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Abstract. Although the Cayley-Dickson algebras are twisted group
algebras, little attention has been paid to the nature of the Cayley-
Dickson twist. One reason is that the twist appears to be highly
chaotic and there are other interesting things about the algebras to
focus attention upon. However, if one uses a doubling product for
the algebras different from yet equivalent to the ones commonly used,
and if one uses a numbering of the basis vectors different from the
standard basis a quite beautiful and highly periodic twist emerges.
This leads easily to a simple closed form equation for the product of
any two basis vectors of a Cayley-Dickson algebra.

1. Introduction

The purpose of this paper is to give a closed form formula for the product
of any two basis vectors of a Cayley-Dickson algebra.

The complex numbers are constructed by a doubling product on the set
of real numbers:

(a, b)(c, d) = (ac− bd, ad+ bc) (1.1)

To produce the quaternions by a doubling product on the complex numbers
requires that one take conjugation into consideration in such a way that,
for real numbers the product reduces to the one above.

There are eight (and only eight) distinct Cayley-Dickson doubling prod-
ucts [4] which accomplish this. For each of the eight, the conjugate of an
ordered pair (a, b) is defined recursively by

(a, b)∗ = (a∗,−b) (1.2)

The eight doubling products are:

P0 : (a, b)(c, d) = (ca− b∗d, da∗ + bc)

P1 : (a, b)(c, d) = (ca− db∗, a∗d+ cb)

P2 : (a, b)(c, d) = (ac− b∗d, da∗ + bc)

P3 : (a, b)(c, d) = (ac− db∗, a∗d+ cb)

88 MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1



AN ALTERNATE CAYLEY-DICKSON PRODUCT

P>
0 : (a, b)(c, d) = (ca− bd∗, ad+ c∗b)

P>
1 : (a, b)(c, d) = (ca− d∗b, da+ bc∗)

P>
2 : (a, b)(c, d) = (ac− bd∗, ad+ c∗b)

P>
3 : (a, b)(c, d) = (ac− d∗b, da+ bc∗)

Only two of these eight, P3 and P>
3 have been investigated. The eight

algebras resulting from these products are isomorphic [4] and all have the
same elements and the same unit basis vectors e0, e1, e2, . . . , en, . . .. The
basis vectors will be defined below. The eight products may be arranged
in four transpose pairs P0, P

>
0 ,P1, P

>
1 ,P2, P

>
2 ,P3, P

>
3 . They are trans-

poses in the sense that, given two basis vectors ep, eq, it is the case that
P (ep, eq) = P>(eq, ep). This holds for each of the four product pairs. So
the multiplication table of the basis vectors for a product P is the trans-
pose of the multiplication table of its transpose P>. Given a basis vector
ep and a basis vector eq there is only one r for which it is the case that
either P (ep, eq) = er or P (ep, eq) = −er. For any p and q the value of r
will be the same for all eight of the products and is denoted by p⊕q (which
happens to also equal q ⊕ p), but whether the product of ep and eq is ep⊕q

or −ep⊕q will depend upon which of the eight products is used.
Let W denote the set of non-negative integers. For each of the eight

products there is a corresponding twist function [7, 10, 11] ω : W ×W →
{−1, 1} such that for each p, q ∈W , P (ep, eq) = ω(p, q)ep⊕q.

Historically, researchers have been focused on the properties of the Cayley-
Dickson algebras and not on the nature of the twist ω. One reason for this
is that there seemed little rhyme or reason to ω. The fact that different re-
searches numbered the basis vectors differently did not help the situation.
Furthermore, for P3 and P>

3 the function ω is particularly inscrutable.
However, in [3] a heuristic Cayley-Dickson tree method was described for
computing ω(p, q) for the product P3.

In [4] the products P0, P
>
0 ,P1, P

>
1 ,P2, and P>

2 were derived. Further
investigation has shown that for the product P2 (and its corresponding
transpose) there is a simple closed form formula for ω. That is the subject
of this paper.

2. Background

Each real number x is identified with the infinite sequence x, 0, 0, . . .
and an ordered pair of two infinite sequences x = x0, x1, x2, x3, . . . and
y = y0, y1, y2, y3, . . . is equated with the shuffled sequence

(x, y) = x0, y0, x1, y1, x2, y2, . . . .
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Only real number sequences terminating in a string of zeros are considered,
that is, finite real sequences.

