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Abstract. In this paper, we apply the concept of cubic set to com-

mutative ideals of BCK-algebras, and then characterize their basic

properties. We discuss relations among cubic commutative ideals,
cubic subalgebras, and cubic ideals of BCK-algebras. We provide a

condition for a cubic ideal to be a cubic commutative ideal. We de-

fine inverse images of cubic commutative ideals and establish how the
inverse images of a cubic commutative ideal becomes a cubic commu-

tative ideal. We introduce products of cubic BCK-algebras. Finally,

we discuss the relationships between (cubic) commutative ideals, im-
plicative ideals, and positive implicative ideals inBCK/BCI-algebras.

1. Introduction

Combining the idea of fuzzy set [19] and interval-valued fuzzy set [20],
Jun et al. [3] introduced the concept of cubic sets, and applied it to subal-
gebras, ideals and q-ideals in BCK/BCI-algebras [4, 5]. Jun et al. [6, 7]
applied cubic soft sets and double-framed soft sets in BCK/BCI-algebras.
Muhiuddin et al. [10, 11, 12] applied cubic soft sets and (α, β)-type fuzzy
sets in BCK/BCI-algebras. Senapati together with his collaborators [2,
16, 17, 18] applied the notion of cubic sets in G-algebras, B-algebras, BF -
algebras, and BG-algebras. Recently, Senapati et al. [13] introduced cubic
implicative ideals of BCK-algebras.

The objective of this paper is to introduce the concept of cubic set to
commutative ideals of BCK-algebras. We prove that every cubic commu-
tative ideal must be a cubic ideal and a cubic subalgebra. In addition to
this we observe that in a commutative BCK-algebra, every cubic ideal is
a cubic commutative ideal. By using the notion of level sets, we hence give
some theorems of characterizations of cubic commutative ideals of BCK-
algebras.

The remainder of this paper is organized as follows: in Section 2, we recall
important preliminary definitions and properties. Section 3 contains defi-
nition and related results of cubic subalgebras and ideals of BCK-algebras.
In Section 4, we propose concepts and operations of cubic commutative
ideals and discuss their properties in details. In Section 5, we give cubic
extension property of cubic commutative ideals. In Section 6, we investigate
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properties of cubic commutative ideals under homomorphisms. In Section
7, we study products of cubic commutative ideals. Finally, in Section 8,
we discuss the relationship between (cubic) commutative ideals, implicative
ideals and positive implicative ideals in BCK/BCI-algebras.

2. Preliminaries

To make this work self-contained, we briefly mention some of the defini-
tions and results employed in the rest of the work.

An algebra (X, ∗, 0) of type (2, 0) is called aBCI-algebra [12] if it satisfies
the following axioms for all x, y, z ∈ X:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
(ii) (x ∗ (x ∗ y)) ∗ y = 0
(iii) x ∗ x = 0
(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y.

If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X
is a BCK-algebra. Any BCK-algebra X satisfies the following axioms for
all x, y, z ∈ X:

(1) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(2) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0
(3) x ∗ 0 = x
(4) x ∗ y = 0⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0.

Throughout this paper, X always means a BCK-algebra without any spec-
ification.

A BCK-algebra X is said to be commutative [8] if it satisfies the identity
x ∗ (x ∗ y) = y ∗ (y ∗ x) for all x, y ∈ X.

A mapping f : X → Y of BCK-algebras is called a homomorphism if
f(x∗y) = f(x)∗f(y) for all x, y ∈ X. A non-empty subset S of X is called
a subalgebra of X if x ∗ y ∈ S for any x, y ∈ S. A nonempty subset I of X
is called an ideal of X if it satisfies

(I1) 0 ∈ I and
(I2) x ∗ y ∈ I and y ∈ I imply x ∈ I.

A non-empty subset I of X is said to be an commutative ideal of X (see
[8]) if it satisfies (I1) and (I3) (x∗y)∗z ∈ I and z ∈ I imply x∗(y∗(y∗x)) ∈ I,
for all x, y, z ∈ X.

Our aim of this paper is to study properties of commutative ideals of
cubic sets. By a cubic set, we mean a particular type of fuzzy set. A fuzzy
set A in X is of the form A = {< x, µA(x) >: x ∈ X}, where µA(x) is
called the membership value of x in A and 0 ≤ µA(x) ≤ 1.

An interval-valued fuzzy set A over X is an object having the form
A = {〈x, µ̃A(x)〉 : x ∈ X}, where µ̃A(x) : X → D[0, 1], where D[0, 1] is the
set of all subintervals of [0, 1]. The intervals µ̃A(x) denote the intervals of
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the degree of membership of the element x to the set A, where µ̃A(x) =
[µ−A(x), µ+

A(x)] for all x ∈ X.
The determination of maximum and minimum between two real numbers

is very simple but it is not simple for two intervals. Biswas [1] described
a method to find max/sup and min/inf between two intervals or a set of
intervals.

Definition 2.1. [1] Consider two elements D1, D2 ∈ D[0, 1]. If D1 =
[a−1 , a

+
1 ] and D2 = [a−2 , a

+
2 ], then rmin(D1, D2) = [min(a−1 , a

−
2 ),min(a+1 , a

+
2 )]

which is denoted by D1 ∧r D2. Thus, if Di = [a−i , a
+
i ] ∈ D[0, 1] for i =

1, 2, 3, 4, . . ., then we define rsupi(Di) = [sup
i

(a−i ), sup
i

(a+i )], i.e, ∨riDi =

[∨ia−i ,∨ia
+
i ]. Now we call D1 � D2 if and only if a−1 ≥ a−2 and a+1 ≥ a+2 .

