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Abstract. This paper takes an interesting approach to conceptual-

ize some power sum inequalities and uses them to develop limits on
possible solutions to some Diophantine equations. In this work, we

introduce how to apply center of mass of a k-mass-system to discuss a

class of Diophantine equations (with fixed positive coefficients) and
a class of equations related to Fermat’s Last Theorem. By a con-

structive method, we find a lower bound for all positive integers that

are not the solution for these type of equations. Also, we find an
upper bound for any possible integral solution for these type of equa-

tions. We write an alternative expression of Fermat’s Last Theorem

for positive integers in terms of the product of the centers of masses
of the systems of two fixed points (positive integers) with different

masses. Finally, by assuming the validity of Beal’s conjecture, we
find an upper bound for any common divisor of x, y, and z in the

expression axm +byn = zr in terms of a, b,m(or n), r, and the center

of mass of the k-mass-system of x and y.

1. Introduction

In physics, we usually apply mathematics to solve or express a physical
phenomenon by finding a mathematical model (expression). In this work,
our goal is to show the capability of physics to discuss (approximate) a
mathematical problem (expression) via center of mass of a k-mass-system
(Definition 2.1). For more discussion and a general overview of this matter,
see [5]. Also, the author assumes that the reader is familiar with the concept
of center of mass; and the problems in number theory that we use in this
article. For a detailed study of center of mass, the reader is referred to [2,
Chapter 5 p. 210] (for a general theory) and [7, p. 426] (for a special case
that we use in this paper); and for the related problems in number theory,
see [1] (on Diophantine equations), [3], and [6] (for a general overview in
number theory).
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The main goal of this paper is to study some properties of the equa-
tion axm + byn = zr. Besides many numerical examples (Section 3), the
main results of this paper are Theorem 2.6 and Theorem 2.9 (whose proofs
are mainly based on Proposition 2.2) which discusses some possible and
impossible cases for a class of Diophantine equations and a class of equa-
tions related to Fermat’s Last Theorem, respectively. Also, as a corollary
to Theorem 2.9 (Corollary 2.11), we find an upper bound for any common
factor of the bases of the equation axm + byn = zr (see below) with respect
to other parameters for Beal’s Conjecture by assuming its validity (see also
[4]).

We now state Beal’s Conjecture as follows.

Conjecture 1.1 (Beal’s Conjecture). If xm +yn = zr where x, y, z (bases
of the expression), m, n, and r are all positive integers; and m, n, and r
are greater than two, then x, y, and z have a common factor (greater than
one).

• Clearly Fermat’s Last Theorem is a special case of xm + yn = zr (the
above expression), so if we could find some (easy) way to transform this
into Fermat’s Last Theorem, then we can easily discuss it via Wiles’s re-
sult on Fermat’s Last Theorem, for which there is no integral solution [8]
(see for example, Proposition 2.10). If we do not require that all the ex-
ponents be greater than two, then there are infinitely many solutions such
as 11 + 23 = 32, 25 + 72 = 34, and all Pythagorean triples. Also, there are
infinitely many solutions for which x, y, and z are not relatively prime such
as 2n + 2n = 2n+1.

•We conclude this section with two simple examples from number theory
regarding the center-of-mass method and discuss more general cases on k-
mass-systems (Definition 2.1) with some more examples in the next two
sections. Note that, in this work (unless otherwise indicated), each point
(number) on the x-axis is assumed to have a mass besides its distance from
the origin.

Example 1.2. What is the sum S = 1 + 2 + · · ·+ n? Let us think of each
number as representing the location of a physical point where we place a
mass of size one unit of mass. Suppose xi = i (on the x-axis) is the distance
of the ith point (number) from the origin for each i = 1, 2, . . . , n and also
assume each xi has mass mi = 1 unit of mass. Hence, by the definition
of center of mass, S =

∑n
1 mixi = c

∑n
1 mi implies S = nc, where c =

(n+ 1)/2 is the center of mass of the n points on x-axis, which is precisely
in the middle of the interval [1, n] since all the points in the mass system
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have equal masses and distributed uniformly; and mi = 1 unit of mass for
each i = 1, 2, . . . , n. More generally, we can apply this method to find the
sum of the terms of any arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d
with a ≥ 1, d ≥ 1, and n ≥ 2 (an integer), by assuming each term a + kd
(0 ≤ k ≤ n − 1) of the sequence has one unit of mass. That is, S = nc
where c = [a + (a + (n− 1)d)]/2.

