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Abstract. In this paper, we apply the concept of cubic sets to im-

plicative ideals of BCK-algebras, and then characterize their basic

properties. We discuss relations among cubic implicative ideals, cu-
bic subalgebras and cubic ideals of BCK-algebras. We provide a

condition for a cubic ideal to be a cubic implicative ideal. We define

inverse images of cubic implicative ideals and establish how the in-
verse images of a cubic implicative ideal become a cubic implicative

ideal. Finally we introduce products of cubic BCK-algebras.

1. Introduction

BCK/BCI-algebras are two important classes of logical algebras intro-
duced by Iseki et al. [2] and extensively investigated by several researchers.
Combining the idea of fuzzy sets [16] and interval-valued fuzzy sets [17],
Jun et al. [4] introduced the concept of cubic sets, and applied it to subal-
gebras, ideals and q-ideals in BCK/BCI-algebras [5, 6, 7]. Jun et al. [9]
applied double-framed soft sets in BCK/BCI-algebras. Muhiuddin et al.
[10, 11, 12] applied cubic soft sets and (α, β)-type fuzzy sets in BCK/BCI-
algebras. Senapati, together with colleagues [3, 13, 14, 15], applied the no-
tion of cubic sets in G-algebras, B-algebras, BF -algebras, and BG-algebras.
Recently, Jun et al. [8] introduced cubic soft ideals in BCK/BCI-algebras.

The objective of this paper is to introduce the concept of cubic sets to
implicative ideals of BCK-algebras. We prove that every cubic implicative
ideal must be a cubic ideal and a cubic subalgebra. In addition, we observe
that in an implicative BCK-algebra, every cubic ideal is a cubic implicative
ideal. By using the concept of a cubic level set, some characterization
theorems are given.

The remainder of this paper is organized as follows: in Section 2, we recall
important preliminary definitions and properties. Section 3 contains defi-
nition and related results of cubic subalgebras and ideals of BCK-algebras.
In Section 4, we propose concepts and operations of cubic implicative ideals
and discuss their properties in details. In Section 5, we investigate prop-
erties of cubic implicative ideals under homomorphisms. In Section 6, we
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study products of cubic implicative ideals. Finally, in Section 7, conclusions
and the scope for future research are given.

2. Preliminaries

To make this work self-contained, we briefly mention some of the defini-
tions and results employed in the rest of the work.

An algebra (X, ∗, 0) of type (2, 0) is called aBCI-algebra [12] if it satisfies
the following axioms for all x, y, z ∈ X:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.
(ii) (x ∗ (x ∗ y)) ∗ y = 0.

(iii) x ∗ x = 0.
(iv) x ∗ y = 0 and y ∗ x = 0 imply x = y.

If a BCI-algebra X satisfies 0 ∗ x = 0 for all x ∈ X, then we say that X
is a BCK-algebra. Any BCK-algebra X satisfies the following axioms for
all x, y, z ∈ X:

(1) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
(2) ((x ∗ z) ∗ (y ∗ z)) ∗ (x ∗ y) = 0.
(3) x ∗ 0 = x.
(4) x ∗ y = 0⇒ (x ∗ z) ∗ (y ∗ z) = 0, (z ∗ y) ∗ (z ∗ x) = 0.

Throughout this paper, X always means a BCK-algebra without any spec-
ification.

A BCK-algebra X is said to be implicative [2] if it satisfies the identity
x = x ∗ (y ∗ x) for all x, y ∈ X. A mapping f : X → Y of BCK-algebras
is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X. A
non-empty subset S of X is called a subalgebra of X if x ∗ y ∈ S for any
x, y ∈ S. A nonempty subset I of X is called an ideal of X if it satisfies

(I1) 0 ∈ I and
(I2) x ∗ y ∈ I and y ∈ I imply x ∈ I.

A nonempty subset I of X is called an implicative ideal of X if it satisfies
(I1) and (I3) and (x ∗ (y ∗ x)) ∗ z ∈ I and z ∈ I implies x ∈ I.

Our main objective is to investigate the idea of implicative ideals of cubic
sets. The cubic set is a particular type of fuzzy set. A fuzzy set A in X
is of the form A = {< x, µA(x) >: x ∈ X}, where µA(x) is called the
membership value of x in A and 0 ≤ µA(x) ≤ 1.

An interval-valued fuzzy set A over X is an object having the form
A = {〈x, µ̃A(x)〉 : x ∈ X}, where µ̃A(x) : X → D[0, 1], where D[0, 1] is the
set of all subintervals of [0, 1]. The intervals µ̃A(x) denote the intervals of
the degree of membership of the element x to the set A, where µ̃A(x) =
[µ−A(x), µ+

A(x)] for all x ∈ X.
The determination of maximum and minimum between two real numbers

is very simple but it is not simple for two intervals. Biswas [1] described
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a method to find max/sup and min/inf between two intervals or a set of
intervals.