Similarly, the relations D1 � D2 and D1 = D2 are defined.

Based on the (interval valued) fuzzy sets, Jun et al. [3] introduced the
notion of (internal, external) cubic sets, and investigated several properties.

Definition 2.2. [3] Let X be a nonempty set. A cubic set A in X is a
structure A = {〈x, µ̃A(x), νA (x)〉 : x ∈ X} which is briefly denoted by
A = (µ̃A, νA) where µ̃A = [µ−A, µ

+
A] is an interval-valued fuzzy set in X and

νA is a fuzzy set in X.

3. Cubic Subalgebras and Ideals of BCK-Algebras

Throughout this section, unless otherwise stated, we denote the BCK-
algabra by X. In [4, 5], Jun et al. defined the cubic subalgebras and ideals
of X. The definitions are given in below.

Definition 3.1. [4] Let A = (µ̃A, νA) be cubic set in X. Then the set A
is cubic subalgebra over the binary operator ∗ if it satisfies the following
conditions for all x, y ∈ X:

(F1) µ̃A(x ∗ y)� rmin{µ̃A(x), µ̃A(y)}
(F2) νA(x ∗ y) ≤ max{νA(x), νA(y)}.

Definition 3.2. [4] A cubic set A = (µ̃A, νA) in X is called a cubic ideal
of X if it satisfies:

(T1) µ̃A(0)� µ̃A(x)
(T2) νA(0) ≤ νA(x)
(T3) µ̃A(x)� rmin{µ̃A(x ∗ y), µ̃A(y)}
(T4) νA(x) ≤ max{νA(x ∗ y), νA(y)}

for all x, y ∈ X.

Lemma 3.3. [4] Let A = (µ̃A, νA) be a cubic ideal of X. If the inequality
x ≤ y holds in X, then µ̃A(x)� µ̃A(y) and νA(x) ≤ νA(y).
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Theorem 3.4. [4] Let X be a BCK-algebra. Then every cubic ideal of X
is a cubic subalgebra of X.

Proposition 3.5. [4] Let A = (µ̃A, νA) be a cubic ideal of X. If the
inequality x ∗ y ≤ z holds in X, then µ̃A(x) � rmin{µ̃A(y), µ̃A(z)} and
νA(x) ≤ max{νA(y), νA(z)}.

4. Cubic Commutative Ideals of BCK-Algebras

In this section, cubic commutative ideals of BCK-algebras are defined
and proved some related results.

Definition 4.1. A cubic set A = (µ̃A, νA) in X is called a cubic commu-
tative ideal of X if it satisfies (T1), (T2), and

(T5) µ̃A(x ∗ (y ∗ (y ∗ x)))� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)}
(T6) νA(x ∗ (y ∗ (y ∗ x))) ≤ max{νA((x ∗ y) ∗ z), νA(z)}

for all x, y, z ∈ X.

Let us illustrate Definition 4.1 using the following example.

Example 4.2. Consider a BCK-algebra X = {0, a, b, c} with the following
Cayley table

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Let A = (µ̃A, νA) be a cubic set of X defined as µ̃A(0) = [0.7, 0.8], µ̃A(a) =
[0.4, 0.5], µ̃A(b) = µ̃A(c) = [0.2, 0.4], νA(0) = 0.2, νA(a) = 0.3, and
νA(b) = νA(c) = 0.5. Routine calculation gives that A = (µ̃A, νA) is a
cubic commutative ideal of X.

Now we give a relation between a cubic commutative ideal and a cubic
ideal.

Theorem 4.3. Any cubic commutative ideal of X must be a cubic ideal of
X.

Proof. Let A = (µ̃A, νA) be a cubic commutative ideal of X. Substituting
0 for y in (T5) and (T6), we get µ̃A(x ∗ (0 ∗ (0 ∗ x))) � rmin{µ̃A((x ∗ 0) ∗
z), µ̃A(z)} = rmin{µ̃A(x∗z), µ̃A(z)} and νA(x∗ (0∗ (0∗x))) ≤ max{νA((x∗
0) ∗ z), νA(z)} = max{νA(x ∗ z), νA(z)}. Using (3) and 0 ∗ x = 0, we get

µ̃A(x) = µ̃A(x ∗ (0 ∗ (0 ∗ x)))� rmin{µ̃A(x ∗ z), µ̃A(z)},
νA(x) = νA(x ∗ (0 ∗ (0 ∗ x))) ≤ max{νA(x ∗ z), νA(z)}.

This shows that A = (µ̃A, νA) satisfies (T3) and (T4). Combining (T1) and
(T2), A is cubic ideal of X, proving the theorem. �
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By applying Theorem 3.4 and 4.3, we get the following corollary.

Corollary 4.4. Every cubic commutative ideal of X must be a cubic sub-
algebra of X.

The converse of Theorem 4.3 may not be true as shown in the following
example.

