AN ALTERNATE CAYLEY-DICKSON PRODUCT
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ABSTRACT. Although the Cayley-Dickson algebras are twisted group
algebras, little attention has been paid to the nature of the Cayley-
Dickson twist. One reason is that the twist appears to be highly
chaotic and there are other interesting things about the algebras to
focus attention upon. However, if one uses a doubling product for
the algebras different from yet equivalent to the ones commonly used,
and if one uses a numbering of the basis vectors different from the
standard basis a quite beautiful and highly periodic twist emerges.
This leads easily to a simple closed form equation for the product of
any two basis vectors of a Cayley-Dickson algebra.

1. INTRODUCTION

The purpose of this paper is to give a closed form formula for the product
of any two basis vectors of a Cayley-Dickson algebra.

The complex numbers are constructed by a doubling product on the set
of real numbers:

(a,b)(c,d) = (ac — bd, ad + bc) (1.1)

To produce the quaternions by a doubling product on the complex numbers
requires that one take conjugation into consideration in such a way that,
for real numbers the product reduces to the one above.

There are eight (and only eight) distinct Cayley-Dickson doubling prod-
ucts [4] which accomplish this. For each of the eight, the conjugate of an
ordered pair (a,b) is defined recursively by

(a,b)" = (a”, =b) (1.2)
The eight doubling products are:

Py : (a,b)(c,d) = (ca — b*d,da™ + be)
Py : (a,b)(c,d) = (ca — db*,a*d + cb)
Py : (a,b)(c,d) = (ac — b*d, da* + be)
Ps: (a,b)(c,d) = (ac — db*,a*d + cb)
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P, : (a,b)(c,d) = (ca — bd*,ad + c*b)
P : (a,b)(c,d) = (ca — d*b,da + bc*)
P, : (a,b)(c,d) = (ac — bd*, ad + ¢*b)
P : (a,b)(c,d) = (ac — d*b,da + bc*)

Only two of these eight, P; and P; have been investigated. The eight
algebras resulting from these products are isomorphic [4] and all have the
same elements and the same unit basis vectors eg,e1,€e2,...,€,,.... The
basis vectors will be defined below. The elght products may be arranged
in four transpose pairs Py, P, ,P1, P, ,P2, P, ,P5, PJ. They are trans-
poses in the sense that, given two basis vectors ey, e4, it is the case that
P(ep,eq) = P'(eq,€p). This holds for each of the four product pairs. So
the multiplication table of the basis vectors for a product P is the trans-
pose of the multiplication table of its transpose PT. Given a basis vector
e, and a basis vector e, there is only one r for which it is the case that
either P(ep,eq) = e, or P(ep,e) = —e,. For any p and g the value of r
will be the same for all eight of the products and is denoted by p ¢ (which
happens to also equal ¢ @ p), but whether the product of e, and e4 is epgq
or —epgq Will depend upon which of the eight products is used.

Let W denote the set of non-negative integers. For each of the eight
products there is a corresponding twist function [7, 10, 11] w : W x W —
{—1,1} such that for each p,q € W, P(ep,eq) = w(p, q)epaq-

Historically, researchers have been focused on the properties of the Cayley-
Dickson algebras and not on the nature of the twist w. One reason for this
is that there seemed little rhyme or reason to w. The fact that different re-
searches numbered the basis vectors differently did not help the situation.
Furthermore, for Py and Py’ the function w is particularly inscrutable.
However, in [3] a heuristic Cayley-Dickson tree method was described for
computing w(p, q) for the product Ps.

n [4] the products Py, P, ,P1, P, P2, and P, were derived. Further
investigation has shown that for the product P, (and its corresponding
transpose) there is a simple closed form formula for w. That is the subject
of this paper.