Definition 2.1. [1] Consider two elements D1, D2 ∈ D[0, 1]. If D1 =
[a−1 , a

+
1 ] and D2 = [a−2 , a

+
2 ], then rmin(D1, D2) = [min(a−1 , a

−
2 ),min(a+1 , a

+
2 )]

which is denoted by D1 ∧r D2. Thus, if Di = [a−i , a
+
i ] ∈ D[0, 1] for

i=1,2,3,4,. . . , then we define rsupi(Di) = [sup
i

(a−i ), sup
i

(a+i )], i.e, ∨riDi =

[∨ia−i ,∨ia
+
i ]. Now we call D1 ≥ D2 if and only if a−1 ≥ a−2 and a+1 ≥ a+2 .

Similarly, the relations D1 ≤ D2 and D1 = D2 are defined.

Based on the (interval valued) fuzzy sets, Jun et al. [4] introduced the
notion of (internal, external) cubic sets, and investigated several properties.

Definition 2.2. [4] Let X be a nonempty set. A cubic set A in X is a
structure A = {〈x, µ̃A(x), νA (x)〉 : x ∈ X} which is briefly denoted by
A = (µ̃A, νA) where µ̃A = [µ−A, µ

+
A] is an interval-valued fuzzy set in X and

νA is a fuzzy set in X.

3. Cubic Subalgebras and Ideals of BCK-Algebras

Combining the definition of subalgebra, ideal over crisp set, and the idea
of cubic set, Jun et al. [5, 6, 7] defined a cubic subalgebra and ideal. This
is defined below.

Definition 3.1. [5] Let A = (µ̃A, νA) be cubic set in X, then the set A
is cubic subalgebra over the binary operator ∗ if it satisfies the following
conditions for all x, y ∈ X:

(F1) µ̃A(x ∗ y) ≥ rmin{µ̃A(x), µ̃A(y)}.
(F2) νA(x ∗ y) ≤ max{νA(x), νA(y)}.

Definition 3.2. [6] A cubic set A = (µ̃A, νA) in X is called a cubic ideal
of X if it satisfies:

(T1) µ̃A(0) ≥ µ̃A(x),
(T2) νA(0) ≤ νA(x),
(T3) µ̃A(x) ≥ rmin{µ̃A(x ∗ y), µ̃A(y)},
(T4) νA(x) ≤ max{νA(x ∗ y), νA(y)},

for all x, y ∈ X.

Lemma 3.3. [5] Let A = (µ̃A, νA) be a cubic ideal of X. If the inequality
x ≤ y holds in X, then µ̃A(x) ≥ µ̃A(y) and νA(x) ≤ νA(y).

Theorem 3.4. [5] Let X be a BCK-algebra. Then every cubic ideal of X
is a cubic subalgebra of X.

Proposition 3.5. [5] Let A = (µ̃A, νA) be a cubic ideal of X. If the
inequality x ∗ y ≤ z holds in X, then µ̃A(x) ≥ rmin{µ̃A(y), µ̃A(z)} and
νA(x) ≤ max{νA(y), νA(z)}.
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4. Cubic Implicative Ideals of BCK-Algebras

In this section, cubic implicative ideals of BCK-algebras are defined and
proved in some related results.

Definition 4.1. A cubic set A = (µ̃A, νA) in X is called a cubic implicative
ideal of X if it satisfies (T1), (T2) and

(T5) µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)},
(T6) νA(x) ≤ max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)}, for all x, y, z ∈ X.

Let us illustrate Definition 4.1 using the following example.

Example 4.2. Consider a BCK-algebra X={0, 1, a, b, c} with the following
Cayley table

∗ 0 1 a b c
0 0 0 0 0 0
1 1 0 1 0 0
a a a 0 0 0
b b b b 0 0
c c b c 1 0

Let A = (µ̃A, νA) be a cubic set of X defined as µ̃A(0) = µ̃A(1) = µ̃A(a) =
[0.6, 0.8], µ̃A(b) = µ̃A(c) = [0.3, 0.4], νA(0) = νA(1) = νA(a) = 0.3 and
νA(b) = νA(c) = 0.5. Routine calculation gives that A = (µ̃A, νA) is a
cubic implicative ideal of X.

Now we give a relation between a cubic implicative ideal and a cubic
ideal.

Theorem 4.3. Any cubic implicative ideal of X must be a cubic ideal of
X.