Example 4.5. Consider a BCK-algebra X = {0, a, b, c, d} with the follow-
ing Cayley table

∗ 0 a b c d
0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d d d c 0

Define a cubic set A = (µ̃A, νA) in X by µ̃A(0) = [0.6, 0.7], µ̃A(a) =
[0.5, 0.6], µ̃A(b) = µ̃A(c) = µ̃A(d) = [0.3, 0.4], and νA(0) = 0.2, νA(a) =
0.3, νA(b) = νA(c) = νA(d) = 0.6. It is easy to check that A is a cubic ideal
of X, but it is not a cubic commutative ideal of X because µ̃A(b ∗ (c ∗ (c ∗
b)))� rmin{µ̃A((b ∗ c) ∗ 0), µ̃A(0)} does not hold, and νA(b ∗ (c ∗ (c ∗ b))) �
max{νA((b ∗ c) ∗ 0), νA(0)}.

We provide a condition for a cubic ideal to be a cubic commutative ideal.

Theorem 4.6. Let A be a cubic ideal of X. Then A is a cubic commutative
ideal of X if and only if it satisfies the conditions µ̃A(x ∗ (y ∗ (y ∗ x))) �
µ̃A(x ∗ y) and νA(x ∗ (y ∗ (y ∗ x))) ≤ νA(x ∗ y) for all x, y ∈ X.

Proof. Assume that A is a cubic commutative ideal of X. Taking z = 0 in
(T5) and (T6), and using (T1), (T2), and (3), we get the conditions.

Conversely, suppose A satisfies the above two conditions. As A is a cubic
ideal, hence,

µ̃A(x ∗ y)� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ y) ≤ max{νA((x ∗ y) ∗ z), νA(z)},

for all x, y, z ∈ X. Therefore, combining with the given two conditions, we
obtain

µ̃A(x ∗ (y ∗ (y ∗ x)))� µ̃A(x ∗ y)� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ (y ∗ (y ∗ x))) ≤ νA(x ∗ y) ≤ max{νA((x ∗ y) ∗ z), νA(z)}.

The proof is complete. �

Observing x ∗ y ≤ x ∗ (y ∗ (y ∗ x)) and using Lemma 3.3, we have µ̃A(x ∗
(y∗(y∗x)))� µ̃A(x∗y) and νA(x∗(y∗(y∗x))) ≥ νA(x∗y) for all x, y ∈ X.

Hence, Theorem 4.6 can be improved as follows.
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Theorem 4.7. A cubic ideal A of X is a cubic commutative ideal of X if
and only if it satisfies the conditions µ̃A(x ∗ (y ∗ (y ∗ x))) = µ̃A(x ∗ y) and
νA(x ∗ (y ∗ (y ∗ x))) = νA(x ∗ y) for all x, y ∈ X.

In the following theorem, we can see that the converse of Theorem 4.3
also holds in a commutative BCK-algebra.

Theorem 4.8. In a commutative BCK-algebra X, every cubic ideal is a
cubic commutative ideal.

Proof. Let A be a cubic ideal of a commutative BCK-algebra X. It is
sufficient to show that A satisfies conditions (T5) and (T6). Now

((x ∗ (y ∗ (y ∗ x))) ∗ ((x ∗ y) ∗ z)) ∗ z
= ((x ∗ (y ∗ (y ∗ x))) ∗ z) ∗ ((x ∗ y) ∗ z)
≤ (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ y)

= (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ x))

= 0,

for all x, y, z ∈ X. Thus, (x ∗ (y ∗ (y ∗x))) ∗ ((x ∗ y) ∗ z) ≤ z. It follows from
Proposition 3.5 that

µ̃A(x ∗ (y ∗ (y ∗ x)))� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ (y ∗ (y ∗ x))) ≤ max{νA((x ∗ y) ∗ z), νA(z)}.

Hence, A is a cubic commutative ideal of X. �

Let A = (µ̃A, νA) be a cubic set in X. For any r ∈ [0, 1] and [s, t] ∈
D[0, 1], we define U(A; [s, t], r) as follows

U(A; [s, t], r) = {x ∈ X | µ̃A(x)� [s, t], νA(x) ≤ r}
and say it is a cubic level set of A = (µ̃A, νA).

Theorem 4.9. For a cubic set A in X, the following are equivalent.
(i) A is a cubic commutative ideal of X.
(ii) Every nonempty cubic level set of A is a commutative ideal of X.

Proof. Assume that A = (µ̃A, νA) is a cubic commutative ideal of X. Let
x, y ∈ X, r ∈ [0, 1] and [s, t] ∈ D[0, 1]. If x ∈ U(A; [s, t], r), then µ̃A(0) �
µ̃A(x) � [s, t] and νA(0) ≤ νA(x) ≤ r. Thus, 0 ∈ U(A; [s, t], r). Let
x, y, z ∈ X be such that (x ∗ y) ∗ z ∈ U(A; [s, t], r) and z ∈ U(A; [s, t], r).
Then µ̃A((x∗y)∗z)� [s, t], νA((x∗y)∗z) ≤ r, µ̃A(z)� [s, t] and νA(z) ≤ r.
It follows from (T5) and (T6) that µ̃A(x∗ (y ∗ (y ∗x)))� rmin{µ̃A((x∗ y)∗
z), µ̃A(z)} � rmin{[s, t], [s, t]} = [s, t] and νA(x∗(y∗(y∗x))) ≤ max{µA((x∗
y)∗z), µA(z)} ≤ {r, r} = r. Therefore, x∗(y∗(y∗x)) ∈ U(A; [s, t], r). Hence,
U(A; [s, t], r) is a commutative ideal of X.
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Conversely, suppose that (ii) is valid, that is, U(A; [s, t], r) is non-empty
and is a commutative ideal of X for all r ∈ [0, 1] and [s, t] ∈ D[0, 1]. Let
µ̃A(x) = [s, t] and νA(y) = r for any x, y ∈ X. Since 0 ∈ U(A; [s, t], r), we
have µ̃A(0) � [s, t] = µ̃A(x) and νA(0) ≤ r = νA(x) for all x ∈ X. Hence,
(T1) and (T2) hold.