2. BACKGROUND

Each real number x is identified with the infinite sequence z,0,0,...
and an ordered pair of two infinite sequences * = zg,x1,22,x3,... and
Y =Y0,Y1,Y2,Ys3, ... is equated with the shuffled sequence

(J;,y) =Z0,Y0,%1,Y1,L2,Y2;----
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Only real number sequences terminating in a string of zeros are considered,
that is, finite real sequences.
The basis for this space is chosen to be
ep =1,0,0,0,...
e1 =0,1,0,0,0,...
es =0,0,1,0,0,0,...

This basis differs from bases commonly used by other researchers. To dis-
tinguish this basis from others we call it the ‘shuffle basis.” The shuffle basis
vectors satisfy

€y = 1
€eok — (ek, 0)
ear+1 = (0, ex)
The conjugate of a sequence z is * = xg, —x1, —T2, —3,.... Thus,

(x,y)* = (‘T*v _y)'

If p,q < 2% are positive integers, let p @ ¢ denote the ‘bit-wise exclusive
or’ of the binary representations of p and ¢. This is equivalent to the sum
of p and ¢ in Z&'.

The non-negative integers are an abelian group with respect to the op-
eration @ with identity 0.

The twist functions for each of the eight doubling products satify the
following [4].

epeq = wW(P; Q)epaq (2.1)

w(p,0) = (2.2)

w(0,q) = (2.3)

w(p,p) =—1for p>0 (2.4)

w(p,q) = —w(q,p) provided 0 # p # q # 0. (2.5)

3. PROPERTIES OF ws
The following properties of w are peculiar to the product Ps.

If 2V < p < ¢ < 2V 71 then wa(p, q) = 1. (3.1)

If 2V < p < 2VF1 < ¢ then wa(p, q) = (—1)L9/2"]. (3.2)
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FIGURE 1. w for ZI x 7.

Figure 1 shows wa(p, q) for ZI x ZI. The rows and columns of the matrix
are numbered 0 through 127 with gray cells representing w(p,q) = 1 and
white cells representing w(p, ¢) = —1.

4. TRAVERSING THE CAYLEY-DICKSON wy TREE

In order to validate equations (3.1) and (3.2) we will traverse the w-tree
[3] in Figure 2 associated with the doubling product P,. Others have used
such w tree maps to research properties of Cayley-Dickson algebras [8].

In order to find wa(p,q) for non-negative integers p and ¢ it will be
necessary to shuffle their bits. In order not to confuse this process with the
shuffling (z,y) of sequences x and y, the shuffle of integers p and ¢ will be
denoted using square brackets. So, for example, [111,101] = 11,10, 11 and
[11,11101] = [00011,11101] = 01,01,01,10,11. Notice that the shuffled
binary numbers have been rendered as a sequence of binary doublets. Each
doublet, beginning with the leftmost, is an instruction for traversing the
way-tree beginning with the top C node. A 0 is an instruction to move down
a left branch and a 1 is an instruction to move down a right branch of the
tree.
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To find wa(p, q) by this method, traverse the tree using instruction se-
quence [p, ¢]. Terminating at —1 or —D means that w(p,q) = —1. Termi-
nating at any other node means that ws(p,q) = 1. An important property
of wy is that once either 1 or —1 is reached it is unnecessary to continue
traversing the tree and it will always be the case that wa(p,q) = 1 or
wa(p, q) = —1, respectively.

As an example of how one traverses the wo-tree, let us find the basis
vector product ezey. First, 3 = 0011p and 14 = 11105. So 3@ 14 =
1101 = 13. So ezers = wa(3,14)e1s. Now [3,14] = 01,01,11,10. Using
this sequence of doublets to traverse the w-tree gives us T, T, —1,—1. So
ese1q4 = —ey3. One may stop, of course, with the first —1 encountered.

Next, it will be seen how to use the ws-tree in Figure 2 to validate
equations (3.1) and (3.2).

Begin with equation (3.1), suppose 2V < p < ¢ < 2V*1. Then [p,q] =
11,.... The doublets following the first will be either 00,01,10, or 11. The
first doublet 11 moves to node —D. Subsequent doublets of either 00 or
11 remain at node —D. Since p < ¢ there must occur a doublet 01 and it
must occur prior to any potential doublet 10. But 01 moves from node —D
to node 1. Thus, wa(p, q) = 1 verifying equation (3.1).

