
I'M THINKING OF A NUMBER . . .

ADAM HAMMETT AND GREG OMAN

Abstrat. Consider the following game: Player A hooses an integer

α between 1 and n for some integer n ≥ 1, but does not reveal α to

Player B. Player B then asks Player A a yes/no question about whih

number Player A hose, after whih Player A responds truthfully with

either �yes� or �no.� After a predetermined number m of questions

have been asked (m ≥ 1), Player B must attempt to guess the number

hosen by Player A. Player B wins if she guesses α. The purpose

of this note is to �nd, for every m ≥ 1, all anonial m-question

algorithms whih maximize the probability of Player B winning the

game (the notion of �anonial algorithm� will be made preise in

Setion 3).

1. Introdution

I'm thinking of a number between 1 and 1000. I will allow you one guess,

but prior to guessing you get to ask me a preliminary �yes/no� question

about whih number I hose, and I will answer truthfully. Clearly, you

don't want to ask, �Is the number you piked between 1 and 1000?� as you

already know that the answer is �yes.� Similarly, you wouldn't ask, �Did

you pik the numbers 3 and 298?� sine (unless I hoose not to abide by

the rules of the game) you know the answer to this query is �no.� So at the

very least, you should ask me a question to whih you do not already know

the answer. Two suh questions are listed below. Whih of the following do

you believe will yield a higher probability of guessing the number I hose

(assuming you guess rationally after I give you my answer)?

Q1: �Did you hoose number 1?�, or
Q2: �Is the number you hose between 1 and 500?�

You're thinking Q2 is the more prudent hoie, right? After all, the

answer to Q1 is almost ertainly �no,� and (if it is indeed �no�) then you'll

have to hoose from 999 numbers. But if you ask Q2, you an immediately

eliminate 500 numbers. Would you be surprised to disover that it doesn't

matter whih question you hoose? Whether you ask me Q1 or Q2, the

probability of orretly guessing my number is the same!

MISSOURI J. OF MATH. SCI., SPRING 2016 31



A. HAMMETT AND G. OMAN

Let us brie�y explain why this is the ase. If you ask me Q1, and I answer

�yes,� then you will guess number 1 and win. On the other hand, if you ask

Q1 and I answer �no,� then you will just guess some integer between 2 and

1000. This means the probability of winning if you elet to ask Q1 equals

1

1000
· 1 +

999

1000
·

1

999
=

2

1000
.

Notie that if you had guessed randomly with no preliminary question, then

the probability of winning is learly

1
1000 ; thus asking Q1 results in doubling

the probability of �nding my number. Now, similar reasoning reveals that

eleting to ask Q2 instead delivers a probability of winning equal to

500

1000
·

1

500
+

500

1000
·

1

500
=

2

1000
,

and that's the same as before!

Now, let's hange the rules a bit. Let's keep the same basi setup, but this

time I will allow you a sequene of two preliminary questions. Spei�ally,

I will permit you an initial yes/no question about my hosen number, and

then a seond yes/no question after I answer your �rst query. Following

my answer to your seond question, you will attempt to guess the number

I piked. Whih of the following two algorithms yields a higher probability

that you will guess my number?

( 1) First question: �Did you hoose number 1 or number 2?"
→֒ If I say �yes,� ask seond question �Did you hoose number 2?"
→֒ If I say �no,� ask seond question �Did you hoose number 3?",

or

( 2) First question: �Did you hoose a number between 1 and 500?"
→֒ If I say �yes,� ask seond question �Did you hoose a number

between 1 and 250?"
→֒ If I say �no,� ask seond question �Did you hoose a number

between 501 and 750?"

Perhaps unexpetedly, both algorithms yield the same probability (namely,

4
1000 ) of guessing my number. However, the following related algorithm

yields only a

3
1000 probability of guessing orretly:

( 3) First question: �Did you hoose number 1?"
→֒ If I say �yes,� then you know my number and don't need a

seond question.

→֒ If I say �no,� ask seond question �Did you hoose number 2
or number 3?�
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The purpose of this note is to generalize these surprising fats. In parti-

ular, after some formal preliminaries in the next setion, we shall desribe

all �natural� m-question algorithms whih deliver the maximum probability

of Player B guessing orretly (the notion of �natural� will be formalized in

Setion 3).

2. Setting the Stage

We begin with an informal desription of the game at hand (as stated

in the abstrat). To failitate our proofs, we will present a slightly more

general version. Throughout, Z+
will denote the set {1, 2, 3, . . .} of positive

integers. For n ∈ Z+
, we shall denote the set {1, 2, . . . , n} simply by [n].

Let n ∈ Z+
and let X ⊆ Z+

have ardinality n. The set X is presented

to Player A and Player B. Player A hooses an integer α ∈ X uniformly

at random, but does not reveal α to Player B. However, Player B knows

that Player A has hosen suh an α. Player B is permitted a total of

m ≥ 1 yes/no questions in sequene (m is revealed to Player B before

the game ommenes), after whih Player B must guess whih number was

hosen by Player A. Player B wins if she guesses α. In the sequel, we shall

denote this game by G(m,X); we agree to use the notation G(m,n) in ase

X = [n]. Our goal is to determine all possible m-question algorithms (from

a anonial set of algorithms; more on this shortly) that will deliver the

maximum probability of Player B winning G(m,X).
Our �rst task is to make further assumptions in order to fore the game

to terminate in a winner. To kik things o�, we onsider an example of a

yes/no question that is, in some sense, very bad.