For any x, y, z ∈ X, let

rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)} := [s, t],

max{νA((x ∗ y) ∗ z), νA(z)} := r.

Then µ̃A((x ∗ y) ∗ z)� [s, t], µ̃A(z)� [s, t], νA((x ∗ y) ∗ z) ≤ r, νA(z) ≤ r,
that is, (x ∗ y) ∗ z ∈ U(A; [s, t], r) and z ∈ U(A; [s, t], r). It follows from
hypothesis that x ∗ (y ∗ (y ∗ x)) ∈ U(A; [s, t], r). Thus,

µ̃A(x ∗ (y ∗ (y ∗ x)))� [s, t] = rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ (y ∗ (y ∗ x))) ≤ r = max{νA((x ∗ y) ∗ z), νA(z)}.

Therefore, A is a cubic commutative ideal of X. �

Theorem 4.10. If A = (µ̃A, νA) is a cubic commutative ideal of X, then
the set

IA = {x ∈ X|µ̃A(x) = µ̃A(0), νA(x) = νA(0)}
is a commutative ideal of X.

Proof. Let A = (µ̃A, νA) be a cubic commutative ideal of X. Then it is
obvious that 0 ∈ IA. Let x, y, z ∈ X such that (x ∗ y) ∗ z ∈ IA and z ∈ IA.
Then µ̃A((x ∗ y) ∗ z) = µ̃A(0) = µ̃A(z) and νA((x ∗ y) ∗ z) = νA(0) = νA(z),
and so,

µ̃A(x ∗ (y ∗ (y ∗ x)))� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)} = µ̃A(0),

νA(x ∗ (y ∗ (y ∗ x))) ≤ max{νA((x ∗ y) ∗ z), νA(z)} = νA(0).

It follows from (T1) and (T2) that µ̃A(x ∗ (y ∗ (y ∗ x))) = µ̃A(0) and νA(x ∗
(y ∗ (y ∗ x))) = νA(0) so that x ∗ (y ∗ (y ∗ x)) ∈ I. Therefore, IA is a
commutative ideal of X. �

Theorem 4.11. If P is a commutative ideal of X, then there is a cubic
commutative ideal A = (µ̃A, νA) of X such that U(A; [s, t], r) = P for any
r ∈ [0, 1] and [s, t] ∈ D[0, 1].

Proof. Let A = (µ̃A, νA) be a cubic set in X defined by

µ̃A(x) =

{
[s, t], if x ∈ P ;
[0, 0], otherwise;

and νA(x) =

{
0, if x ∈ P ;
r, otherwise.

Now we aim to verify that A is a cubic commutative ideal of X.
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We will divide the following cases to verify that A is a cubic commutative
ideal of X.
Case I. If (x∗y)∗z ∈ P and z ∈ P , then x∗ (y ∗ (y ∗x)) ∈ P by (I3); hence,

µ̃A((x ∗ y) ∗ z) = µ̃A(z) = µ̃A(x ∗ (y ∗ (y ∗ x))) = [s, t],

νA((x ∗ y) ∗ z) = νA(z) = νA(x ∗ (y ∗ (y ∗ x))) = r,

and so

µ̃A(x ∗ (y ∗ (y ∗ x))) = rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ (y ∗ (y ∗ x))) = max{νA((x ∗ y) ∗ z), νA(z)}.

Case II. If (x ∗ y) ∗ z /∈ P and z /∈ P , then

µ̃A((x ∗ y) ∗ z) = µ̃A(z) = 0,

νA((x ∗ y) ∗ z) = νA(z) = 0.

Hence,

µ̃A(x ∗ (y ∗ (y ∗ x)))� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(z)},
νA(x ∗ (y ∗ (y ∗ x))) ≤ max{νA((x ∗ y) ∗ z), νA(z)}.

Case III. If exactly one of (x ∗ y) ∗ z and z is not in P , then

exactly one of µ̃A((x ∗ y) ∗ z) and µ̃A(z) is equal to 0,

exactly one of νA((x ∗ y) ∗ z) and νA(z) is equal to 0.

Hence, condition (T5) and (T6) are satisfied.
Summarizing the above three cases, we know that (T5) and (T6) hold

for all x, y, z ∈ X. Since 0 ∈ I, it is clear that µ̃A(0) = [s, t] � µ̃A(x),
νA(0) = r ≤ νA(x), for all x ∈ X. Thus, condition (T1) and (T2) holds.
Therefore, A is a cubic commutative ideal of X. Obviously, U(A; [s, t], r) =
P . The proof is complete. �

5. Cubic Extension Property

Theorem 5.1. [8] Let I and A be ideals of X with I ⊆ A. If I is a
commutative ideal, then so is A.

