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ABSTRACT. Regression trees are an alternative to classical linear re-
gression models that seek to fit a piecewise linear model to data. The
structure of regression trees makes them well-suited to the modeling
of data containing outliers. We propose an algorithm that takes
advantage of this feature in order to automatically detect outliers.
This new algorithm performs well on the four test datasets [7] that
are considered to be necessary for a valid outlier detection algorithm
in a linear regression context, even though regression trees lack the
global linearity assumption. We also show the practical use of this
approach in detecting outliers in an ecological dataset collected in
the Shenandoah Valley.

1. INTRODUCTION

While there are numerous well-understood outlier detection methods for
use with classical linear regression models, e.g. [10, 12], fewer methods
are available for regression trees [1, 2]. Regression trees are an alternative
to classical linear regression that model the response-predictor relationship
using a piecewise linear model. This is accomplished by making a series of
binary splits in one or more of the predictors, such that these splits minimize
the overall residual sum of squares (RSS) of the tree. Each binary split is
based on a single predictor, e.g. X; < 3.2 and X; > 3.2, but subsequent
binary splits may involve the same or a series of different predictors. The
whole-tree RSS is then defined as the sum over the residual sum of squares in
each of the T terminal nodes in the tree, with terminal nodes being defined
as nodes that are not subdivided by subsequent binary splits. Thus, the
whole-tree RSS is

T T mny
RSS =) RSS;=> > (y; —7)°
t=1

t=1 j=1
T
where n; is the number of observations in terminal node ¢ such that Z ng =

t=1
N and N is the total number of observations used to build the tree, y; is
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the value of the response for the jth observation placed into terminal node
Nt

t,and y, = Z y;/ny is the predicted value of the response at terminal node
j=1
t.

Binary splits are added to the tree until either no splits reduce the whole-
tree RSS enough to counter the added complexity of adding another split, or
until it is no longer possible to divide any existing node into two sub-nodes
that both satisfy n; > ¢ where ¢ is the minimum number of observations
required in a terminal node. In the R [9] package TREE [11] used in this
paper, the default value for ¢ is 5. Using the tree for prediction of a new
observation is accomplished by evaluating the decision rules at each binary
split until a terminal node ¢ is reached. The predicted value for the new
observation is then the average response, 7,, observed at that node.

Regression trees have several advantages over classical linear regression
models: they are easy to interpret, make no assumption of normality of
errors, do not assume a global linear relationship between the response
and a predictor, do not have to discard observations with missing values,
and their structure is not affected by monotonic transformations of the
predictors. The structure of regression trees is also advantageous in its
modeling of outliers since observations with unusual response values can be
isolated in a small terminal node and these unusual observations are not
used in the prediction of observations that do not fall into the same terminal
node. Indeed a relatively large RSS; for a terminal node can indicate the
presence of one or more outliers in that node.

It is for these reasons that regression trees have been used to model
response-predictor relationships in ecology [4, 5]. Zirkle [14] used data
collected by the Friends of the Shenandoah River (FOSR) to build tree
models for predicting metrics of water quality and based on these models,
identified streams with atypical water quality. Such atypical streams may
indicate the presence of karst geology. In Zirkle’s approach, streams isolated
in small nodes with large RSS; whose removal from the dataset resulted
in a structurally different tree and/or a tree with a substantially different
R? value were identified as outliers. However, this approach ultimately
focused on building the best tree for prediction with outliers being streams
that changed the quality or value of the prediction. Our approach focuses
more closely on detecting outliers rather than predicting the non-outlying
observations well.

It is important to address two issues which affect all outlier detection
methods. The first of these is masking, which occurs when the presence
of one group of observations that are not outliers masks the presence of
another group of observations which are truly outlying. Swamping is the
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opposite problem, in which non-outlying observations are made to look like
outliers due to the presence of another group. These problems typically
arise in “forward-stepping” algorithms, which seek to identify outliers one at
a time from the complete data set. “Backwards-stepping” methods identify
a subset of the data as being the most likely to be outlying, and test to see if
the entire subset exhibits significant outlier behavior. As such, backwards-
stepping methods are less susceptible to masking and swamping.