Example 1. Suppose that Player B asks, �Is the number you hose equal

to the ardinality of the set of Fermat primes?� in the game G(m,n), where
n > 4. It is known only that there are at least 5 Fermat primes; it is

not known if there are any more. So if Player A's hosen number is 5,
then Player A simply (at present) does not know the answer to Player B's

question, and the game ends in a stalemate.

In light of this example, we temporarily idealize Player A as follows (we

shall later be able to dispense with this assumption):

Assumption 1. Player A has perfet knowledge, that is, Player A knows

the truth value of P for every proposition P .

Now, notie that any yes/no question asked by Player B an be phrased

in the form, �Is it the ase that P?� for some proposition P . This leads to
an equivalent formulation of the game whih is a bit more onvenient for

our purposes:
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Assumption 2. All �questions� asked by Player B are merely propositions.

Player A returns �true� if the proposition is true and �false� otherwise.

We now set up notation whih will be heavily utilized throughout the

remainder of this setion.

De�nition 1. Let P be a proposition presented by Player B in the game

G(m,X). Then set

(1) P 0 := {i ∈ X :
Player A returns �false� if he piked number i},

and

(2) P 1 := {j ∈ X :
Player A returns �true� if he piked number j}.

To help the reader intuit this de�nition, we present two examples.

Example 2. Suppose Player B presents P := �Denver is the apital of

Colorado� in the game G(m,X). Then P 0 = ∅ and P 1 = X.

Example 3. Assume Player B presents P := �The number you hose

is prime� in the game G(m, 10). Then P 0 = {1, 4, 6, 8, 9, 10} and P 1 =
{2, 3, 5, 7}.

We now transition to a probabilisti paradigm. Reall that the game

G(m,X) begins with Player A hoosing, uniformly at random, an integer

α ∈ X . The game onludes with Player B making a guess β based upon

the information she reeives from Player A, and B wins the game if and

only if α = β. Throughout the remainder of this setion, we shall denote

Player A's hoie by α and Player B's guess by β. In this setting, we regard

X as a probability spae endowed with the uniform distribution

P (x) =
1

|X |
for all x ∈ X. (2.1)

Note that if Player B presents proposition P to Player A, then (as both P 0

and P 1
are subsets of X) P 0

and P 1
are events on the probability spae

X . Namely, P 0
is the event �Player A returns `false' after reeiving P ,� and

P 1
the event �Player A returns `true' after reeiving P .� Importantly, we

do not assume that Player B knows preisely whih elements P 0
and P 1

ontain. We elaborate below.

Suppose Player B is playing G(1, 10), and let P be �The number you

hose is prime� as in Example 3. Let S := P i
, where i = 0 if Player A's

response to P was �false,� and i = 1 otherwise. Then all Player B knows

for sure is that Player A's hoie α ∈ [10] was uniformly random, and

that in fat α ∈ S = P i
. What is the probability that Player B will now

suessfully guess α? This really depends upon Player B's knowledge, given

A's response S. Suppose that T is a nonempty subset of [10] from whih

Player B will guess uniformly at random, given that α ∈ S. Let's refer to T
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as Player B's �guessing set.� If Player B has absolutely no knowledge about

whih numbers between 1 and 10 are prime, then she will have no idea

whih elements belong to S. So B may as well use guessing set T = [10],
and the probability she will win equals

1
10 < 1

|S| . However, if B knows that

{2, 3, 5} are primes and {1, 4} are not (and nothing more about the integers

in [10]), then things hange. Indeed, if S = P 0 (i.e. Player A answered

�false�) then Player B knows {1, 4} ⊆ S. So it is reasonable that B use

guessing set T = {1, 4}, and the probability she will win equals

1
6 = 1

|S| .

On the other hand, if S = P 1
, then B knows {2, 3, 5} ⊆ S, so B should

use guessing set T = {2, 3, 5}. In this ase, the probability she will win

equals

1
4 = 1

|S| . Finally, if B knows preisely whih numbers between 1 and

10 are prime, then she may use guessing set T = S and B's probability of

winning equals

1
|S| . Note that in eah of these ases, Player B's probability

of winning is at most

1
|S| . We generalize our observations above with a �nal

assumption.

Assumption 3. After presenting all m propositions to Player A and re-

eiving A's responses in the game G(m,X), Player B selets a nonempty

subset T ⊆ X (a �guessing set�) from whih she selets β uniformly at

random.

We are now ready to determine an upper bound on the probability of

Player B winning G(m,X) (with Assumptions 1�3 above).

Theorem 1. The probability that Player B wins the game G(m,X) is at

most

min(|X|,2m)
|X| .

Proof. Player B will win G(m,X) with probability at most 1 = |X|
|X| . Thus

it su�es only to prove that the probability of winning is at most

2m

|X| . Let's

assume that Player A has hosen α ∈ X uniformly at random, and �x an

arbitrary set {P1, . . . , Pm} of propositions to be presented by Player B. Let

W denote the event, �Player B's guess β is equal to α.� For 1 ≤ i ≤ m,

reall that P 0
i ⊆ X denotes the event �Player A says `false' after reeiving

Pi.� Similarly, P 1
i is the event �Player A says `true' after reeiving Pi.�

Then W ours if and only if P i1
1 ∩ P i2

2 ∩ · · · ∩ P im
m ∩ W ours for some

(i1, i2, . . . , im) ∈ {0, 1}m. Sine for (i1, . . . , im) 6= (j1, . . . , jm), the events

P i1
1 ∩ · · · ∩ P im

m ∩ W and P j1
1 ∩ · · · ∩ P jm

m ∩ W are mutually exlusive, it

follows that

P(W) =
∑

(i1,...,im)∈{0,1}m

P(i1, . . . , im,W),
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where (i1, . . . , im,W) is the vetor naming the event P i1
1 ∩ · · · ∩ P im

m ∩W .