Definition 5.2. Let A = (µ̃A, νA) and B = (µ̃B , νB) be two cubic sets of
X. Then B = (µ̃B , νB) is called cubic extension of A = (µ̃A, νA), denoted
by A . B, if µ̃A(x)� µ̃B(x) and νA(x) ≥ νB(x), for all x ∈ X.

We next give a cubic extension of cubic commutative ideals.

Theorem 5.3. Let A = (µ̃A, νA) and B = (µ̃B , νB) be cubic ideals of X
such that A . B, µ̃A(0) = µ̃B(0), and νA(0) = νB(0). If A = (µ̃A, νA) is a
cubic commutative ideal of X, then so is B = (µ̃B , νB).
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Proof. To prove that B = (µ̃B , νB) is a cubic commutative ideal of X it
sufficient to show that for any [s, t] ∈ D[0, 1] and r ∈ [0, 1], U(B; [s, t], r) =
{x ∈ X | µ̃B(x) ≥ [s, t], νB(x) ≤ r} is either empty or a commutative
ideal of X. Suppose U(B; [s, t], r) is non-empty and A . B. In fact, if
x ∈ U(A; [s, t], r) then µ̃A(x)� [s, t] and νA(x) ≤ r. Hence, µ̃B(x)� [s, t]
and νB(x) ≤ r, that is, x ∈ U(A; [s, t], r). So, U(A; [s, t], r) ⊆ U(B; [s, t], r).
By the hypothesis, A = (µ̃A, νA) is a cubic commutative ideal of X. It
follows from Theorem 4.9 that the set U(A; [s, t], r) is a commutative ideal of
X. By Theorem 5.1, U(B; [s, t], r) is also a commutative ideal of X. Hence,
by using Theorem 4.9, we get that B = (µ̃B , νB) is a cubic commutative
ideal of X. The proof is complete. �

6. Images and Preimages of Cubic Commutative Ideals

Throughout this section, we always use X and Y to denote the BCK-
algebras.

Definition 6.1. Let f be a mapping from a set X into a set Y . Let
B = (µ̃B , νB) be a cubic set in Y . Then the inverse image of B is defined
as f−1(B) = (f−1(µ̃B), f−1(νB)) of B, where f−1(µ̃B)(x) = µ̃B(f(x)) and
f−1(νB)(x) = νB(f(x)).

Theorem 6.2. Let f : X → Y be a homomorphism of BCK-algebras. If
B = (µ̃B , νB) is a cubic commutative ideal of Y , then the preimage f−1(B)
of B under f is a cubic commutative ideal of X.

Proof. Assume that B = (µ̃B , νB) is a cubic commutative ideal of Y . For
all x ∈ X, f−1(µ̃B)(x) = µ̃B(f(x)) ≤ µ̃B(0) = µ̃B(f(0)) = f−1(µ̃B)(0) and
f−1(νB)(x) = νB(f(x))� νB(0) = νB(f(0)) = f−1(νB)(0).

Let x, y, z ∈ X. Then f−1(µ̃B)(x∗(y∗(y∗x))) = µ̃B(f(x∗(y∗(y∗x)))) =
µ̃B(f(x)∗(f(y)∗(f(y)∗f(x))))� rmin{µ̃B((f(x)∗f(y))∗f(z)), µ̃B(f(z))} =
rmin{µ̃B(f((x∗y)∗z), µ̃B(f(z))} = rmin{f−1(µ̃B)((x∗y)∗z), f−1(µ̃B)(z)}
and f−1(νB)(x ∗ (y ∗ (y ∗ x))) = νB(f(x ∗ (y ∗ (y ∗ x)))) = νB(f(x) ∗ (f(y) ∗
(f(y)∗f(x)))) ≤ max{νB((f(x)∗f(y))∗f(z)), νB(f(z))} = max{νB(f((x∗
y) ∗ z), νB(f(z))} = max{f−1(νB)((x ∗ y) ∗ z), f−1(νB)(z)}. Hence, f−1(B)
is a cubic commutative ideal of X. �

Definition 6.3. A cubic set A = (µ̃A, νA) of X has rsup-property and
infimum property if for any T of X there exist t0 ∈ T such that µ̃A(t0) =
rsupt0∈T µ̃A(t) and νA(t0) = inf

t0∈T
νA(t), respectively.

Definition 6.4. Let f be a mapping from the set X to the set Y . If
A = (µ̃A, νA) is cubic set in X, then the cubic subset B = (µ̃B , νB) of Y is
defined as
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f(µ̃A)(y) = µ̃B(y) =

{
rsupx∈f−1(y)µ̃A(x); if f−1(y) 6= ø;

[0, 0]; otherwise;
and

f(νA)(y) = νB(y) =

{
inf

x∈f−1(y)
νA(x); if f−1(y) 6= ø;

1; otherwise;
are said to be the images of A = (µ̃A, νA) under f .

Theorem 6.5. Let f : X → Y be a homomorphism of BCK-algebras.
If A = (µ̃A, νA) is a cubic commutative ideal of X, then the image B =
(µ̃B , νB) of A under f is a cubic commutative ideal of Y .