Proof. Let A = (µ̃A, νA) be a cubic implicative ideal of X. Substitut-
ing x for y in (T5) and (T6), we get µ̃A(x) ≥ rmin{µ̃A((x ∗ (x ∗ x)) ∗
z), µ̃A(z)} = rmin{µ̃A((x ∗ 0) ∗ z), µ̃A(z)} = rmin{µ̃A(x ∗ z), µ̃A(z)} and
νA(x) ≤ max{νA((x ∗ (x ∗ x)) ∗ z), νA(z)} = max{νA((x ∗ 0) ∗ z), νA(z)} =
max{νA(x ∗ z), νA(z)}. This shows that A = (µ̃A, νA) satisfies (T3) and
(T4). Combining (T1) and (T2), A is cubic ideal of X, proving the theo-
rem. �

By applying Theorem 3.4 and 4.3, we get the following corollary.

Corollary 4.4. Every cubic implicative ideal of X must be a cubic subal-
gebra of X.

Theorem 4.5. Let A be a cubic ideal of X. Then A is a cubic implicative
ideal of X if and only if it satisfies the conditions µ̃A(x) ≥ µ̃A(x ∗ (y ∗ x))
and νA(x) ≤ νA(x ∗ (y ∗ x)) for all x, y ∈ X.
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Proof. Assume that A is a cubic implicative ideal of X. Taking z = 0 in
(T5) and (T6), and using (T1) and (T2) we get the conditions.

Conversely, suppose A satisfies the above two conditions. As A is a cubic
ideal hence, µ̃A(x) ≥ µ̃A(x ∗ (y ∗ x)) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)}
and νA(x) ≤ νA(x ∗ (y ∗ x)) ≤ max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)}. Then A is
a cubic implicative ideal of X. �

The converse of Theorem 4.3 may not be true as shown in the following
example.

Example 4.6. Let X be a BCK-algebra as in Example 4.2. Define a
cubic set A = (µ̃A, νA) in X by µ̃A(0) = µ̃A(a) = [1, 1], µ̃A(1) = µ̃A(b) =
µ̃A(c) = [t1, t2] and νA(0) = νA(a) = 0, νA(1) = νA(b) = νA(c) = s,
where [t1, t2] ∈ D[0, 1] and s ∈ [0, 1]. It is easy to check that A is a cubic
ideal of X, but it is not a cubic implicative ideal of X because µ̃A(1) �
rmin{µ̃A((1∗(b∗1))∗a), µ̃A(a)} and νA(1) � max{µA((1∗(b∗1))∗a), νA(a)}.

In the following theorem, we can see that the converse of Theorem 4.3
also holds in an implicative BCK-algebra.

Theorem 4.7. In an implicative BCK-algebra X, every cubic ideal of X
is a cubic implicative of X.

Proof. Since X is an implicative BCK-algebra, it follows that x = x∗(y∗x)
for all x, y ∈ X. Let A be a cubic ideal of X. Then by (T3) and (T4),
µ̃A(x) ≥ rmin{µ̃A(x ∗ z), µ̃A(z)} = rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)} and
νA(x) ≤ max{νA(x ∗ z), νA(z)} = max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)}, for all
x, y, z ∈ X. Hence, A is a cubic implicative ideal of X. This completes the
proof. �

Let A = (µ̃A, νA) be a cubic set in X. For any r ∈ [0, 1] and [s, t] ∈
D[0, 1], we define U(A; [s, t], r) as follows

U(A; [s, t], r) = {x ∈ X|µ̃A(z) ≥ [s, t], νA(x) ≤ r}
and say it is a cubic level set of A = (µ̃A, νA).

Theorem 4.8. For a cubic set A = (µ̃A, νA) in X, the following are equiv-
alent:

(i) A = (µ̃A, νA) is a cubic implicative ideal of X.
(ii) Every nonempty cubic level set of A = (µ̃A, νA) is an implicative

ideal of X.

Proof. Assume that A = (µ̃A, νA) is a cubic implicative ideal of X. Let
x, y ∈ X, r ∈ [0, 1] and [s, t] ∈ D[0, 1]. If x ∈ U(A; [s, t], r), then µ̃A(0) ≥
µ̃A(x) ≥ [s, t] and νA(0) ≤ νA(x) ≤ r. Thus, 0 ∈ U(A; [s, t], r). Let
x, y, z ∈ X be such that (x∗(y∗x))∗z ∈ U(A; [s, t], r) and z ∈ U(A; [s, t], r).
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Then µ̃A((x ∗ (y ∗ x)) ∗ z) ≥ [s, t], νA((x ∗ (y ∗ x)) ∗ z) ≤ r, µ̃A(z) ≥ [s, t],
and νA(z) ≤ r. It follows from (T5) that µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗
z), µ̃A(z)} ≥ rmin{[s, t], [s, t]} = [s, t] and νA(x) ≤ max{µA((x ∗ (y ∗ x)) ∗
z), µA(z)} ≤ {r, r} = r so that x ∈ U(A; [s, t], r). Hence, U(A; [s, t], r) is a
cubic implicative ideal of X.