Sine there are 2m suh vetors, it su�es to show that P(v) ≤ 1
|X| for any

suh vetor v. Thus let v := (i1, . . . , im,W) be arbitrary. Observe that

v ours if and only if α ∈ S := P i1
1 ∩. . .∩P im

m and Player B's guess β equals α.
(2.2)

Thus if S = ∅, then v annot our, and P(v) = 0 < 1
|X| . Assume now

that S 6= ∅. Then

P(v) = P (α ∈ S) · P
(

β = α | α ∈ S
)

=
|S|

|X |
·
|S ∩ T |

|S| · |T |
=

|S ∩ T |

|T |
·

1

|X |
≤

1

|X |
;

(2.3)

here, P
(

β = α | α ∈ S
)

denotes the onditional probability that β = α

given that α ∈ S. To onlude the proof, we justify why P
(

β = α | α ∈ S
)

=
|S∩T |
|S|·|T | . Sine Player A's seletion lies in S, there are a total of |S| · |T |

equally likely pairs (α, β) of possible hoies by players A and B, respe-

tively. Player B will win provided the pair (α, β) satis�es α = β, and there

are |S ∩ T | suh pairs. The proof is now omplete. �

The pereptive reader may have notied the power of two appearing in

the bound on P(W) above, and wondered if there is a relation between

our work thus far and the binary searh algorithm of omputer siene.

Indeed there is. Without taking the reader too far a�eld, we mention simply

that the binary searh algorithm �nds a spei�ed key value in an array

by repeatedly biseting the array and making omparisons. For instane,

suppose you want (your omputer) to �nd the number 10 in the array

1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Begin by taking the midpoint, 5, and omparing

it with the desired value. Ten is bigger. Now repeat the proess on the

array 6, 7, 8, 9, 10. The midpoint, 8, is less than 10. Repeat on the array

9, 10. Whether 9 or 10 is hosen as the next midpoint, the algorithm will,

at worst, terminate with 10 on the fourth omparison. Indeed, it is not

hard to show that any member of the original array an be found with

at most 4 omparisons (this is the so-alled worst ase of the algorithm).

Part of the purpose of the following setion is to show that even with muh

less stringent assumptions (reall that Player B is free to ask Player A any

question (proposition); the question need not even obviously relate to the

game being played), Player B still annot do any better than she an by

adopting a natural set of additional rules for game play. We shall shortly

introdue suh a set of rules, and then �nd all strategies whih maximize

B's probability of winning in this modi�ed probabilisti setting.
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We onlude this setion with some simple appliations of Theorem 1.

Consider �rst the game G(1, 2). Player B an assure a win by presenting the

proposition, �The number you hose is 2� to Player A. If Player A returns

�true,� then Player B knows A's number is 2. If he returns �false,� then

Player B knows that A's number is 1. Things hange a bit if we onsider

G(1, 3) instead. Theorem 1 tells us that the probability that Player B

wins this game is at most

min(3,21)
3 = 2

3 . Thus there does not exist a

proposition P that, regardless of the number hosen by Player A, will (after

reeiving Player A's response) allow Player B to dedue whih number

Player A hose. In fat, one need not resort to probabilisti methods in

order to establish this; one needs only basi propositional logi. Suppose

by way of ontradition that there exists suh a proposition P . Let ϕ be

the statement, �Player A will hoose a uniformly random number α ∈ [3]
(observe that Player B knows ϕ).� Then ϕ ∧ P |= �Player A hose i� and
ϕ ∧ ¬P |= �Player A hose j� for some i, j ∈ [3]. Therefore (ϕ ∧ P ) ∨ (ϕ ∧
¬P ) |= �Player A hose either i or j.� But (ϕ ∧ P ) ∨ (ϕ ∧ ¬P ) is true.

We dedue that Player A hose either i or j. But of ourse, |[3]| = 3, so
this need not be so. We refer the interested reader to the bibliography for

further reading on probability, logi, and algorithms.

3. Main Results

Now that we have Theorem 1 in our poket, we are ready to give a

anonial version of the game alluded to in the abstrat. Throughout the

remainder of this note, we shall assume G(m,X) to be as de�ned
in De�nition 2 below unless stated otherwise.

De�nition 2 (The game G(m,X), anonial version). A �nite, nonempty

set X ⊆ Z+
is presented to Players A and B. Player A randomly hooses

a number α ∈ X, but does not reveal α to Player B. Further, Player B is

given a positive integer m. For eah i ∈ [m], Player B is to selet some

subset Bi ⊆ X and presents it to Player A (this is equivalent to Player B

asking Player A if the number he hose is in Bi). After reeiving Bi from

Player B, Player A returns Ai := Bi if α ∈ Bi (this orresponds to an

answer of �yes�) and Ai := Bc
i (relative to X) if α /∈ Bi (whih orresponds

to an answer of �no�)1. After Player B has presented all m sets to Player

A (and reeived all m responses from Player A), Player B attempts to guess

the number Player A piked. Now set A0 := X, and for 1 ≤ i ≤ m+ 1, let
Ai :=

⋂

0≤j<i Aj . We further impose the following on Player B:

2

(1) Bi ⊆ Ai for all i ∈ [m], and

1

Player B presents Bi to Player A after she has reeived Ai−1 from Player A.