Proof. Let A be a cubic commutative ideal of X with rsup-property and
infimum property and B be the images of A under f . Since A is a cubic
commutative ideal it must be a cubic ideal by Theorem 4.3. Therefore, we
have µ̃A(0)� µ̃A(x) and νA(0) ≤ νA(x) for all x ∈ X.

Note that 0 ∈ f−l(0′), where 0 and 0′ are the zero elements of X and
Y , respectively. Thus, µ̃B(0′) = rsupt∈f−1(0′)µ̃A(t) = µ̃A(0) � µ̃A(x) and

νB(0′) = inf
t∈f−1(0′)

νA(t) = νA(0) ≤ νA(x) for all x ∈ X, which implies

that µ̃B(0′) � rsupt∈f−1(x′)µ̃A(t) = µ̃B(x′) and νB(0′) ≤ inf
t∈f−1(x′)

νA(t) =

νB(x′) for any x′ ∈ Y .
For any x′, y′, z′ ∈ Y , let x0 ∈ f−1(x′), y0 ∈ f−1(y′) and z0 ∈ f−1(z′) be

such that µ̃A(x0) = rsupt∈f−1(x′)µ̃A(t), νA(x0) = inf
t∈f−1(x′)

νA(t), µ̃A(z0) =

rsupt∈f−1(z′)µ̃A(t), νA(z0) = inf
t∈f−1(z′)

νA(t), µ̃A((x0 ∗ y0) ∗ z0) = µ̃B [f((x0 ∗

y0)∗z0)] = µ̃B((x′∗y′)∗z′) = rsup((x0∗y0)∗z0)∈f−1((x′∗y′)∗z′)µ̃A((x0∗y0)∗z0)

= rsupt∈f−1((x′∗y′)∗z′)µ̃A(t) and νA((x0 ∗ y0) ∗ z0) = νB [f((x0 ∗ y0) ∗ z0)] =

νB((x′∗y′)∗z′) = inf
((x0∗y0)∗z0)∈f−1((x′∗y′)∗z′)

νA((x0∗y0)∗z0) = inf
t∈f−1((x′∗y′)∗z′)

νA(t). Then

µ̃B(x′ ∗ (y′ ∗ (y′ ∗ x′))) = rsupt∈f−1(x′∗(y′∗(y′∗x′)))µ̃A(t)

= µ̃A(x0 ∗ (y0 ∗ (y0 ∗ x0)))

� rmin{µ̃A((x0 ∗ y0) ∗ z0), µ̃A(z0)}
= rmin{rsupt∈f−1((x′∗y′)∗z′)µ̃A(t),

rsupt∈f−1(z′)µ̃A(t)}
= rmin{µ̃B((x′ ∗ y′) ∗ z′), µ̃B(z′)}
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and

νB(x′ ∗ (y′ ∗ (y′ ∗ x′))) = inf
t∈f−1(x′∗(y′∗(y′∗x′)))

νA(t)

= νA(x0 ∗ (y0 ∗ (y0 ∗ x0)))

≤ max{νA((x0 ∗ y0) ∗ z0), νA(z0)}

= max
{

inf
t∈f−1((x′∗y′)∗z′)

νA(t),

inf
t∈f−1(z′)

νA(t)
}

= max{νB((x′ ∗ y′) ∗ z′), νB(z′)}.

Hence, B = (µ̃B , νB) is a cubic commutative ideal of Y . �

7. Product of Cubic Commutative Ideals of BCK-Algebras

In this section, the products of cubic BCK-algebras are defined and
considered. We obtain some new results for this topic.

Definition 7.1. Let A = (µ̃A, νA) and B = (µ̃B , νB) be two cubic sets of X
and Y , respectively. The cartesian product A×B = (X×Y, µ̃A×µ̃B , νA×νB)
is defined by (µ̃A × µ̃B)(x, y) = rmin{µ̃A(x), µ̃B(y)} and (νA × νB)(x, y) =
max{νA(x), νB(y)}, where µ̃A × µ̃B : X × Y → D[0, 1] and νA × νB :
X × Y → [0, 1] for all (x, y) ∈ X × Y .

Remark 7.2. Let X and Y be BCK-algebras. We define ∗ on X × Y by
(x, y) ∗ (z, p) = (x ∗ z, y ∗ p) for every (x, y) and (z, p) ∈ X × Y . Then it is
clear that X × Y is a BCK-algebra.

Definition 7.3. A cubic subset A × B = (X × Y, µ̃A × µ̃B , νA × νB) is
called a cubic commutative ideal if
(T7) (µ̃A × µ̃B)(0, 0)� (µ̃A × µ̃B)(x, y), (νA × νB)(0, 0) ≤ (νA × νB)(x, y)
for all (x, y) ∈ X × Y ;
(T8) (µ̃A × µ̃B)((x1, y1) ∗ ((x2, y2) ∗ ((x2, y2) ∗ (x1, y1)))) � rmin{(µ̃A ×
µ̃B)(((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (µ̃A × µ̃B)(x3, y3)} and
(T9) (νA × νB)((x1, y1) ∗ ((x2, y2) ∗ ((x2, y2) ∗ (x1, y1)))) ≤ max{(νA ×
νB)(((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (νA × νB)(x3, y3)},
for all (x1, y1), (x2, y2), (x3, y3) ∈ X × Y .