Conversely, suppose that (ii) is valid, that is, U(A; [s, t], r) is non-empty
and is an implicative ideal of X for all r ∈ [0, 1] and [s, t] ∈ D[0, 1]. Assume
that µ̃A(0) < µ̃A(a), that is, [µ̃−A(0), µ̃+

A(0)] < [µ̃−A(a), µ̃+
A(a)], or νA(0) >

νA(b) for some a, b ∈ X. If we take sa = 1
2 (µ̃−A(0) + µ̃−A(a)), ta = 1

2 (µ̃+
A(0) +

µ̃+
A(a)), and rb = 1

2 (νA(0)+νA(b)), then µ̃A(0) = [µ̃−A(0), µ̃+
A(0)] < [sa, ta] <

[µ̃−A(a), µ̃+
A(a)] = µ̃A(a), or νA(0) > rb > νA(b). Hence, 0 /∈ U(A; [s, t], r).

This is a contradiction. So µ̃A(0) ≥ µ̃A(x) and νA(0) ≤ νA(x) for all x ∈ X.
Now, suppose that there exist a, b, c ∈ X such that µ̃A(a) < rmin{µ̃A((a∗

(b ∗ a)) ∗ c), µ̃A(c)} and νA(a) > max{νA((a ∗ (b ∗ a)) ∗ c), νA(c)}. Let
µ̃A(a) = [a−, a+], µ̃A((a∗ (b∗a))∗ c) = [((a∗ (b∗a))∗ c)−, ((a∗ (b∗a))∗ c)+]
and µ̃A(c) = [c−, c+]. Take

s0 =
1

2
[a− + min{((a ∗ (b ∗ a)) ∗ c)−, c−}],

t0 = 1
2 [a+ + min{((a ∗ (b ∗ a)) ∗ c)+, c+}], and r0 = 1

2 [νA(a) + max{νA((a ∗
(b ∗ a)) ∗ c), νA(c)}]. Then a− < s0 < min{((a ∗ (b ∗ a)) ∗ c)−, c−} and
a+ < t0 < min{((a ∗ (b ∗ a)) ∗ c)+, c+}, which implies that

µ̃A(a) = [a−, a+] < [s0, t0]

< [min{((a ∗ (b ∗ a)) ∗ c)−, c−},min{((a ∗ (b ∗ a)) ∗ c)+, c+}]
= rmin{µ̃A((a ∗ (b ∗ a)) ∗ c), µ̃A(c)}

and νA(a) > r0 > max{νA((a ∗ (b ∗ a)) ∗ c), νA(c)}. Thus, (a ∗ (b ∗ a)) ∗ c ∈
U(A; [s0, t0], r0) and c ∈ U(A; [s0, t0], r0), but a /∈ U(A; [s0, t0], r0). This
is a contradiction. Therefore, µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)}
and νA(x) ≤ max{µA((x ∗ (y ∗ x)) ∗ z), µA(z)} for all x, y, z ∈ X. Hence,
A = (µ̃A, νA) is a cubic implicative ideal of X. �

Theorem 4.9. If A = (µ̃A, νA) is a cubic implicative ideal of X, then the
set

IA = {x ∈ X|µ̃A(x) = µ̃A(0), νA(x) = νA(0)}
is an implicative ideal of X.

Proof. Obviously, 0 ∈ I. Let x, y, z ∈ X such that (x ∗ (y ∗x)) ∗ z ∈ IA and
z ∈ IA. Then µ̃A((x∗(y∗x))∗z) = µ̃A(0) = µ̃A(z) and νA((x∗(y∗x))∗z) =
νA(0) = νA(z), and so µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)} = µ̃A(0)
and νA(x) ≤ max{νA((x∗ (y ∗x))∗z), νA(z)} = νA(0). It follows from (T1)
and (T2) that µ̃A(x) = µ̃A(0) and νA(x) = νA(0) so that x ∈ I. Therefore,
IA is an implicative ideal of X. �
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Theorem 4.10. Suppose that A = (µ̃A, νA) is a cubic ideal of X. Then
the following are equivalent:

(i) A is a cubic implicative ideal of X.
(ii) µ̃A(x) ≥ µ̃A(x∗ (y ∗x)) and νA(x) ≤ νA(x∗ (y ∗x)) for all x, y ∈ X.
(iii) µ̃A(x) = µ̃A(x∗ (y ∗x)) and νA(x) = νA(x∗ (y ∗x)) for all x, y ∈ X.