2

Player B loses if she does not follow (1) and (2) of De�nition 2.
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(2) Player B's guess is a member of Am+1 (that is, Am+1 is Player B's

guessing set).

Note that at the ith stage of the game (that is, the stage where Player

B is about to selet a set Bi to present to Player A), Player B knows the

elements of Ai and that α ∈ Ai. Thus she need not inlude any members

of A c
i in her set Bi (ergo (1)). Similarly, after Player B has given all m sets

to Player A, she knows both the elements of Am+1 and that α ∈ Am+1.

Thus it makes no sense to guess outside of this set (hene (2)). Finally,

observe that the game de�ned in De�nition 2 above is a spei� example of

the game de�ned in the previous setion, and therefore Theorem 1 applies

in this ontext.

Reall from Theorem 1 that the probability of winning G(m,X) is at

most

min(|X|,2m)
|X| . We shall prove that this value an atually be ahieved via

the �anonial version� of the game just desribed. We leave the abstration

for a moment to present a onrete example.

Example 4. Consider the game G(2, 6). To begin, Player A hooses some

α ∈ [6]; say α = 4. Now Player B is allotted two �questions� before guessing.

Player B presents the set {1, 2, 3} to Player A, who then returns {4, 5, 6}.
Player B now presents {4, 5} to Player A, who returns {4, 5}. Player B

guesses 4, and wins the game.

We now turn our attention to determining Player B's strategy for ahiev-

ing the maximum probability

min(|X|,2m)
|X| of winning G(m,X). We begin

with a de�nition and another example.

De�nition 3. Let X be a �nite, nonempty subset of Z+
, and let m ≥ 1

be an integer. For eah i, 1 ≤ i ≤ m, suppose Bi ⊆ X. Lastly, let

x0 ∈ X. Then we all the sequene g := (B1, . . . , Bm, x0) a game vetor

of the game G(m,X). Further, we say that g is allowable in the game

G(m,X) provided every Bi satis�es (1) of De�nition 2 and x0 satis�es (2)
of De�nition 2. Lastly, g is winning if g is allowable and x0 is the number

hosen by Player A.

Example 5. Consider the game G(3, 9) (that is, Player A hooses some

α ∈ [9] and Player B is allotted 3 subsets of [9] before guessing), and

suppose that Player A hooses the number 1. Set B1 := {2, 4, 8}, B2 :=
{1, 3, 5, 9}, B′

2 := {1, 2, 5, 9}, and B3 := {1, 5}. Then the game vetor

g := (B1, B2, B3, 5) is allowable and g
′ := (B1, B2, B3, 1) is winning. How-

ever, the game vetor g
′′ := (B1, B2, B3, 6) is not allowable, sine 6 /∈ A4.

Finally, g
′′′ := (B1, B

′
2, B3, 1) is not allowable either, sine B′

2 is not a

subset of B1 or Bc
1 (hene B′

2 * A2).

We now establish a proposition whih will be heavily utilized throughout

the remainder of the paper. In what follows, the notation Gα(m,X) will
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denote the game with m questions on the �nite, nonempty set X ⊆ Z+
in

whih Player A hooses α.

Proposition 1. Let X ⊆ Z+
be �nite and nonempty and let m > 1 be

an integer. Further, suppose that B1, . . . , Bm are subsets of X and that

x0 ∈ X. Then the following hold:

(a) Let A1 be Player A's response to B1 in the game Gα(m,X). Then

A1 is a �nite subset of Z+
ontaining α. Thus the game Gα(m −

1, A1) is well-de�ned.

(b) (B1, . . . , Bm, x0) is an allowable game vetor of the game Gα(m,X)
if and only if (B2, . . . , Bm, x0) is an allowable game vetor of the

game Gα(m− 1, A1).
() (B1, . . . , Bm, x0) is a winning game vetor of the game Gα(m,X) if

and only if

(B2, . . . , Bm, x0) is a winning game vetor of the game Gα(m −
1, A1).

Proof. Assume that X ⊆ Z+
is �nite and nonempty and that m > 1.

Assume in addition that Bi ⊆ X for 1 ≤ i ≤ m and that x0 ∈ X .

(a) By de�nition, Player A returns A1 := B1 if α ∈ B1 and A1 := X\B1

otherwise. Sine X is �nite, it follows in either ase that A1 is a �nite

subset of Z+
. Moreover, α ∈ A1. Therefore, the game Gα(m − 1, A1) is

well-de�ned.

(b) Assume �rst that (B1, . . . , Bm, x0) is an allowable game vetor of

Gα(m,X) and let 2 ≤ i ≤ m be arbitrary. Then by de�nition of �allowable,�

it follows that

Bi ⊆ Ai =
⋂

0≤j<i

Aj ⊆ A1 and x0 ∈ Am+1 =
⋂

0≤j≤m

Aj ⊆ A1.