Theorem 7.4. Let A and B be cubic commutative ideals of X and Y ,
respectively. Then A×B is a cubic commutative ideal of X × Y .

Proof. For any (x, y) ∈ X × Y , we have

(µ̃A × µ̃B)(0, 0) = rmin{µ̃A(0), µ̃B(0)}
� rmin{µ̃A(x), µ̃B(y)} = (µ̃A × µ̃B)(x, y),
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and

(νA × νB)(0, 0) = max{νA(0), νB(0)} ≤ max{νA(x), νB(y)}
= (νA × νB)(x, y).

Let (x1, y1), (x2, y2) and (x3, y3) ∈ X × Y . Then
(µ̃A × µ̃B)((x1, y1) ∗ ((x2, y2) ∗ ((x2, y2) ∗ (x1, y1))))
= (µ̃A × µ̃B)((x1 ∗ (x2 ∗ (x2 ∗ x1))), (y1 ∗ (y2 ∗ (y2 ∗ y1))))
= rmin{µ̃A(x1 ∗ (x2 ∗ (x2 ∗ x1))), µ̃B(y1 ∗ (y2 ∗ (y2 ∗ y1)))}
� rmin{rmin{µ̃A((x1 ∗x2)∗x3), µ̃A(x3)}, rmin{µ̃B((y1 ∗y2)∗y3), µ̃B(y3)}}
= rmin{rmin{µ̃A((x1 ∗x2) ∗x3), µ̃B((y1 ∗ y2) ∗ y3)}, rmin{µ̃A(x3), µ̃B(y3)}}
= rmin{(µ̃A × µ̃B)(((x1 ∗ x2) ∗ x3), ((y1 ∗ y2) ∗ y3)), (µ̃A × µ̃B)(x3, y3)}
= rmin{(µ̃A × µ̃B)(((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (µ̃A × µ̃B)(x3, y3)} and

(νA × νB)((x1, y1) ∗ ((x2, y2) ∗ ((x2, y2) ∗ (x1, y1))))
= (νA × νB)((x1 ∗ (x2 ∗ (x2 ∗ x1))), (y1 ∗ (y2 ∗ (y2 ∗ y1))))
= max{νA(x1 ∗ (x2 ∗ (x2 ∗ x1))), νB(y1 ∗ (y2 ∗ (y2 ∗ y1)))}
≤ max{max{νA((x1 ∗ x2) ∗ x3), νA(x3)},max{νB((y1 ∗ y2) ∗ y3), νB(y3)}}
= max{max{νA((x1 ∗ x2) ∗ x3), νB((y1 ∗ y2) ∗ y3)},max{νA(x3), νB(y3)}}
= max{(νA × νB)(((x1 ∗ x2) ∗ x3), ((y1 ∗ y2) ∗ y3)), (νA × νB)(x3, y3)}
= max{(νA × νB)(((x1, y1) ∗ (x2, y2)) ∗ (x3, y3)), (νA × νB)(x3, y3)}.
Hence, A×B is a cubic commutative ideal of X × Y . �

Definition 7.5. Let A = (µ̃A, νA) and B = (µ̃B , νB) be cubic subset of X
and Y , respectively. For [s1, s2] ∈ D[0, 1] and t ∈ [0, 1], the set U(µ̃A× µ̃B :
[s1, s2]) = {(x, y) ∈ X × Y |(µ̃A × µ̃B)(x, y) � [s1, s2]} is called an upper
[s1, s2]-level of A×B and L(νA×νB : t) = {(x, y) ∈ X×Y |(νA×νB)(x, y) ≤
t} is called a lower t-level of A×B.

Theorem 7.6. For any two cubic sets A and B, A×B is a cubic commu-
tative ideals of X × Y if and only if the non-empty upper [s1, s2]-level cut
U(µ̃A× µ̃B : [s1, s2]) and the non-empty lower t-level cut L(νA×νB : t) are
commutative ideals of X × Y for any [s1, s2] ∈ D[0, 1] and t ∈ [0, 1].

Proof. The proof is straightforward. �

8. Relationship with (Cubic) Implictive Ideals and Positive
Implicative Ideals

Proposition 8.1. In a BCK-algebra X the following all hold for all x, y, z ∈
X.

(i) ((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ y) ∗ z.
(ii) (x ∗ z) ∗ (x ∗ (x ∗ z)) = (x ∗ z) ∗ z.

(iii) (x ∗ (y ∗ (y ∗ x))) ∗ (y ∗ (x ∗ (y ∗ (y ∗ x)))) ≤ x ∗ y.

Proof. See the proof of [9, Theorems 9 and 16]. �
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Definition 8.2. [13] A cubic set A = (µ̃A, νA) in X is called a cubic
implicative ideal of X if it satisfies (T1), (T2) and

(T10) µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)}
(T11) νA(x) ≤ max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)}

for all x, y, z ∈ X.

Theorem 8.3. [13] Suppose that A = (µ̃A, νA) is a cubic ideal of X. Then
the following are equivalent.

(i) A is a cubic implicative ideal of X.
(ii) µ̃A(x) ≥ µ̃A(x∗(y∗x)) and νA(x) ≤ νA(x∗(y∗x)) for all x, y ∈ X.
(iii) µ̃A(x) = µ̃A(x∗(y∗x)) and νA(x) = νA(x∗(y∗x)) for all x, y ∈ X.