Hadi and Simonoff [7] proposed two approaches for detecting outliers in
classical linear regression, each of which involves two stages. We extend
their second method, which uses single-linkage clustering and backwards-
stepping for use in regression trees. Our approach works well on all four
examples that Hadi and Simonoff [7] state as necessary in order to have a
viable outlier detection method despite the fact that regression trees do not
make use of the global linearity assumption and thus may not be expected
to perform well on these datasets.

2. METHOD

In the first step of Hadi and Simonoff’s [7] Method 2 algorithm, a subset
of K observations is selected as an initial set of proposed outliers. The
remaining N — K observations are placed in a “clean” set, M, of pro-
posed non-outlying observations. After first scaling each predictor and the
response to have mean zero and standard deviation one, we used single-
linkage clustering to identify the initial set of K outliers by selecting the
last K observations connected to the cluster, under the assumption that
these are the most outlying. As per [7], in choosing between two clusters
at a particular link, we selected the smaller of the two as more outlying. In
some cases, this approach identified K + 1 candidate outliers due to the link
connecting two clusters of size one. We believe that increasing the size of K
in this case is superior to choosing one of the two observations at random
or excluding both.

In practical situations, the true number of outliers, K, is almost always
unknown but the choice of K can have a great effect on how well the
procedure is able to identify outliers [7]. Selecting a K that is too large can
result in swamping non-outliers. Selecting a K that is too small can result
in masking of outliers or even failure to detect any known outliers at all.
We recommend initially using [0.1N] < K < [0.2N], trending towards the
upper end when there are a greater number of suspected outliers, and the
lower end when it is suspected that there are fewer.

The remaining two steps of Hadi and Simonoff’s [7] Method 2 algorithm
seek to identify outliers:

78 MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1



IDENTIFYING OUTLYING OBSERV. IN REGRESSION TREES

(2) Fit a regression model using the clean set M and calculate the
absolute size of the internally studentized residuals or scaled pre-
diction error, calling the value for the jth observation, d;, where
j=1,...,N.

(3) Use d; to place all N observations in ascending order and then:
(A) if dejprj41> > G where d<j> is the jth order statistic of

dy,...,dn, |M]| is the number of observations in the clean set
M, and G is an appropriate cutoff, immediately identify all
observations with d; > G as outliers and halt the algorithm,
or
(B) (i) if K > 1, let the new M consist of d<1>,...,d<|p41>,
decrement K by 1 and return to Step 2.
(ii) If K =1, decide there are no outliers in the dataset and
stop.

We note that the calculation of d; and the appropriate cutoff, G, were
selected by Hadi and Simonoff [7] to be appropriate in a linear regression
context, and that Step 3(A) will identify at least K outliers.

To adapt Hadi and Simonoff’s 7] algorithm for regression tree models,
we chose a new error measure, d; = |(y; — ,)/s¢| where y; is the response
value for observation j = 1,..., N, 7, is the predicted response value at the
terminal node ¢ to which observation j is assigned, and s; is the standard
deviation of response values at this terminal node. Note that %, and s; are
based on only M, and that observation j may be in M or in the proposed
outlier set.

This measure does well at detecting outlying observations with predictor
value(s) that are within the range of those observed in M. If an observation
has predictor value(s) outside those observed in M, and these predictors are
used in the decision rules in the tree, then the observation will be predicted
by the most extreme terminal node with respect to those predictors. This
can result in poor prediction. To illustrate this, Figure 1 shows a scatterplot
of the 20 observations in the First Word-Gesell Adaptive Score dataset. It
is desired to predict the Gesell score using a child’s age when they speak
their first word. Also shown is the regression tree built using a clean set
M that contained all but K = 3 potential outliers, namely observations 2,
18, and 19. Two binary splits at ages 9 and 11 created a T' = 3 terminal
node tree and the predicted values ¥;,¥,,75 at these nodes are indicated
by the horizontal line segments. In a classical linear regression setting,
observation 19 is considered an outlier but observation 18 is a leverage
point since both observations 2 and 18 follow or influence the linear trend
[12]. However, in a regression tree context observations 2, 18, and 19 all
have large error measure values if they are excluded from M and may all
be identified as outliers. This mischaracterization of observations 2 and 18
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is due to all observations with child’s age above 11 being modeled with the
constant predicted value of 75. A linear regression model can make use of
the linearity assumption to improve this prediction.
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FIGURE . Scatterplot of First Word-Gesell Adaptive Score
data with regression tree superimposed. The tree was built
using a clean set M that excluded K = 3 observations,
namely, observations 2, 18 and 19.