Therefore, B2 ∪B3 ∪ . . .∪Bm ∪{x0} ⊆ A1. We onlude that (B2, B3, . . .,
Bm, x0) is a game vetor of the game Gα(m − 1, A1). Now set A′

1 := A1

(this is the analog of A0 in De�nition 2), and for 2 ≤ i ≤ m, let A′
i be Player

A's response to Bi in the game Gα(m− 1, A1). Lastly, for 2 ≤ i ≤ m + 1,
set A ′

i :=
⋂

1≤j<i Aj .

It follows immediately by de�nition of Gα(m−1, A1) that for 2 ≤ i ≤ m,

A′
i =

{

Bi = Ai if α ∈ Bi,

A1\Bi if α /∈ Bi.
(3.1)

We shall prove that

Ai ⊆ A
′
i for all i, 2 ≤ i ≤ m+ 1. (3.2)
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Toward this end, hoose i with 2 ≤ i ≤ m+ 1 and let x ∈ Ai be arbitrary.

We prove that x ∈ A ′
i . Pik j with 1 ≤ j < i. We must show that x ∈ A′

j .

If j = 1, the result is lear sine A′
1 = A1 and Ai ⊆ A1. Now assume that

2 ≤ j < i. As x ∈ Ai, we have x ∈ Aj . Suppose �rst that α ∈ Bj . Then

(3.1) implies that Aj = A′
j , hene x ∈ A′

j . Assume now that α /∈ Bj . Then

Aj = X\Bj and A′
j = A1\Bj. Sine x ∈ Aj , we onlude that x /∈ Bj .

Thus to prove that x ∈ A′
j , it su�es to show that x ∈ A1. Reall that

2 ≤ i ≤ m + 1 and that x ∈ Ai. Thus x ∈ A1 by de�nition of Ai. This

onludes the proof of (3.2). It is now easy to see that (B2, . . . , Bm, x0) is
allowable: we simply need to hek that Bi ⊆ A ′

i for 2 ≤ i ≤ m and that

x0 ∈ A
′
m+1. But this follows immediately from (3.2) and the assumption

that (B1, . . . , Bm, x0) is allowable.
Now suppose that (B2, . . . , Bm, x0) is allowable in the game Gα(m −

1, A1). By assumption,

B1 ⊆ X = A1. (3.3)

It follows from (3.1) that

A′
i ⊆ Ai for 1 ≤ i ≤ m (that A′

1 ⊆ A1 is by de�nition). (3.4)

Analogous to (3.2) above, we now prove that

A
′
i ⊆ Ai for all i, 2 ≤ i ≤ m+ 1. (3.5)

Let 2 ≤ i ≤ m+ 1 be arbitrary. Then

A
′
i =

⋂

1≤j<i

A′
j ⊆

⋂

1≤j<i

Aj = X ∩
(

⋂

1≤j<i

Aj

)

=
⋂

0≤j<i

Aj = Ai;

the ontainment is immediate from (3.4) above. We onlude from (3.3),

(3.5), and the assumption that (B2, . . . , Bm, x0) is allowable that (B1,. . .,
Bm, x0) is an allowable game vetor of G(m,X).

() This follows immediately from (b). �

At long last, we are ready to establish the main result of this note via

indution. In partiular, we now have the mahinery required to harater-

ize all optimal strategies for Player B. Sine the base ase of the indution

may be of independent interest, we single it out and prove it separately.

First, we remind the reader that by Theorem 1, the probability that Player

B wins game G(m,X) annot exeed min(|X|,2m)
|X| .

Proposition 2. Let X be a �nite, nonempty subset of Z+
, and let α ∈ X

be random. Now let g := (B1, x0) be an arbitrary allowable game vetor of
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the game Gα(1, X). Finally, let Wg be the event, �g is a winning vetor of

the game Gα(1, X).� Then

(a) P(Wg) =
min(|X|,2)

|X| if and only if

(b) min(1, |X | − 1) ≤ |B1| ≤ max(1, |X | − 1).

Proof. Suppose �rst that |X | = 1. Then (b) automatially holds, and the

equivalene of (a) and (b) redues to the assertion that g is a winning

vetor. Regardless of whether B1 = ∅ or B1 = X , Player A will return

X . Sine g is a game vetor, it follows by de�nition that x0 ∈ X . Hene

x0 = α, and g is winning.

We now assume that |X | > 1 and that Player B has presented B1 to

Player A. Let B1 be the event, �Player A returns B1,� and let Bc
1 be the

event, �Player A returns Bc
1.� Sine either B1 or Bc

1 must our and sine

these events are mutually exlusive, we dedue that

P(Wg) = P(Wg ∩ (B1 ∪ Bc
1)) = P(Wg ∩ B1) + P(Wg ∩ Bc

1). (3.6)

Suppose now that (b) above fails. We shall prove that (a) fails too. It

is easy to see that (b) fails if and only if B1 = ∅ or B1 = X . Suppose that

B1 = ∅. Then B1 does not our, and we dedue from (3.6) above that

P(Wg) = P(Wg ∩Bc
1) = P(Bc

1) ·P(Wg | Bc
1) = 1 ·

1

|X |
<

min(|X |, 2)

|X |
, (3.7)

and we have shown that (a) fails. An analogous argument applies in ase

B1 = X .