Proof. (i) ⇒ (ii). Let A be a cubic implicative ideal of X. Then by (T5),
we get

µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ 0), µ̃A(0)}
= rmin{µ̃A(x ∗ (y ∗ x)), µ̃A(0)}
= µ̃A(x ∗ (y ∗ x))

and νA(x) ≤ max{νA((x∗(y∗x))∗0), νA(0)} = max{νA(x∗(y∗x)), νA(0)} =
νA(x ∗ (y ∗ x)). Hence, condition (ii) holds.
(ii) ⇒ (iii). Observe that in X, x ∗ (y ∗ x) ≤ x. Applying Lemma 3.3 we
have µ̃A(x) ≤ µ̃A(x ∗ (y ∗ x)) and νA(x) ≥ µA(x ∗ (y ∗ x)). It follows from
(ii) that µ̃A(x) = µ̃A(x ∗ (y ∗ x)) and νA(x) = νA(x ∗ (y ∗ x)). Hence the
condition (iii) holds.
(iii) ⇒ (i). Suppose the condition (iii) holds. Since A is a cubic ideal, by
(T3) and (T4), we get µ̃A(x∗(y∗x)) ≥ rmin{µ̃A((x∗(y∗x))∗z), µ̃A(z)} and
νA(x∗(y∗x)) ≤ max{νA((x∗(y∗x))∗z), νA(z)}. Combining (iii) we obtain,
µ̃A(x) ≥ rmin{µ̃A((x∗(y∗x))∗z), µ̃A(z)} and νA(x) ≤ max{νA((x∗(y∗x))∗
z), νA(z)}. Thus, µ̃A, νA satisfies (T3) and (T4), respectively. Obviously,
µ̃A satisfies (Tl) and νA satisfies (T2). Therefore, A is a cubic implicative
ideal of X. Hence, condition (i) holds. The proof is complete. �

Theorem 4.11. If P is an implicative ideal of X, then there is a cubic
implicative ideal A = (µ̃A, νA) of X such that U(A; [s, t], r) = P for any
r ∈ [0, 1] and [s, t] ∈ D[0, 1].

Proof. Let A = (µ̃A, νA) be a cubic set in X defined by

µ̃A(x) =

{
[s, t], if x ∈ P ;
[0, 0], otherwise;

and νA(x) =

{
0, if x ∈ P ;
r, otherwise.

Now we aim to verify that A is a cubic implicative ideal of X. If (x ∗ (y ∗
x)) ∗ z ∈ P and z ∈ P , then x ∈ P by (I3); hence, µ̃A((x ∗ (y ∗ x)) ∗ z) =
µ̃A(z) = µ̃A(x) = [s, t] and νA((x ∗ (y ∗x)) ∗ z) = νA(z) = νA(x) = r and so
µ̃A(x) = rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)} and νA(x) = max{νA((x ∗ (y ∗
x)) ∗ z), νA(z)}. If at least one of (x ∗ (y ∗ x)) ∗ z and z is not in P , then at
least one of µ̃A((x ∗ (y ∗ x)) ∗ z) and µ̃A(z) is [0, 0], and also at most one of
νA((x ∗ (y ∗x)) ∗ z) and µA(z) is r. Hence, µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗x)) ∗
z), µ̃A(z)} and νA(x) ≤ max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)}. Summarizing the
above results, we know that µ̃A(x) ≥ rmin{µ̃A((x∗ (y ∗x))∗z), µ̃A(z)} and
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νA(x) ≤ max{νA((x ∗ (y ∗ x)) ∗ z), νA(z)} for all x, y, z ∈ X. Since 0 ∈ P ,
µ̃A(0) = [s, t] ≥ µ̃A(x) and νA(0) = r ≤ νA(x) for all x ∈ X. Therefore, A
is a cubic implicative ideal of X. Obviously, U(A; [s, t], r) = P . The proof
is complete. �

Finally, we give an equivalent condition for which a cubic subalgebra of
X is a cubic implicative ideal of X.

Theorem 4.12. A cubic subalgebra A = (µ̃A, νA) of X is a cubic implica-
tive ideal of X if and only if it satisfies for all x, y, z, u ∈ X,

(T7) (x∗(y∗x))∗z ≤ u implies µ̃A(x) ≥ rmin{µ̃A(z), µ̃A(u)} and νA(x) ≤
max{νA(z), νA(u)}.

Proof. Assume that A = (µ̃A, νA) is a cubic implicative ideal of X and let
x, y, z, u ∈ X be such that (x ∗ (y ∗x)) ∗ z ≤ u. Since A is also a fuzzy ideal
of X by Theorem 4.3, it follows from Proposition 3.5 that µ̃A(x ∗ (y ∗x)) ≥
rmin{µ̃A(z), µ̃A(u)} and νA(x ∗ (y ∗ x)) ≤ max{νA(z), νA(u)}. Making
use of the Theorem 4.10(iii) we obtain µ̃A(x) ≥ rmin{µ̃A(z), µ̃A(u)} and
νA(x) ≤ max{νA(z), νA(u)} namely, A = (µ̃A, νA) satisfies (T7).