The basis for this space is chosen to be

e0 = 1, 0, 0, 0, . . .

e1 = 0, 1, 0, 0, 0, . . .

e2 = 0, 0, 1, 0, 0, 0, . . .

... .

This basis differs from bases commonly used by other researchers. To dis-
tinguish this basis from others we call it the ‘shuffle basis.’ The shuffle basis
vectors satisfy

e0 = 1

e2k = (ek, 0)

e2k+1 = (0, ek).

The conjugate of a sequence x is x∗ = x0,−x1,−x2,−x3, . . .. Thus,

(x, y)∗ = (x∗,−y).

If p, q < 2N are positive integers, let p⊕ q denote the ‘bit-wise exclusive
or’ of the binary representations of p and q. This is equivalent to the sum
of p and q in Z

N
2 .

The non-negative integers are an abelian group with respect to the op-
eration ⊕ with identity 0.

The twist functions for each of the eight doubling products satify the
following [4].

epeq = ω(p, q)ep⊕q (2.1)

ω(p, 0) = 1 (2.2)

ω(0, q) = 1 (2.3)

ω(p, p) = −1 for p > 0 (2.4)

ω(p, q) = −ω(q, p) provided 0 6= p 6= q 6= 0. (2.5)

3. Properties of ω2

The following properties of ω are peculiar to the product P2.

If 2N ≤ p < q < 2N+1 then ω2(p, q) = 1. (3.1)

If 2N ≤ p < 2N+1 ≤ q then ω2(p, q) = (−1)bq/2
N c. (3.2)
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Figure 1. ω for Z7
2 × Z

7
2.

Figure 1 shows ω2(p, q) for Z
7
2×Z

7
2. The rows and columns of the matrix

are numbered 0 through 127 with gray cells representing ω(p, q) = 1 and
white cells representing ω(p, q) = −1.

4. Traversing the Cayley-Dickson ω2 Tree

In order to validate equations (3.1) and (3.2) we will traverse the ω-tree
[3] in Figure 2 associated with the doubling product P2. Others have used
such ω tree maps to research properties of Cayley-Dickson algebras [8].

In order to find ω2(p, q) for non-negative integers p and q it will be
necessary to shuffle their bits. In order not to confuse this process with the
shuffling (x, y) of sequences x and y, the shuffle of integers p and q will be
denoted using square brackets. So, for example, [111, 101] = 11, 10, 11 and
[11, 11101] = [00011, 11101] = 01, 01, 01, 10, 11. Notice that the shuffled
binary numbers have been rendered as a sequence of binary doublets. Each
doublet, beginning with the leftmost, is an instruction for traversing the
ω2-tree beginning with the top C node. A 0 is an instruction to move down
a left branch and a 1 is an instruction to move down a right branch of the
tree.
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To find ω2(p, q) by this method, traverse the tree using instruction se-
quence [p, q]. Terminating at −1 or −D means that ω(p, q) = −1. Termi-
nating at any other node means that ω2(p, q) = 1. An important property
of ω2 is that once either 1 or −1 is reached it is unnecessary to continue
traversing the tree and it will always be the case that ω2(p, q) = 1 or
ω2(p, q) = −1, respectively.

As an example of how one traverses the ω2-tree, let us find the basis
vector product e3e14. First, 3 = 0011B and 14 = 1110B. So 3 ⊕ 14 =
1101B = 13. So e3e14 = ω2(3, 14)e13. Now [3, 14] = 01, 01, 11, 10. Using
this sequence of doublets to traverse the ω-tree gives us T,T,−1,−1. So
e3e14 = −e13. One may stop, of course, with the first −1 encountered.

Next, it will be seen how to use the ω2-tree in Figure 2 to validate
equations (3.1) and (3.2).

Begin with equation (3.1), suppose 2N ≤ p < q < 2N+1. Then [p, q] =
11, . . .. The doublets following the first will be either 00,01,10, or 11. The
first doublet 11 moves to node −D. Subsequent doublets of either 00 or
11 remain at node −D. Since p < q there must occur a doublet 01 and it
must occur prior to any potential doublet 10. But 01 moves from node −D
to node 1. Thus, ω2(p, q) = 1 verifying equation (3.1).