Conversely, assume (b) holds. Then both B1 and Bc
1 are nonempty. In

this ase, (3.6) beomes

P(Wg) = P(Wg ∩ B1) + P(Wg ∩ Bc
1)

= P(B1) · P(Wg | B1) + P(Bc
1) · P(Wg | Bc

1)

=
|B1|

|X |
·

1

|B1|
+

|Bc
1|

|X |
·

1

|Bc
1|

=
2

|X |
=

min(|X |, 2)

|X |
,

(3.8)

as required. �

Now is a good time to re�et upon our results to this point in light of

the examples given in the introdution. Let n > 1 be arbitrary. Then in

the game G(1, n) (as introdued in the introdution, with Player B asking

a yes/no question to Player A), Player B an maximize her probability of

winning by asking the following (seemingly naive) simple question: �Is the

number you piked equal to 1?� We �nd this fat quite surprising. In

fat, we an say a bit more: Player B maximizes her probability of winning
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G(1, n) with question Q if she knows a number x ∈ [n] for whih Player A

answers �no� to Q if he piked x and a value y ∈ [n] for whih Player A

responds with �yes� to Q if he piked y. We now present the main result of

this paper.

Theorem 2. Let X be a �nite, nonempty subset of Z+
, and let α ∈ X

be random. Now let g := (B1, . . . , Bm, x0) be an arbitrary allowable game

vetor of the game Gα(m,X). We remind the reader that A0 := X and

for eah i ∈ [m], Ai denotes Player A's response to the set Bi presented by

Player B. Finally, Ai :=
⋂

0≤j<i Aj for i ∈ [m+1]. Now let Wg(Gα(m,X))

be the event, �g is a winning vetor of the game Gα(m,X).� Then

(a) P(Wg(Gα(m,X))) = min(|X|,2m)
|X| if and only if

(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i,
1 ≤ i ≤ m.

Proof. We proeed by indution on m. Thus suppose the theorem is true

for all k < m. If m = 1, then we are done by Proposition 2. Therefore, we

may suppose that

m > 1. (3.9)

Now set

g
′ := (B2, . . . , Bm, x0). (3.10)

As in the proof of Proposition 2, we let B1 denote the event, �Player A

returns B1 after being presented with B1,� and Bc
1 name the event, �Player

A returns Bc
1 after being presented with B1.� We now onsider two ases.

Case 1: B1 = ∅ or B1 = X . Then P(Bc
1) = 1 or P(B1) = 1, respetively,

and we have

P(Wg(Gα(m,X))) (3.11)

=

{

P(Wg(Gα(m,X)) ∩ Bc
1) = P(Wg(Gα(m,X)) | Bc

1) if B1 = ∅,

P(Wg(Gα(m,X)) ∩ B1) = P(Wg(Gα(m,X)) | B1) if B1 = X.

If B1 = ∅, then Proposition 1 implies that P(Wg(Gα(m,X)) | Bc
1) =

P(Wg′(Gα(m−1, X))). Similarly, if B1 = X , then P(Wg(Gα(m,X)) | B1) =
P(Wg′(Gα(m− 1, X))). In either ase, (3.11) redues to

P(Wg(Gα(m,X))) = P(Wg′(Gα(m− 1, X))). (3.12)

We are ready to establish the equivalene of (a) and (b). Suppose �rst

that
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P(Wg(Gα(m,X))) =
min(|X |, 2m)

|X |
. (3.13)

For all i, 1 ≤ i ≤ m, we must prove that

min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i). (3.14)

We dedue from (3.12) and (3.13) that

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m)

|X |
. (3.15)

Reall from Theorem 1 that P(Wg′(Gα(m − 1, X))) ≤ min(|X|,2m−1)
|X| . This

fat along with (3.15) implies

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m)

|X |
=

min(|X |, 2m−1)

|X |
. (3.16)

It is patent from (3.16) that

|X | ≤ 2m−1. (3.17)

We now prove that (3.14) holds for all i, 1 ≤ i ≤ m. When i = 1, (3.14)
follows immediately from (3.17) above. Set A′

1 := X and for eah i with
2 ≤ i ≤ m, let A′

i be Player A's response to Bi in the game Gα(m− 1, X).
Then we dedue from (3.16) and the indutive hypothesis that

min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i) for 2 ≤ i ≤ m,
(3.18)

where A
′
i is de�ned as in the proof of Proposition 1. Sine B1 = ∅ or

B1 = X , it follows that A1 = X . Hene

A′
i = Ai for eah i, 1 ≤ i ≤ m. Thus also A

′
i = Ai for eah i, 2 ≤ i ≤ m.

(3.19)

Combining (3.18) and (3.19), we see that min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤
max(2m−i, |Ai| − 2m−i) for 2 ≤ i ≤ m, and (3.14) has been established for

all i.
Conversely, assume that (3.14) holds for 1 ≤ i ≤ m. We shall prove

that P(Wg(Gα(m,X))) = min(|X|,2m)
|X| . It follows immediately from (3.14),

(3.19), and the indutive hypothesis that

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m−1)

|X |
. (3.20)
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We dedue from (3.12) that

P(Wg(Gα(m,X))) =
min(|X |, 2m−1)

|X |
. (3.21)

To onlude the Case 1 proof, it su�es to show that |X | ≤ 2m−1
. Again,

we remind the reader that our Case 1 assumption is that B1 = ∅ orB1 = X .

If B1 = ∅, then |X | ≤ 2m−1
follows immediately from the �rst inequality

in (3.14) above (with i = 1). In ase B1 = X , we dedue |X | ≤ 2m−1
from

the right-hand i = 1 inequality in (3.14). This onludes the proof in Case

1.