Example 1.3. Let x1, x2, . . . , xn be a strictly increasing sequence of n ≥ 2
positive integers. What is S =

∑n
1 xi? Again, we assume that each number

xi represents the location of a physical point with mass mi = 1 for each
i = 1, 2, . . . , n. Now, we apply the above center of mass method and get
S = nc, where c is the center of mass of the system, which is either between
x1 and (x1 + xn)/2 (or (x1 + xn)/2 and xn) whenever the number of xi’s
in the first [resp. second] half part of the interval [x1, xn] are more than the
number of xi’s in the second [resp. first] half part of the interval [x1, xn],
respectively (see also the following remark).

Remark 1.4. Note that in a mass system of points, the center of mass
or equilibrium point of the system is closer to the heavier (more massive)
part of the system. Hence, any method or means that helps us to get a
closer value (approximation) of the center of mass yields a sharper (better)
approximation of the unknown entity in the related mathematical expression
of the system.

2. Arithmetical Inequalities via Center of Mass

We begin this section with the definition of a k-mass-system of n ≥ 2
distinct positive integers with n fixed coefficients. We write the sum of the
kth power of the n points of a k-mass-system in terms of the product of
the centers of masses of the t-mass-systems with 1 ≤ t ≤ k (Proposition
2.2) and apply it to write Fermat’s Last Theorem in terms of the product
of the centers of masses (Corollary 2.3). The proof of all results in this
section are mainly based on Proposition 2.2. We discuss the lower and
upper bounds of possible and impossible cases (solutions) for a class of
Diophantine equations with fixed positive coefficients (Theorem 2.6 and
Corollary 2.7) and a class of equations related to Fermat’s Last Theorem
(Theorem 2.9). Finally, by assuming the validity of Beal’s conjecture, we
find an upper bound for any common divisor of x, y, and z in the expression
axm+byn = zr (Corollary 2.11). Also, in the next section, we provide some
number-theoretic examples as an application to the results of this section.

Definition 2.1. Let n ≥ 2, k ≥ 1, and a1, a2, . . . , an be positive fixed
integers. A strictly increasing sequence x1 < x2 < · · · < xn of n positive
integers is called a k-mass-system with coefficients a1, a2, . . . , an, denoted by
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M(k; a1, a2, . . . , an), if we assume each xi represents the location of a fixed

physical point on x-axis with each point xi having mi = aix
k−1
i unit(s)

of mass for each i = 1, 2, . . . , n. Note that for the sake of convenience,
M(k; a1, a2, . . . , an) will simply be denoted by M(k, n) whenever a1 = a2 =
· · · = an = 1.

We now show that the sum of the kth power of the points of a k-mass-
system can be written in terms of the product of the centers of masses of
the t-mass-systems with 1 ≤ t ≤ k. Note that throughout, we will be using
the notation Sk =

∑n
i=1 aix

k
i , S0 = a1 +a2 + · · ·+an, and ct is the center of

mass of the t-mass-system of x1, x2, . . . , xn with coefficients a1, a2, . . . , an
for each fixed t = 1, 2, . . . , k.

Proposition 2.2. For fixed positive integers n ≥ 2 and k ≥ 1, let

M(k; a1, a2, . . . , an)

be a k-mass-system of the points x1, x2, . . . , xn with fixed positive coeffi-
cients a1, a2, . . . , an. Let Sk =

∑n
i=1 aix

k
i and S0 = a1+a2+ · · ·+an. Then

Sk = S0c1c2 · · · ck, where ct is the center of mass of the t-mass-system of
x1, x2, . . . , xn with coefficients a1, a2, . . . , an for each fixed t = 1, 2, . . . , k.