Conversely, suppose that A satisfies (T7). Obviously A satisfies (T1)
and (T2). Since, (x ∗ (y ∗ x)) ∗ ((x ∗ (y ∗ x)) ∗ z) ≤ z, it follows from (T7)
that µ̃A(x) ≥ rmin{µ̃A((x ∗ (y ∗ x)) ∗ z), µ̃A(z)} and νA(x) ≤ max{νA((x ∗
(y ∗ x)) ∗ z), νA(z)} which shows that A satisfies (T5) and (T6) and so A is
a cubic implicative idea of X. The proof is complete. �

5. Images and Preimages of Cubic Implicative Ideals

In this section, homomorphisms of cubic implicative ideals are defined
and some results are studied.

Definition 5.1. Let f be a mapping from a set X into a set Y . Let
B = (µ̃B , νB) be a cubic set in Y . Then the inverse image of B is defined
as f−1(B) = (f−1(µ̃B), f−1(νB)) of B, where f−1(µ̃B)(x) = µ̃B(f(x)) and
f−1(νB)(x) = νB(f(x)).

Theorem 5.2. Let f : X → Y be a homomorphism of BCK-algebras. If
B = (µ̃B , νB) is a cubic implicative ideal of Y , then the preimage f−1(B) =
(f−1(µ̃B), f−1(νB)) of B under f is a cubic implicative ideal of X.

Proof. Assume that B = (µ̃B , νB) is a cubic implicative ideal of Y . For all
x ∈ X, f−1(µ̃B)(x) = µ̃B(f(x)) ≤ µ̃B(0) = µ̃B(f(0)) = f−1(µ̃B)(0) and
f−1(νB)(x) = νB(f(x)) ≥ νB(0) = νB(f(0)) = f−1(νB)(0).
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Let x, y, z ∈ X. Then

f−1(µ̃B)(x) = µ̃B(f(x))

≥ rmin{µ̃B((f(x) ∗ (f(y) ∗ f(x))) ∗ f(z)), µ̃B(f(z))}
= rmin{µ̃B(f((x ∗ (y ∗ x)) ∗ z), µ̃B(f(z))}
= rmin{f−1(µ̃B)((x ∗ (y ∗ x)) ∗ z), f−1(µ̃B)(z)}

and

f−1(νB)(x) = νB(f(x))

≤ max{νB((f(x) ∗ (f(y) ∗ f(x))) ∗ f(z)), νB(f(z))}
= max{νB(f((x ∗ (y ∗ x)) ∗ z), νB(f(z))}
= max{f−1(νB)((x ∗ (y ∗ x)) ∗ z), f−1(νB)(z)}.

Hence, f−1(B) = (f−1(µ̃B), f−1 (νB)) is a cubic implicative ideal of X. �

Definition 5.3. A cubic set A = (µ̃A, νA) of X has rsup-property and
infimum property if for any T of X there exist t0 ∈ T such that µ̃A(t0) =
rsupt0∈T µ̃A(t) and νA(t0) = inf

t0∈T
νA(t), respectively.

Definition 5.4. Let f be a mapping from the set X to the set Y . If
A = (µ̃A, νA) is cubic set in X, then the cubic subset B = (µ̃B , νB) of Y is
defined as

f(µ̃A)(y) = µ̃B(y) =

{
rsupx∈f−1(y)µ̃A(x), if f−1(y) 6= ø;
[0, 0], otherwise;

and

f(νA)(y) = νB(y) =

{
inf

x∈f−1(y)
νA(x), if f−1(y) 6= ø;

1, otherwise;
is said to be the images of A = (µ̃A, νA) under f .

Theorem 5.5. Let f : X → Y be a homomorphism of BCK-algebras. If
A = (µ̃A, νA) is a cubic implicative ideal of X, then the image B = (µ̃B , νB)
of A under f is a cubic implicative ideal of Y .

Proof. Let A = (µ̃A, νA) be a cubic implicative ideal of X with rsup-
property and infimum property and B = (µ̃B , νB) be the images of A
under f . Since A is a cubic implicative ideal it must be a cubic ideal by
Theorem 4.3. Therefore, we have µ̃A(0) ≥ µ̃A(x) and νA(0) ≤ νA(x) for all
x ∈ X.