For equation (3.2) suppose 2V < p < 2N¥+! < ¢. Then it is either the
case that [p,q] = 01,...,10,... or it is the case that [p,¢] = 01,...,11,...
(where the 10 and 11 doublets are the bits of p and ¢ corresponding to 2%V).
In either case the first ellipsis consists of binary doublets of the form 00 or
01 so we are at a T node until arriving at either the doublet 10 in which
case w(p,q) = 1 or we arrive at the doublet 11 in which case w(p,q) = —1.
In the first case, |g/2"] is even and in the second case |g/2" | is odd. So
in either case w(p,q) = (—1)L‘1/2NJ verifying equation (3.2).

Let us illustrate the use of equations (3.1) and (3.2) with a couple of
examples.

Find €35€55.

Since 35 = 100011 and 55 = 110111p then 35 @ 55 = 101005 = 20.
So essess = wa(35,55)ez0. And since 2° < 35 < 55 < 20 it follows from
equation 3.2 that w2 (35, 55) =1. So €35€55 = €20-

Find €87€340-

Convert 87 = 0010101115 and 340 = 101010100p, so 87 & 340 =
1000000113 = 259. So €87€340 — WQ(87,340)€259. Since 64 S 87 < 128,
and 128 < 340 and |[32| = 5 then wy(87,340) = (-1)°® = —1. So
€87€340 = —€259

Find €51€12.

First, es1e10 = —e12e51. 12 = 0011005 and 51 = 1100115 so 12 ® 51 =
1111113 = 63. So €51€12 — —€12€51 — _W2(12,51)663. Since 8 S 12 <
16 <51 and |3 | =6, wa(12,51) = (1) = 1. So es1e12 = —eg3.
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0+C—>1

FIGURE 2. Twist tree for ws.

Lest the reader get eye strain from trying to verify the results for Zf x 72
using Figure 1 on page 91, the wo table for Z5 x Z3 is provided in Figure
3 on page 94. Recall that gray cells denote wa(p,q) = 1 and white cells
denote wa(p,q) = —1.

To give a better indication of the fractal nature of wq, Figure 4 is the
1024 x 1024 bit-mapped image of wy for Z3° x Z3°. For comparison we also
provide the corresponding image of the ‘inscrutable’ ws for Z3° x Z1° in
Figure 5 to give a visual indication of why no one has searched for a simple
formula for it.

5. CONCLUSION

The problem historically with finding a simple closed form equation for
the product of two Cayley-Dickson basis vectors has been caused by various
approaches to the algebras. One issue is that only two of the eight Cayley-
Dickson doubling products have been used [12, 6, 2, 3, 5] each of which is
the transpose of the other.

(a,b)(c,d) = (ac — db*,a*d + cb). (5.1)

(a,b)(c,d) = (ac — d*b,da + bc*). (5.2)

Unfortunately, the w matrix of these two is sufficiently chaotic to dis-
suade further investigation. Furthermore, a different way of numbering the
basis vectors has traditionally been used which further scrambles the w

matrix. These issues have conspired to inhibit investigation into w.
Now we see that if the doubling product

Py : (a,b)(c,d) = (ac — b*d,da” + be)

is used and if the basis vectors are indexed over the group (W, @) (the ‘shuf-
fle’ basis) a natural inverse fractal pattern emerges leading to the simple
result in the following theorem.
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FIGURE 3. ws for Z5 x Z5.

Theorem 5.1. If 2V <p < ¢ < 2V*! then epeq = epaq.
If 2N < p < 2NHL < g then epeq = (—1)19/2 e,

Combined with eg = 1, e2 = —1 for p > 0 and epe, = —ege, for
0 # p # q # 0 we have a simple closed formulation for the product of
any two Cayley-Dickson basis vectors.
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FIGURE 5. ws for Z3% x Z3°.
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