Case 2: ∅ ( B1 ( X . In this ase, Theorem 1, Proposition 1, and the

argument used in the proof of Proposition 2 (see (3.6) and (3.8)) imply that

P(Wg(Gα(m,X)))

= P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc
1) · P(Wg(Gα(m,X)) | Bc

1)

= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc
1) · P(Wg′(Gα(m− 1, Bc

1)))

≤
|B1|

|X |
·
min(|B1|, 2

m−1)

|B1|
+

|Bc
1|

|X |
·
min(|Bc

1|, 2
m−1)

|Bc
1|

=
min(|B1|, 2

m−1)

|X |
+

min(|Bc
1|, 2

m−1)

|X |

≤
min(|X |, 2m)

|X |
. (3.22)

Assume �rst that P(Wg(Gα(m,X))) = min(|X|,2m)
|X| . Then equality holds

throughout (3.22). It follows (regardless of whether A1 = B1 or A1 = Bc
1)

that

P(Wg′(Gα(m− 1, A1))) =
min(|A1|, 2

m−1)

|A1|
. (3.23)

For 2 ≤ i ≤ m, the indutive hypothesis yields

min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i), (3.24)

Invoking (3.2) and (3.5) of the proof of Proposition 1, (3.24) beomes

min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) (3.25)

for 2 ≤ i ≤ m. To omplete the impliation (a) =⇒ (b), we need only show

that (3.25) also holds when i = 1. Suppose not. Then either (1) |B1| <
2m−1

and |B1| < |X | − 2m−1
or (2) |B1| > 2m−1

and |B1| > |X | − 2m−1
.
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In either ase, (3.22) implies that P(Wg(Gα(m,X))) < min(|X|,2m)
|X| , and we

have a ontradition to our assumption.

Conversely, suppose that (3.25) holds for all i, 1 ≤ i ≤ m. Then by (3.2)

and (3.5) of the proof of Proposition 1, we obtain (3.24) for 2 ≤ i ≤ m. For

the reader's onveniene, we restate (3.22):

P(Wg(Gα(m,X)))

= P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc
1) · P(Wg(Gα(m,X)) | Bc

1)

= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc
1) · P(Wg′(Gα(m− 1, Bc

1)))

≤
|B1|

|X |
·
min(|B1|, 2

m−1)

|B1|
+

|Bc
1|

|X |
·
min(|Bc

1|, 2
m−1)

|Bc
1|

=
min(|B1|, 2

m−1)

|X |
+

min(|Bc
1|, 2

m−1)

|X |

≤
min(|X |, 2m)

|X |
.

As (3.24) holds for 2 ≤ i ≤ m, the indutive hypothesis allows us to replae

the �rst inequality sign above with equality. We onlude from (3.25) above

(with i = 1) that either (1) |B1| ≤ 2m−1
and |Bc

1| ≤ 2m−1
or (2) 2m−1 ≤

|B1| and 2m−1 ≤ |Bc
1|. In either ase, we an replae the seond inequality

with equality, and the proof is omplete. �

We have determined the sets Bi ⊆ X whih maximize Player B's proba-

bility of winning Gα(m,X). It remains to verify that Player B an, in fat,

e�etively �nd an allowable game vetor (B1, . . . , Bm, x0) whih satis�es

(b) of Theorem 2.

Proposition 3. Consider the game Gα(m,X), where X ⊆ Z+
is �nite

and nonempty and m ≥ 1. Then Player B an e�etively hoose

3

subsets

B1, . . . , Bm of X and x0 ∈ X suh that

(a) (B1, . . . , Bm, x0) is an allowable game vetor, and

(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i,
1 ≤ i ≤ m.

Proof. Fix k with 1 ≤ k ≤ m, and suppose that for eah i < k, Player B
has hosen Bi ⊆ Ai satisfying (b) and Player A has returned Ai to her.

Then of ourse, Player B knows preisely whih elements of X belong to

Ak. We laim that Player B an e�etively hoose Bk ⊆ Ak satisfying (b).

We onsider two ases.

3

That is, there exists an algorithm by whih Player B an hoose B1, . . . , Bm, x0

satisfying (a) and (b) regardless of whih α was hosen by Player A.
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Case 1: |Ak| − 2m−k < 0. Then Player B an take Bk := ∅.

Case 2: |Ak| − 2m−k ≥ 0. Then Player B an hoose any subset of Ak

of size |Ak| − 2m−k
.

After hoosing the sets B1, . . . , Bm as above, it remains to show that

Player B an e�etively selet x0 ∈ Am+1. Sine α ∈ Am+1, we have

Am+1 6= ∅. Thus Player B an simply selet her favorite element of Am+1

(as above, Player B knows exatly whih elements of X are members of

Am+1), and the proof is omplete. �

4. Some Consequenes

We onlude the paper with several onsequenes of the results of the

previous setion.

Corollary 1. Player B has a winning strategy in the game Gα(m,X) if

and only if m ≥ log2 |X |.

Proof. Player B has a winning strategy in the game Gα(m,X) if and only

if

min(|X|,2m)
|X| = 1 if and only if 2m ≥ |X | if and only if m ≥ log2 |X |. �

It is natural to ask if it is possible to eliminate �min� and �max� from

the formulation of (b) of Theorem 2. Indeed it is. We shall require the

following simple lemma.