For the cutoff, G, we use t;(1 — a/K,n; — 1), the value on a folded-t
distribution with n; — 1 degrees of freedom and probability 1 — a/K below
it. Notice that K will change with each iteration through Step 3(Bi), and
that n; (the number of observations in M that were assigned to node t) will
change depending on the node that an observation is placed in or predicted
by. If one is willing to assume that response values at each terminal node
of the tree come from a normal distribution with node-specific mean and
standard deviation then it seems appropriate to assume that (y; —7,)/s; is
a value from a ¢-distribution with n; —1 degrees of freedom. In this case, d;
would have a folded-¢ distribution [8]. While normality within a terminal
node is dubious, especially in cases where M may indeed include outliers,
it seems the most appropriate assumption to make.

As discussed in [13] one can control either the individual or experiment-
wise error rate, although approximate rather than precise control is needed,
and further that the Bonferroni correction may be overly conservative for
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the context. Choosing to control the individual error rate so that, for exam-
ple, we would nominally expect at the o = 0.05 level, 5% of observations
in a truly clean data set to be incorrectly identified as outliers, seemed
appropriate in our motivating context of outlier detection in ecology due
to the exploratory nature of the problem; we are interested in detecting
potential outliers so that they can be investigated further. Thus, we con-
ducted a simulation study to determine the appropriate divisor of « in
order to achieve an individual error rate of . Each of the 10,000 datasets
in our simulation consisted of N = 60 observations on a single predictor
and response. The predictor values consisted of 20 observations from each
of three non-overlapping uniform distributions in order to create clear sep-
aration between the tree nodes. The response values were generated from
normal distributions with means and standard deviations specific to each of
the three nodes. In simulation 1, we held out K = 3 of the 60 observations
(one per node) so that |M| was initially 57, and in simulation 2, K was
increased to 6 with two per node held-out of M. If at any stage of the
algorithm, a tree failed to assign the N observations to their correct nodes,
that dataset was discarded and replaced.

Table 1 shows the average percentage of the N = 60 observations iden-
tified as outliers across the 10,000 clean datasets using each of four correc-
tions:

(I) no adjustment to «,
(II) division by the number, K, of comparisons implied by d; > G in
Step 3A, recognizing that K changes each time through Step 3(Bi),
(IIT) same as adjustment (IT) but with K fixed at the initial value in all
iterations through Step 3(Bi), and
(IV) dividing by |M|+ 1 as done in [7].

In all cases, the target individual error rate was 5%.

TABLE 1. Average percentage of the 60 observations in
10,000 different no-outlier datasets that are identified as
outliers based on four different corrections made to the
Type 1 error rate, . Kjpitia) indicates that K was fixed
at its initial value throughout and K.yrrent indicates that
K changed with each Step 3(Bi).

a Correction Used | Simulation 1 (K = 3) | Simulation 2 (K = 6)
I: None 4.50% 7.96%

1I: O‘/Kinitial 1.99% 1.80%

1L o/ Keupront 3.02% 3.72%

IV: of|M| + 1 0.10% 0.17%
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We chose to adjust « by the current value of K rather than using no
adjustment, as this resulted in values that were closest to and lower than
5%. Use of &/ K¢current rather than a would make it somewhat more difficult
to declare an observation an outlier. As an aside, if one wished to control
the experiment-wise error rate, as we assume Hadi and Simonoff [7] wished
to, then | M|+ 1 would be best.

Another consideration for tree models is setting the minimum number
of observations for each terminal node of the tree, c. We have found that
¢ should never be set lower than two so as to avoid s; = 0, and no higher
than five for small data sets in order to avoid masking outliers.