Proof. From the definition of the center of mass of n distinct points, it

follows that
∑n

i=1 mixi∑n
i=1 mi

= ck is the center of mass of n points (xi’s on

x-axis) with mi unit(s) of mass for each i = 1, 2, . . . , n. Hence, Sk =∑n
i=1 mixi = ckSk−1, where ck is the center of mass of the k-mass-system

M(k; a1, a2, . . . , an) of the points x1 < x2 < · · · < xn. Also, note that
S0 = a1 + a2 + · · · + an by assumption. Now, from the above, it is clear
that

Sk

Sk−1

Sk−1

Sk−2
· · · S1

S0
= ckck−1 · · · c1.

Thus, Sk = S0c1c2 · · · ck. �

The following corollary provides an alternative expression of Fermat’s
Last Theorem (for positive integers) in terms of the product of the centers
of masses.

Corollary 2.3. Suppose x < y is a k-mass system of 2 positive fixed in-
tegers (points) on x-axis with coefficients a1 = a2 = 1. Then for any fixed
integer k ≥ 3, the statement “xk + yk = Sk = 2c1c2 · · · ck cannot be kth
power of a positive integer” is equivalent to Fermat’s Last Theorem for
positive integers.
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Remark 2.4. In the above corollary, suppose Sk = zk for some positive
integer z and positive integer k ≥ 3. Thus, if the product of ci’s (the center
of masses) is an integer, then z cannot be an odd integer. Furthermore,
if c1c2 · · · ck is a fraction with a denominator different from 1 and 2, then
the equality Sk = zk is never valid for any integer z. Actually, c1c2 · · · ck
must always be an integer or a fraction (of course, in reduced form) with
denominator 2 since Sk is always a positive integer. But since we know
there is no solution to Fermat’s Last Theorem [8], 2c1c2 · · · ck is never the
kth power of a positive integer.

We will use the following lemma in the proofs of Theorems 2.6 and 2.9,
respectively.

Lemma 2.5. For fixed positive integers n ≥ 2 and k ≥ 1, let

M(k; a1, a2, . . . , an)

be a k-mass-system of the positive integers x1 < x2 < · · · < xn with fixed
positive coefficients a1, a2, . . . , an. Let St =

∑n
i=1 aix

t
i and S0 = a1 + a2 +

· · · + an, where 1 ≤ t ≤ k. Suppose ct = St/St−1 for each t = 1, 2, . . . , k.
Then c1 ≤ c2 ≤ · · · ≤ ck.

Proof. We just show that ck ≥ ck−1 and leave the other parts to the reader.

That is, Sk

Sk−1
≥ Sk−1

Sk−2
. Thus for the proof it suffices to show that SkSk−2 ≥

Sk−1Sk−1 or equivalently 2SkSk−2 ≥ 2Sk−1Sk−1. We note that for all i and
j, x2

i + x2
j ≥ 2xixj . Clearly,

2SkSk−2 = SkSk−2 + Sk−2Sk =
∑
i,j

[(aix
k
i )(ajx

k−2
j )] +

∑
i,j

[(aix
k−2
i )(ajx

k
j )]

=
∑
i,j

[(aix
k−2
i )(ajx

k−2
j )x2

i ]‘ +
∑
i,j

[(aix
k−2
i )(ajx

k−2
j )x2

j ]

=
∑
i,j

[(aix
k−2
i )(ajx

k−2
j )(x2

i + x2
j )]

≥ 2
∑
i,j

[(aix
k−2
i )(ajx

k−2
j )(xixj)]

= 2
∑
i,j

[(aix
k−1
i )(ajx

k−1
j )] = 2Sk−1Sk−1.

�

We now consider a class of Diophantine equations via a k-mass-system
to show some possible and impossible cases regarding the lower and upper
bounds of solutions.

Theorem 2.6. Let n ≥ 2, k ≥ 2, a1, a2, . . . , an, and x1 < x2 · · · < xn

be any fixed positive integers. Let S0 = a1 + a2 + · · · + an. Then the
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Diophantine equation a1x
k
1 + a2x

k
2 + · · ·+ anx

k
n = zk is never valid for all

integers z ≥ S
1/k
0 xn. Furthermore, if there exists any integral solution z for

this Diophantine equation, it must satisfy the inequality z ≤ S
1/k
0 ck, where

ck = Sk

Sk−1
.