Note that 0 ∈ f−l(0′), where 0 and 0′ are the zero elements of X and
Y , respectively. Thus, µ̃B(0′) = rsupt∈f−1(0′)µ̃A(t) = µ̃A(0) ≥ µ̃A(x) and
νB(0′) = inf

t∈f−1(0′)
νA(t) = νA(0) ≤ νA(x) for all x ∈ X, which implies
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that µ̃B(0′) ≥ rsupt∈f−1(x′)µ̃A(t) = µ̃B(x′) and νB(0′) ≤ inf
t∈f−1(x′)

νA(t) =

νB(x′) for any x′ ∈ Y .
For any x′, y′, z′ ∈ Y , let x0 ∈ f−1(x′), y0 ∈ f−1(y′) and z0 ∈ f−1(z′)

be such that

µ̃A(x0) = rsupt∈f−1(x′)µ̃A(t),

νA(x0) = inf
t∈f−1(x′)

νA(t),

µ̃A(z0) = rsupt∈f−1(z′)µ̃A(t),

νA(z0) = inf
t∈f−1(z′)

νA(t),

µ̃A((x0 ∗ (y0 ∗ x0)) ∗ z0) = µ̃B [f((x0 ∗ (y0 ∗ x0)) ∗ z0)]

= µ̃B((x′ ∗ (y′ ∗ x′)) ∗ z′)
= rsup((x0∗(y0∗x0))∗z0)∈f−1((x′∗(y′∗x′))∗z′)

µ̃A((x0 ∗ (y0 ∗ x0)) ∗ z0)

= rsupt∈f−1((x′∗(y′∗x′))∗z′)µ̃A(t)

and

νA((x0 ∗ (y0 ∗ x0)) ∗ z0) = νB [f((x0 ∗ (y0 ∗ x0)) ∗ z0)] = νB((x′ ∗ (y′ ∗ x′)) ∗ z′)
= inf

((x0∗(y0∗x0))∗z0)∈f−1((x′∗(y′∗x′))∗z′)
νA((x0 ∗ (y0 ∗ x0)) ∗ z0)

= inf
t∈f−1((x′∗(y′∗x′))∗z′)

νA(t).

Then

µ̃B(x′) = rsupt∈f−1(x′)µ̃A(t) = µ̃A(x0)

≥ rmin{µ̃A((x0 ∗ (y0 ∗ x0)) ∗ z0), µ̃A(z0)}
= rmin{rsupt∈f−1((x′∗(y′∗x′))∗z′)µ̃A(t), rsupt∈f−1(z′)µ̃A(t)}
= rmin{µ̃B((x′ ∗ (y′ ∗ x′)) ∗ z′), µ̃B(z′)}

and

νB(x′) = inf
t∈f−1(x′)

νA(t) = νA(x0)

≤ max{νA((x0 ∗ (y0 ∗ x0)) ∗ z0), νA(z0)}

= max
{

inf
t∈f−1((x′∗(y′∗x′))∗z′)

νA(t), inf
t∈f−1(z′)

νA(t)
}

= max{νB((x′ ∗ (y′ ∗ x′)) ∗ z′), νB(z′)}.

Hence, B = (µ̃B , νB) is a cubic implicative ideal of Y . �
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6. Product of Cubic Implicative Ideals of BCK-Algebras

In this section, product of cubic BCK-algebras are defined and some
results are studied.

Definition 6.1. Let A = (µ̃A, νA) and B = (µ̃B , νB) be two cubic sets
of X and Y , respectively. The cartesian product A × B = (X × Y, µ̃A ×
µ̃B , νA × νB) is defined by (µ̃A × µ̃B)(x, y) = rmin{µ̃A(x), µ̃B(y)} and
(νA × νB)(x, y) = max{νA(x), νB(y)}, where µ̃A × µ̃B : X × Y → D[0, 1]
and νA × νB : X × Y → [0, 1] for all (x, y) ∈ X × Y .

Remark 6.2. Let X and Y be BCK-algebras. We define ∗ on X × Y by
(x, y) ∗ (z, p) = (x ∗ z, y ∗ p) for every (x, y) and (z, p) ∈ X × Y . Then
clearly, X × Y is a BCK-algebra.

Definition 6.3. A cubic subset A × B = (X × Y, µ̃A × µ̃B , νA × νB) is
called a cubic implicative ideal if

(T7) (µ̃A×µ̃B)(0, 0) ≥ (µ̃A×µ̃B)(x, y), (νA×νB)(0, 0) ≤ (νA×νB)(x, y)
for all (x, y) ∈ X × Y ;

(T8) (µ̃A× µ̃B)(x1, y1) ≥ rmin{(µ̃A× µ̃B)((x1, y1)∗((x2, y2)∗(x1, y1)))∗
(x3, y3)), (µ̃A × µ̃B)(x3, y3)}; and

(T9) (νA × νB)(x1, y1) ≤ max{(νA × νB)((x1, y1) ∗ ((x2, y2) ∗ (x1, y1))) ∗
(x3, y3)), (νA× νB)(x3, y3)}, for all (x1, y1), (x2, y2), (x3, y3) ∈ X ×
Y .