Lemma 1. Let (B1, . . . , Bm, x0) be an allowable game vetor of the game

Gα(m,X) suh that min(2m−1, |X | − 2m−1) ≤ |B1| ≤ max(2m−1, |X | −
2m−1). Then 2m ≥ |X | if and only if 2m−1 ≥ |A1|.

Proof. Suppose �rst that 2m ≥ |X |. Then 2m−1 ≥ |X | − 2m−1
, and hene

|X | − 2m−1 ≤ |B1| ≤ 2m−1
. If A1 = B1, then 2m−1 ≥ |B1| = |A1|, as

required. Otherwise, A1 = Bc
1. Sine |X | − 2m−1 ≤ |B1|, we dedue that

|A1| = |X | − |B1| ≤ 2m−1
.

Now assume that 2m ≤ |X |. Then 2m−1 ≤ |X |−2m−1
, and thus 2m−1 ≤

|B1| ≤ |X | − 2m−1
. As above, if A1 = B1, then 2m−1 ≤ |A1|. Suppose

A1 = Bc
1. Sine |B1| ≤ |X | − 2m−1

, we obtain |A1| = |X | − |B1| ≥ 2m−1
.

This onludes the proof. �

Corollary 2. Let X ⊆ Z+
be �nite and nonempty, m ∈ Z+

, and g :=
(B1, . . . , Bm, x0) be an allowable game vetor of the game Gα(m,X). Then
the following hold:

(a) If 2m ≥ |X |, then P(Wg(Gα(m,X))) = 1 if and only if |Ai|−2m−i ≤
|Bi| ≤ 2m−i

for 1 ≤ i ≤ m, and

(b) If 2m ≤ |X |, then P(Wg(Gα(m,X))) = 2m

|X| if and only if 2m−i ≤

|Bi| ≤ |Ai| − 2m−i
for 1 ≤ i ≤ m.
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Proof. Let X , m, and g be as stated. We proeed by indution onm. Thus,

we assume that the orollary holds for all k < m, and prove that it holds

for m. If m = 1, then (a) and (b) follow immediately from Theorem 2.

Now suppose that m > 1. By Theorem 2, it su�es to establish only the

forward impliations.

We prove only (a), as the proof of (b) is similar. Suppose 2m ≥ |X |
and P(Wg(Gα(m,X))) = 1. Then |X | − 2m−1 ≤ 2m−1

. By Theorem 2, it

follows that |X |−2m−1 ≤ |B1| ≤ 2m−1
. Lemma 1 tells us that 2m−1 ≥ |A1|.

Reall from (3.2) and (3.5) of the proof of Proposition 1 that Ai = A ′
i for

2 ≤ i ≤ m + 1. This fat along with the indutive hypothesis yields that

|Ai| − 2m−i ≤ |Bi| ≤ 2m−i
for 2 ≤ i ≤ m. The proof is now omplete. �

It is immediate from Corollary 2 that in the game Gα(1, X), |X | > 1,
Player B maximizes her probability of winning if and only if she hooses

B1 ⊆ X and x0 ∈ X suh that (B1, x0) is allowable and 1 ≤ |B1| ≤
|X | − 1. Thus (for large values of |X |) there are subsets B1 ⊆ X of many

di�erent ardinalities whih maximize B's probability of winning Gα(1, X).
Moreover, in general, Player B has some freedom in hoosing the sizes of the

sets Bi to present to Player A, even in the ase when m = ⌈log2 |X |⌉. For
instane, onsider the game Gα(5, 19). Then (again, employing a winning

strategy) Player B an begin by hoosing any B1 ⊆ [19] with the property

that 3 ≤ |B1| ≤ 16.
We end this note by determining onditions under whih Player B has

no freedom in hoosing the ardinalities of the sets B1, . . . , Bm, where

(B1, . . . , Bm, x0) is a game vetor whih maximizes B's probability of win-

ning Gα(m,X).

Corollary 3. Let X be a �nite, nonempty subset of Z+
and let g :=

(B1, . . . , Bm, x0) be a game vetor of the game Gα(m,X) whih maximizes

Player B's probability of winning (that is, P(Wg(Gα(m,X))) = min(|X|,2m)
|X| ).

Then the ardinalities of the sets Bi are uniquely determined if and only if

|X | = 2m (in whih ase Player B has a winning strategy by Corollary 1).

Proof. Let g := (B1, . . . , Bm, x0) be an arbitrary game vetor whih max-

imizes the probability of Player B winning Gα(m,X) (in partiular, g is

allowable). Assume �rst that the ardinalities of the sets Bi are uniquely

determined. Then Theorem 2 implies that min(2m−1, |X |−2m−1) ≤ |B1| ≤
max(2m−1, |X | − 2m−1). We laim that 2m−1 = |X | − 2m−1

. Otherwise, it

is easy to see that there exist integers n1 6= n2 satisfying both

0 ≤ ni ≤ |X |, and (4.1)

min(2m−1, |X | − 2m−1) ≤ ni ≤ max(2m−1, |X | − 2m−1) (4.2)
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for i = 1, 2. But then both |B1| = n1 and |B1| = n2 are possible. This gives

us a ontradition to the uniqueness of |B1|. Thus 2
m−1 = |X |−2m−1

, and

|X | = 2m.
Conversely, suppose that |X | = 2m. Then it follows immediately from

Corollary 2 that |Bi| = 2m−i
for 1 ≤ i ≤ m. �
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