Our proposed algorithm for detecting outliers in regression trees is then:

(1) Use single-linkage clustering to identify an initial set of K (or K+1)
outliers after scaling the predictor(s) and response to each have
mean 0 and standard deviation 1. If K + 1 outliers are identified,
then this is the new K.

(2) Construct a regression tree with terminal nodes ¢t = 1,...,T using
the clean data set M consisting of N — K observations and mini-
mum node size of ¢. Assign each observation j = 1,..., N to the
appropriate node t in the tree according to the tree’s decision rules
and then:

(A) calculate the error measure d; = |(y; — ¥,)/s:| using the node
specific mean and standard deviation.

(B) Calculate p; = d;/t;(1 — a/K,ny — 1) where the denominator
is the cutoff, G, discussed earlier, noting that p; is node specific
and dependent on the current K.

(3) Sort the p1,...,pn into ascending order.

(A) if pojpi41> > 1 where pojs is the jth order statistic of
P1,-..,pn and [M] is the number of observations in the clean
set M, immediately identify all observations with p; > 1 as
outliers, or

(B) (1) if K > 1, let the new M consist of the |M|+ 1 obser-

vations with lowest p; values i.e. pcis,...,D<im|+1>s
decrement K by 1 and return to Step 2.

(ii) If K =1, decide there are no outliers in the dataset and
end algorithm.

3. RESULTS

In order to verify the validity of the algorithm, we observed how it per-
formed on several known data sets, including the quartet of benchmark data
sets identified by [7] as necessary for a valid algorithm in multiple outlier
detection problems, as well as examples which highlight the importance of
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the more subjective variables in our algorithm. Hadi and Simonoff’s [7]’s
quartet are examples 1-4 below. We present results for minimum node sizes
of ¢ € {2,3,4,5} and unless otherwise stated we used an individual error
rate of a = 0.05 with correction III applied. Although our recommendation

is that

[0.1N] < K < [0.2N] be used in practice, we include results for

a broader range of K values for completeness (the upper bound being the
largest value for which a tree could be built).

Examples

(1)

(5)

Telephone Data: This data set contains the number of interna-
tional telephone calls made in Belgium for each of 24 years. The
response is the number of calls and the predictor is year. The data
is known to contain six outliers (years 1964-1969) due to changes
in the measurement unit for the response. The years 1963 and
1970 were also partially affected, but are not considered significant
outliers. Our algorithm correctly identifies as outliers only the six
years with the different recording system, for K > 4 for all c.
Hertzsprung-Russell Star Data: This data set contains the log-
arithms of the effective surface temperature and the light intensity
for the 47 stars in the star cluster CYG OBI1, of which four stars
are red giants and hence are different from the rest. Temperature
is the predictor of light intensity. Our algorithm correctly identifies
only the four giant stars as outlying for 3 < K < 25 for all ¢, and
for at least one ¢ for K > 26.

Hawkins-Bradu-Kass Data: This artificial data set contains 75
observations and has 3 predictors. Observations 1-10 are outliers
and there are good leverage points at observations 11-14. Our algo-
rithm successfully identifies the 10 outlying observations as outlying
for 9 < K < 16 for all ¢. For 17 < K < 26 the algorithm works
correctly for at least one of these ¢; however, for other ¢ values, the
algorithm identified at least one observation in addition to the 10
outliers.

Modified Wood Gravity Data: The modified wood gravity data
set contains information on five anatomical factors of wood and
how these affect the wood’s specific gravity for each of 20 samples.
Observations 4, 6, 8, and 19 are outliers. Given the smaller number
of observations in this problem, we increased our individual error
rate to 0.1. With this «, our algorithm correctly identifies only the
four outliers for K > 5 for at least one c.

The single outlier case: The First Word-Gesell Adaptive Score
data discussed earlier serves as an example for the single outlier
case. The algorithm correctly identifies only point 19 as an outlier
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for K € {2,5,6,7,8} for at least one ¢. For K € {3,4} the algorithm
identified the leverage points, observations 2 and 18, in addition to
observation 19.