Proof. From Proposition 2.2, we have Sk = S0c1c2 · · · ck = zk. Let c =
max{c1, c2, . . . , ck} which by Lemma 2.5, c = ck. Then Sk = a1x

k
1 +a2x

k
2 +

· · · + anx
k
n = zk = S0c1c2 · · · ck ≤ S0c

k. Hence, z ≤ S
1/k
0 c ≤ S

1/k
0 xn since

ci the center of mass of each mass system is always less than xn for any
1 ≤ i ≤ k. �

We now apply the above theorem to a class of equations related to
Fermat’s Last Theorem regarding the lower and upper bounds of (non)-
solutions.

Corollary 2.7. For any given fixed positive integers x < y and k ≥ 2, the
xk + yk = zk is impossible for all positive integers z ≥ 21/ky. Moreover, if
there is an integral solution z for xk+yk = zk, it must satisfy y ≤ z ≤ 21/kc,
where c = Sk

Sk−1
.

Remark 2.8. In the above corollary, it is clear that computing 21/ky has
an advantage in finding the kth root of xk + yk from a computational point
of view (especially for a large integer k).

We now turn our attention to the equation axm + byn = zr (with some
restrictions on its parameters) and discuss it via a k-mass-system to show
some possible and impossible cases regarding the lower and upper bounds
of solutions.

Theorem 2.9. For any fixed positive integers x < y and a, b,m, n, r ≥ 1,
we have the following results:

(a) Suppose m > n and t = m− n. Then the expression axm + byn =
zr is impossible for all positive integers z ≥ ((ayt + b)/yt)1/ry.
Moreover, if there is an integral solution z for axm + byn = zr,
it must satisfy z ≤ ((ayt + b)/yt)1/rcm/r, where c = Sm

Sm−1
with

Sm = aytxm + bym and Sm−1 = aytxm−1 + bym−1;
(b) Suppose m < n and t = n−m. Then the expression axm+byn = zr

is impossible for all positive integers z ≥ ((bxt + a)/xt)1/rcn/r,
where c = Sn

Sn−1
with Sn = axn + bxtyn and Sn−1 = axn−1 +

bxtyn−1. Moreover, if there is an integral solution z for axm+byn =
zr, it must satisfy z ≤ ((bxt + a)/xt)1/rcn/r;

(c) Let m = n. Then the expression axm + bym = zr is impossible
for all positive integers z ≥ ((a + b)1/rcm/r, where c = Sm

Sm−1
with
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Sm = axm + bym and Sm−1 = axm−1 + bym−1. Moreover, if there
is an integral solution z for axm + byn = zr, it must satisfy z ≤
(a + b)1/rcm/r;

(d) For m = n, axm + bym = zr has no integral solution whenever

r ≥ (ln(a + b) + m ln c)

ln 2
.

Proof. We just give a proof for Part (a). Suppose m > n and t = m − n.
Let Sm = aytxm+bym, Sm−1 = aytxm−1+bym−1, · · · , S1 = aytx+by, and
S0 = ayt + b. Similar to the proof of Proposition 2.2, Sm = S0c1c2 · · · cm,
where ci is the center of mass of the i-mass-system for each fixed i =
1, 2, . . . ,m. Again, similar to Lemma 2.5, it is not difficult to show that
cm ≥ cm−1 · · · ≥ c1. Now by denoting c = cm = max{c1, c2, . . . , cm}, the
proof is immediate. The proof of (b) is similar to (a) and Part (c) is a
special case of (a) for t = 0. The proof of Part (d) follows from Part (c)
if we assume (a + b)rcm/r < 2 since z = 1 is the only positive integer less
than 2. �

We now discuss a very special case of the equation xm + yn = zr.

Proposition 2.10. Let m ≥ 3 and m > r be positive integers with t =
m − r. If ztxm = um and ztym = wm for some integers u and w, then
xm + ym = zr is never valid for any set of distinct integers x, y, and z.

