv:0912.0194v3, 2009.
[16] J. Lott, R / Z index theory, Comm. Anal. Geom., 2 (1994), 279-311.
[17] M.-H. Ho, A condensed proof of the differential Grothendieck-Riemann-Roch theorem, Proc. Amer. Math. Soc., 142 (2014), 1973-1982.
[18] M. Walter, Equivariant Geometric K-homology with Coefficients, Diplomarbeit University of Göttingen, 2010.
[19] W. Zhang, η-invariant and Chern-Simons current, Chinese Ann. Math. Ser. B, 26 (2005), 45-56.

MSC2010: 19L50, 58J20, 58J28
Key words and phrases: differential K-theory, differential indices, differential K-characters, Eta-invariants

Mathematics Department, Ibn Tofail University, Kenitra, Morocco
Email address: elmrabtyadnane@yahoo.com