Theorem 6.4. Let A = (µ̃A, νA) and B = (µ̃B , νB) be cubic implicative
ideals of X and Y , respectively. Then A×B is a cubic implicative ideal of
X × Y .

Proof. For any (x, y) ∈ X × Y , we have

(µ̃A × µ̃B)(0, 0) = rmin{µ̃A(0), µ̃B(0)}
≥ rmin{µ̃A(x), µ̃B(y)} = (µ̃A × µ̃B)(x, y)

and

(νA × νB)(0, 0) = max{νA(0), νB(0)}
≤ max{νA(x), νB(y)}
= (νA × νB)(x, y).
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Let (x1, y1), (x2, y2) and (x3, y3) ∈ X × Y . Then

(µ̃A × µ̃B)(x1, y1) = rmin{µ̃A(x1), µ̃B(y1)}
≥ rmin{rmin{µ̃A((x1 ∗ (x2 ∗ x1)) ∗ x3),

µ̃A(x3)}, rmin{µ̃B((y1 ∗ (y2 ∗ y1)) ∗ y3), µ̃B(y3)}}
= rmin{rmin{µ̃A((x1 ∗ (x2 ∗ x1)) ∗ x3),

µ̃B((y1 ∗ (y2 ∗ y1)) ∗ y3), rmin{µ̃A(x3), µ̃B(y3)}}
= rmin{(µ̃A × µ̃B)(((x1 ∗ (x2 ∗ x1)) ∗ x3),

((y1 ∗ (y2 ∗ y1)) ∗ y3)), (µ̃A × µ̃B)(x3, y3)}
= rmin{(µ̃A × µ̃B)(((x1 ∗ (x2 ∗ x1)),

((y1 ∗ (y2 ∗ y1)))) ∗ (x3, y3)), (µ̃A × µ̃B)(x3, y3)}
= rmin{(µ̃A × µ̃B)(((x1, y1) ∗ ((x2 ∗ x1),

(y2 ∗ y1))) ∗ (x3, y3)), (µ̃A × µ̃B)(x3, y3)}
= rmin{(µ̃A × µ̃B)(((x1, y1) ∗ ((x2, y2), (x1, y1))) ∗ (x3, y3)),

(µ̃A × µ̃B)(x3, y3)}

and

(νA × νB)(x1, y1) = max{νA(x1), νB(y1)}
≤ max{max{νA((x1 ∗ (x2 ∗ x1)) ∗ x3), νA(x3)},

max{νB((y1 ∗ (y2 ∗ y1)) ∗ y3), νB(y3)}}
= max{max{νA((x1 ∗ (x2 ∗ x1)) ∗ x3), νB((y1 ∗ (y2 ∗ y1)) ∗ y3),

max{νA(x3), νB(y3)}}
= max{(νA × νB)(((x1 ∗ (x2 ∗ x1)) ∗ x3), ((y1 ∗ (y2 ∗ y1)) ∗ y3)),

(νA × νB)(x3, y3)}
= max{(νA × νB)(((x1, y1) ∗ ((x2, y2), (x1, y1))) ∗ (x3, y3)),

(νA × νB)(x3, y3)}

Hence, A×B is a cubic implicative ideal of X × Y . �

Definition 6.5. Let A = (µ̃A, νA) and B = (µ̃B , νB) be cubic subset of X
and Y respectively. For [s1, s2] ∈ D[0, 1] and t ∈ [0, 1], the set U(µ̃A× µ̃B :
[s1, s2]) = {(x, y) ∈ X×Y |(µ̃A×µ̃B)(x, y) ≥ [s1, s2]} is called upper [s1, s2]-
level of A × B and L(νA × νB : t) = {(x, y) ∈ X × Y |(νA × νB)(x, y) ≤ t}
is called lower t-level of A×B.

Theorem 6.6. For any two cubic sets A = (µ̃A, νA) and B = (µ̃B , νB),
A × B is a cubic implicative ideals of X × Y if and only if the non-empty
upper [s1, s2]-level cut U(µ̃A× µ̃B : [s1, s2]) and the non-empty lower t-level
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cut L(νA × νB : t) are implicative ideals of X × Y for any [s1, s2] ∈ D[0, 1]
and t ∈ [0, 1].

Proof. The proof is straightforward. �

7. Conclusions and Future Work

In this paper, cubic implicative ideals of BCK-algebras are introduced
and their related properties are discussed in details. It is our hope that
this work will provide a foundation for further study of the theory of
BCK/BCI-algebras. In our future study of fuzzy structure of BCK/BCI-
algebras, the following topics should be considered:

(i) to find cubic positive implicative ideals in BCK/BCI-algebras;
(ii) to find cubic commutative ideals in BCK/BCI-algebras;

(iii) to find the relationship between cubic implicative ideals, positive
implicative ideals and commutative ideals in BCK/BCI-algebras.
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