For equation (3.2) suppose 2N ≤ p < 2N+1 ≤ q. Then it is either the
case that [p, q] = 01, . . . , 10, . . . or it is the case that [p, q] = 01, . . . , 11, . . .
(where the 10 and 11 doublets are the bits of p and q corresponding to 2N).
In either case the first ellipsis consists of binary doublets of the form 00 or
01 so we are at a T node until arriving at either the doublet 10 in which
case ω(p, q) = 1 or we arrive at the doublet 11 in which case ω(p, q) = −1.
In the first case, bq/2Nc is even and in the second case bq/2Nc is odd. So

in either case ω(p, q) = (−1)bq/2
N c verifying equation (3.2).

Let us illustrate the use of equations (3.1) and (3.2) with a couple of
examples.

Find e35e55.
Since 35 = 100011B and 55 = 110111B then 35 ⊕ 55 = 10100B = 20.

So e35e55 = ω2(35, 55)e20. And since 25 ≤ 35 < 55 < 26 it follows from
equation 3.2 that ω2(35, 55) = 1. So e35e55 = e20.

Find e87e340.
Convert 87 = 001010111B and 340 = 101010100B, so 87 ⊕ 340 =

100000011B = 259. So e87e340 = ω2(87, 340)e259. Since 64 ≤ 87 < 128,
and 128 ≤ 340 and

⌊

340

64

⌋

= 5 then ω2(87, 340) = (−1)5 = −1. So
e87e340 = −e259

Find e51e12.
First, e51e12 = −e12e51. 12 = 001100B and 51 = 110011B so 12 ⊕ 51 =

111111B = 63. So e51e12 = −e12e51 = −ω2(12, 51)e63. Since 8 ≤ 12 <
16 ≤ 51 and

⌊

51

8

⌋

= 6, ω2(12, 51) = (−1)6 = 1. So e51e12 = −e63.
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0← C→ 1

C T

T T 1 −1

L

L −1 L 1

−D

−D 1 −1 −D

Figure 2. Twist tree for ω2.

Lest the reader get eye strain from trying to verify the results for Z7
2×Z

7
2

using Figure 1 on page 91, the ω2 table for Z
5
2 × Z

5
2 is provided in Figure

3 on page 94. Recall that gray cells denote ω2(p, q) = 1 and white cells
denote ω2(p, q) = −1.

To give a better indication of the fractal nature of ω2, Figure 4 is the
1024× 1024 bit-mapped image of ω2 for Z10

2 ×Z
10
2 . For comparison we also

provide the corresponding image of the ‘inscrutable’ ω3 for Z
10
2 × Z

10
2 in

Figure 5 to give a visual indication of why no one has searched for a simple
formula for it.

5. Conclusion

The problem historically with finding a simple closed form equation for
the product of two Cayley-Dickson basis vectors has been caused by various
approaches to the algebras. One issue is that only two of the eight Cayley-
Dickson doubling products have been used [12, 6, 2, 3, 5] each of which is
the transpose of the other.

(a, b)(c, d) = (ac− db∗, a∗d+ cb). (5.1)

(a, b)(c, d) = (ac− d∗b, da+ bc∗). (5.2)

Unfortunately, the ω matrix of these two is sufficiently chaotic to dis-
suade further investigation. Furthermore, a different way of numbering the
basis vectors has traditionally been used which further scrambles the ω
matrix. These issues have conspired to inhibit investigation into ω.

Now we see that if the doubling product

P2 : (a, b)(c, d) = (ac− b∗d, da∗ + bc)

is used and if the basis vectors are indexed over the group (W,⊕) (the ‘shuf-
fle’ basis) a natural inverse fractal pattern emerges leading to the simple
result in the following theorem.
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Figure 3. ω2 for Z5
2 × Z

5
2.

Theorem 5.1. If 2N ≤ p < q < 2N+1 then epeq = ep⊕q.

If 2N ≤ p < 2N+1 ≤ q then epeq = (−1)bq/2
N cep⊕q.

Combined with e0 = 1, e2p = −1 for p > 0 and epeq = −eqep for
0 6= p 6= q 6= 0 we have a simple closed formulation for the product of
any two Cayley-Dickson basis vectors.
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Figure 4. ω2 for Z10
2 × Z

10
2 .

Figure 5. ω3 for Z10
2 × Z

10
2 .
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