Proof. Suppose xm + ym = zr is valid for some distinct integers x, y, and
z. Then zm = ztxm + ztym = um + wm which is impossible since there is
no integral solution for Fermat’s Last Theorem by [8]. �

We conclude this section by finding an upper bound for any common
divisor of x, y, and z in the expression axm + byn = zr with respect to
other parameters by applying Theorem 2.9 and assuming the validity of
Beal’s conjecture (see also [4]).

Corollary 2.11. Let m,n, r ≥ 3 and a, b, x, y, and z (x < y) be pos-
itive integers. Suppose Beal’s Conjecture is true and consequently, there
exists a common factor (positive integer p) of the bases (x, y, and z) of the
expression axm + byn = zr. Then we have the following results:

(a) Suppose m > n and t = m−n. Then p ≤ z ≤ ((ayt+b)/yt)1/rcm/r,
where c = Sm

Sm−1
with Sm = aytxm + bym and Sm−1 = aytxm−1 +

bym−1;
(b) Suppose m < n and t = n−m. Then p ≤ z ≤ ((bxt+a)/xt)1/rcn/r,

where c = Sn

Sn−1
with Sn = axn + bxtyn and Sn−1 = axn−1 +

bxtyn−1;
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(c) Let m = n, then p ≤ z ≤ ((a + b)1/rcm/r, where c = Sm

Sm−1
with

Sm = axm + bym and Sm−1 = axm−1 + bym−1.

3. Some Number-theoretic Examples

In this section we apply some of the (main) results of the previous sec-
tion to some numerical cases.

We now provide a simple example for Corollary 2.7.

Example 3.1. Let x = 3, y = 4, and k = 2. Clearly, by the above
corollary, z ≥

√
2y =

√
2 4 > 5 is not an integral solution for x2 + y2 = z2.

Moreover, if there exists an integral solution z for x2 + y2 = z2, z must
satisfy y = 4 < z ≤

√
2c, where c = (25/7) and

√
2(25/7) > 5. Hence, in

this case z = 5 is the only integer between 4 and
√

2(25/7).

In the following example, we illustrate (check) the validity of the results
of Theorem 2.9 for some numerical cases.

Example 3.2. (a) In the expression 33+63 = 35, we have m = n = 3,
t = m − n = 0, r = 5, and 3 = z ≤ 21/5c3/5 = 21/5(5.4)3/5 ≈
3.1596, where

c =
33 + 63

32 + 62
= 5.4.

(b) The expression 73 + 132 = 29 shows that Beal’s conjecture is false
if one of the exponents is allowed to be 2. In this expression, we
have m = 3 > n = 2, t = m − n = 1, r = 9, and 2 = z ≤
((13 + 1)/13)1/9c3/9 = (14/13)1/9(256/31)1/3 ≈ 2.0379, where

c =
73 + 132

72 + 13
= (256/31).

(c) In the expression 274 + 1623 = 97, we have m = 4 > n = 3,
t = m − n = 1, r = 7, and 9 = z ≤ ((162 + 1)/162)1/7c4/7 =
(163/162)1/7(729/7)4/7 ≈ 14.2335, where

c =
274 + 1623

273 + 1622
= (729/7).

Example 3.3. (See [9]). Let a, b (a 6= b), and m be positive integers.
Clearly, the expression

[a(am + bm)]m + [b(am + bm)]m = (am + bm)m+1
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is not a counterexample to Beal’s Conjecture since (am + bm) is a common
factor of the bases in this expression. Now we use this solution to show
an inequality by applying Theorem 2.9. Suppose u = (am + bm). Thus, we
have (au)m + (bu)m = um+1. Hence, by Part (c) of Theorem 2.9, u should
satisfy the inequality um+1 ≤ 2cm, where

c =
(au)m + (bu)m

(au)m−1 + (bu)m−1
.

Remark 3.4. It is noteworthy to mention that the proof of the inequality
in the above example could be quite challenging without applying Theorem
2.9.

Remark 3.5. In the end, the author believes that the center-of-mass method,
merely, or together with a probabilistic approach could be very useful and
efficient for investigation and study of generalized Fermat’s Last Theo-
rem (Beal’s Conjecture) or Diophantine inequalities (approximations), es-
pecially for those people who like to challenge these type of problems via a
computer programming (simulation) or heuristic methods.
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