We note that with a few exceptions the algorithm correctly detected
only the known outliers for all K within the recommended ranges. The
four exceptions (K = 3 in Example 1, K = 8 in Example 3, and K € {2,3}
in Example 4) were cases where the true number of outliers was at least
one more than the K used. Given the relatively good performance of the
algorithm for K that were initially too large, this suggests that it is better
to use larger rather than smaller values of K initially.

Application to the Friends of the Shenandoah River Monitoring
Data

The Friends of the Shenandoah River (FOSR) data set [6] includes mea-
surements collected from 2001-2011 on 222 river and stream sites in the
Shenandoah Valley, including six water metrics: nitrate, orthophosphate,
ammonia, dissolved oxygen, pH, and turbidity. For each site, we also have
data on 53 geographical predictors and these are used to predict the six
water metrics. The hypothesis is that sites whose water metrics differ sig-
nificantly from other sites with similar geography may be affected by karst
geology. Features of karst landscape may include caves and underground
drainage systems. The karst and outlier status of the observations in the
FOSR dataset is unknown. In order to maintain the assumption of indepen-
dence of sites, we limited our study to only those sites that are upstream,
defined as being sites whose entire flow of water has never flowed through
any other site in the data set. This left us with 52 observations.

We ran the algorithm with ¢ € {2,3,4,5} and 2 < K < 10. One site
in particular (JR10) was identified as an outlier for three of the six re-
sponse metrics for most K and ¢ values, and would be the prime candidate
to explore further for the presence of karst geology. The algorithm also
identified multiple outlying sites for each individual metric, and three sites
(JRO1, JROG6, and NRO5) that are potential outliers with respect to at least
two metrics. The three JR prefixed sites mentioned are all within 10 miles
of one another which may be promising. While it is possible that some of
the identified sites are not outliers, in this context incorrectly identifying a
site as an outlier is preferable to failing to identify an outlying site due to
the ability to do more physical exploration of the site.

4. DISCUSSION

We proposed an automatic method for detecting outliers using regres-
sion tree models and applied this method to four example data sets on
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which good performance is considered necessary for a viable outlier detec-
tion algorithm in the context of linear regression. Our algorithm performed
effectively on these benchmark examples even without the use of the global
linearity assumption available in linear regression. A simulation study sug-
gested an appropriate correction to use in controlling the individual error
rate.

Example 5 (First Word-Gesell Adaptive Score data) suggests that our
algorithm could be susceptible to falsely identifying observations that are
“good” leverage points in the context of classical linear regression models as
being outliers. However, we believe this is due to the data in this example
following a linear trend that is better suited to a linear regression model
than a regression tree. In practice, regression trees are not always the best
choice of model.

A problem arises when the standard deviation of response values within
a terminal node (s;) is zero. This is more likely to occur (although still
rare) when the minimum node size is small, but we have observed it as
high as ¢ = 4. With no within-node variability, the error measure, d;, for
observations within M that lie in that node and outlier candidates that are
predicted by that node, will be undefined. Our current recommendation is
that if d; is undefined and observation j is within the current clean set M,
then d; should be set to zero. This follows because j is joined by at least
one other observation with similar predictor values and the same response
value, within the currently assumed non-outlier observations. Setting d; to
zero is equivalent to assuming that j is not an outlier. If an observation
outside M is predicted by a node with zero-variance, the recommendation
is less certain. If one is not weary of false-positives, we would recommend
setting d; equal to a value that ensures that this observation remains in the
outlier set.

More work is needed in examining the performance of the algorithm on
datasets with multiple predictors in which the commonly accepted outliers
are not extreme in any single predictor. For example, the dataset studied
by [3] contained five predictors which sought to explain the verbal mean
test score for all sixth grade students from 20 schools in New England.
The three outliers do not differ significantly in any one predictor and the
algorithm fails to identify them.

The choice of error measure, d;, will be examined further in future re-
search, with hopes of removing the issues discussed previously. In partic-
ular, there may be promise in the use of the median absolute deviation.
However, the current measure is simple and intuitive, and still provides
an effective automatic approach for identifying outliers in the context of
regression tree models that can be used when one is unable to justify the
assumptions necessary for use of linear regression.
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