MUNCHAUSEN NUMBERS REDUX

DEVIN AKMAN

Abstract

A Munchausen number is a mathematical curiosity: raise each digit to the power of itself, add them all up, and recover the original number. In the seminal paper on this topic, D. Van Berkel derived a bound on such numbers for any given radix, which means that they can be completely enumerated in principle. We present a simpler argument which yields a bound one half the size and show that a radically different approach would be required for further reductions.

1. Introduction

In [1], Van Berkel introduces the base- b Munchausen numbers as the fixed points of the base- b Munchausen function

$$
\theta_{b}(n)=\sum_{i=0}^{d-1} c_{i}^{c_{i}}
$$

where n is a positive integer with d digits in base b, and c_{i} is its i th digit. They are also referred to as perfect digit-to-digit invariants or Canouchi numbers. The canonical example is

$$
3435=3^{3}+4^{4}+3^{3}+5^{5}
$$

in base 10. One can choose the convention $0^{0}=0$ or $0^{0}=1$. Van Berkel shows that $\theta_{b}(n)=n \Rightarrow n \leq 2 b^{b}$. The bound has 4 digits in base 2 and $b+1$ digits for $b>2$. We improve on this result by demonstrating that Munchausen numbers have no more than b digits and that this is the best possible "simple" bound.

2. Bounds on Fixed Points

Let n be defined as above. It is clear that $n \geq b^{d-1}$ and $\theta_{b}(n) \leq d(b-$ $1)^{b-1}$. If $\theta_{b}(n)=n$, then we must have

$$
\begin{equation*}
b^{d-1} \leq n \leq d(b-1)^{b-1} \tag{2.1}
\end{equation*}
$$

We denote the difference between the bounds by the function

$$
\Delta_{b}(d)=b^{d-1}-d(b-1)^{b-1}
$$

D. AKMAN

defined on the real numbers for every integer $b \geq 2$, so that the inequality (2.1) cannot be satisfied where Δ_{b} is positive. We will use the roots of Δ_{b} to show that $d=b$ is the largest integral value for which it is nonpositive.

Lemma 2.1. If a function is C^{2} on an open interval and has at least three roots, then its second derivative must vanish at a point.

Proof. Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)=0$ for some $x_{1}<x_{2}<x_{3}$. By Rolle's Theorem, there must be $x_{1}<y_{1}<x_{2}$ and $x_{2}<y_{2}<x_{3}$ such that $f^{\prime}\left(y_{1}\right)=f^{\prime}\left(y_{2}\right)=0$. A second application of Rolle's Theorem shows that there must be a $y_{1}<z<y_{2}$ such that $f^{\prime \prime}(z)=0$.

The function Δ_{b} can have at most two roots $r_{b}<R_{b}$, and its second derivative is strictly positive. It may be verified by inspection that $r_{2}=1$ and $R_{2}=2$. The remainder of this article deals with the case $b \geq 3$. The following lemmas show that both roots always exist.

Lemma 2.2. For $b \geq 3,0<r_{b}<1$.

Proof. It suffices to verify that $\Delta_{b}(0)>0$ and $\Delta_{b}(1)<0$. The Intermediate Value Theorem (IVT) then gives the desired result. We know that we have found the correct root, because the next two lemmas show that $R_{b}>b>$ 1.

Remark. It is also possible to enumerate the roots and bound r_{b} via the real-valued branches of the Lambert-W function. However, we prefer the parsimony of our current approach.

The contrapositive of the IVT implies that the sign of Δ_{b} cannot change for arguments greater than R_{b}. The exponential part will grow faster than the linear one, meaning that we must have $\Delta_{b}(d)>0$ for all $d>R_{b}$. Since this is the undesirable region for a fixed point, it simply remains to find an approximate location for R_{b} using the IVT once again.

Lemma 2.3. $\Delta_{b}(b+1)=b^{b}-(b+1)(b-1)^{b-1}>0$.

Proof. Recall that $b-1 \geq 1$. We have

$$
\begin{aligned}
& b^{2}>b^{2}-1 \\
\Rightarrow & b^{2}>(b+1)(b-1) \\
\Rightarrow & b>\frac{(b+1)(b-1)}{b} \\
\Rightarrow & \frac{b}{b-1}>\frac{b+1}{b} \\
\Rightarrow & \left(\frac{b}{b-1}\right)^{b-1}>\frac{b+1}{b} \\
\Rightarrow & b^{b-1}>\frac{(b+1)(b-1)^{b-1}}{b} \\
\Rightarrow & b^{b}>(b+1)(b-1)^{b-1} \\
\Rightarrow & b^{b}-(b+1)(b-1)^{b-1}>0 .
\end{aligned}
$$

Lemma 2.4. For $b \geq 3, \Delta_{b}(b)=b^{b-1}-b(b-1)^{b-1}<0$.
Proof. It can be easily verified that $\Delta_{3}(3)<0$. For the case $b \geq 4$, we know that

$$
b^{b-1}<(b-1)^{b}<b(b-1)^{b-1}
$$

(the first inequality holds because $b>b-1>e$, and $x>y>e$ always implies that $x^{y}<y^{x}$), which means that

$$
b^{b-1}-b(b-1)^{b-1}<0 .
$$

Theorem 2.5. The only values of d, the number of digits in base b, for which Munchausen numbers can exist are $1 \leq d \leq b$.
Proof. Lemmas 2.3 and 2.4, together with the IVT, show that $b<R_{b}<$ $b+1$. Therefore, the inequality (2.1) cannot be satisfied for $d \geq b+1$.

Since $R_{b}<b+1$, no argument relying on the failure of transitivity for (2.1) can do better than this. There do exist certain bases with b-digit Munchausen numbers: consider the number 1243EED3419110E in base 15 with the convention $0^{0}=0$ [2]. We do not know whether this phenomenon occurs for infinitely many b, but if that were not the case, then a better bound on the number of digits would have to take on a more complex form than $b-c$ for some constant c.

D. AKMAN

3. Searching Efficiently

With this improvement on the bound alone, the running time of a bruteforce search for Munchausen numbers can be cut in half. Additionally, because the Munchausen function is invariant under digit permutation, a program searching for Munchausen numbers could become more efficient by enumerating multisets of digits instead of individual numbers.

References

[1] D. Van Berkel, On a curious property of 3435, preprint arXiv:0911.3038v2 [math.HO], 2009.
[2] P. Guglielmetti (Goulu), GitHub Repository, https://gist.github.com/goulu/5121c161d224229b76a38485c4122794

MSC2010: 11A63

Key words and phrases: Munchausen number, Canouchi number, perfect digit-to-digit invariant, PDDI, Lambert- W function

Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, 1409 W. Green Street (MC-382), Urbana, IL 61801

Email address: akman2@illinois.edu