Definition 8.4. [14] A cubic set A = (µ̃A, νA) in X is called a cubic
positive implicative ideal of X if it satisfies (T1), (T2), and

(T12) µ̃A(x ∗ z) ≥ rmin{µ̃A((x ∗ y) ∗ z), µ̃A(y ∗ z)}
(T13) νA(x ∗ z) ≤ max{νA((x ∗ y) ∗ z), νA(y ∗ z)}

for all x, y, z ∈ X.

Theorem 8.5. [14] A cubic ideal of X is called a cubic positive implicative
ideal of X if and only if it satisfies the conditions µ̃A(x∗y)� µ̃A((x∗y)∗y)
and νA(x ∗ y) ≥ νA((x ∗ y) ∗ y) for all x, y ∈ X.

Observing (x ∗ y) ∗ y ≤ x ∗ y and using Lemma 3.3, we have µ̃A(x ∗ y)�
µ̃A((x ∗ y) ∗ y) and νA(x ∗ y) ≤ νA((x ∗ y) ∗ y) for all x, y ∈ X. Hence,
Theorem 8.5 can be improved as follows.

Theorem 8.6. A cubic ideal A = (µ̃A, νA) of X is a cubic positive implica-
tive ideal of X if and only if it satisfies the identity µ̃A(x∗y) = µ̃A((x∗y)∗y)
and νA(x ∗ y) = νA((x ∗ y) ∗ y) for all x, y ∈ X.

We now describe relationship between cubic commutative ideals, cubic
implicative ideals, and cubic positive implicative ideals.

Theorem 8.7. A cubic ideal A = (µ̃A, νA) of X is cubic implicative ideal if
and only if A = (µ̃A, νA) is both cubic commutative ideal and cubic positive
implicative ideal.

Proof. Assume A = (µ̃A, νA) is a cubic implicative ideal of X. For all
x, y, z ∈ X, we have

µ̃A(x ∗ z) = µ̃A((x ∗ z) ∗ (x ∗ (x ∗ z))) by Theorem 8.3 (iii)

= µ̃A((x ∗ z) ∗ z) by Proposition 8.1 (ii)

� rmin{µ̃A((x ∗ y) ∗ z), µ̃A(y ∗ z)} by Proposition 3.5, 8.1(i).

Similarly νA(x ∗ z) ≥ min{νA((x ∗ y) ∗ z), νA(y ∗ z)}. Hence, A = (µ̃A, νA)
is a cubic positive implicative ideal of X.
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By using Lemma 3.3, Theorem 8.3 (iii), and Proposition 8.1 (iii), we get
µ̃A(x∗y)� µ̃A((x∗(y∗(y∗x)))∗(y∗(x∗(y∗(y∗x))))) = µ̃A(x∗(y∗(y∗x))),
νA(x∗y) ≥ νA((x∗(y∗(y∗x)))∗(y∗(x∗(y∗(y∗x))))) = νA(x∗(y∗(y∗x))),
for all x, y ∈ X. It follows from Theorem 4.6 that A = (µ̃A, νA) is a cubic
commutative ideal of X.

Conversely, suppose that A = (µ̃A, νA) is both a cubic positive implica-
tive ideal and a cubic commutative ideal. Since (y∗(y∗x))∗(y∗x) ≤ x∗(y∗x),
it follows from Lemma 3.3 that µ̃A(x ∗ (y ∗ x))� µ̃A((y ∗ (y ∗ x)) ∗ (y ∗ x))
and νA(x ∗ (y ∗x)) ≤ νA((y ∗ (y ∗x)) ∗ (y ∗x)). Using Theorem 8.6, we have
µ̃A((y∗(y∗x))∗(y∗x)) = µ̃A(y∗(y∗x)), νA((y∗(y∗x))∗(y∗x)) = νA(y∗(y∗x)),
and so

µ̃A(x ∗ (y ∗ x))� µ̃A(y ∗ (y ∗ x)),

νA(x ∗ (y ∗ x)) ≥ νA(y ∗ (y ∗ x)).

}
(8.1)

On the other hand, since x∗y ≤ x∗(y∗x), we have µ̃A(x∗(yx))� µ̃A(x∗y)
and νA(x ∗ (yx)) ≤ νA(x ∗ y), by Lemma 3.3. Since A = (µ̃A, νA) is
a cubic commutative ideal of X, by Theorem 4.7 we have µ̃A(x ∗ y) =
µ̃A(x∗(y∗(y∗x))) and νA(x∗y) = νA(x∗(y∗(y∗x))); hence, µ̃A(x∗(y∗x))�
µ̃A(x ∗ (y ∗ (y ∗ x))) and νA(x ∗ (y ∗ x)) ≤ νA(x ∗ (y ∗ (y ∗ x))). Combining
(8.1) we obtain

µ̃A(x)� rmin{µ̃A(x ∗ (y ∗ (y ∗ x))), µ̃A(y ∗ (y ∗ x))} � µ̃A(x ∗ (y ∗ x)),

νA(x) ≥ min{νA(x ∗ (y ∗ (y ∗ x))), νA(y ∗ (y ∗ x))} ≥ νA(x ∗ (y ∗ x)).

Hence, A = (µ̃A, νA) is a cubic implicative ideal of X by Theorem 8.3 (ii).
The proof is complete. �
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