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Abstract. We study a batch arrival queueing system of phase va-
cation with two stages of service based on a Bernoulli schedule. A
single server provides essential service to all arriving customers with
service time following a general distribution. After two stages of ser-
vice completion, the server leaves for phase one vacation of random
length with probability p or to continue staying in the system with
probability 1−p. As soon as the completion of phase one vacation, the
server undergoes phase two vacation. On completion of two heteroge-
neous phases of vacation the server returns back to the system. The
vacation times are assumed to be general. The server is interrupted
and the service interruption follows an exponential distribution. The
arrivals follow a Poisson distribution. Using supplementary variable
technique, the Laplace transforms of time dependent probabilities
of system state are derived. From this we deduce the steady state
results. We also obtain the average queue size and average waiting
time.

1. Introduction

Queueing models with vacation play a major role in manufacturing and
production systems, computer and communication systems, service and
distribution systems, etc. The studies on queues with batch arrival and
vacations have been increased recently. Many real life situations of this
model are mostly observed in supermarkets, factories and very large scale
manufacturing industries.

Baba [1] studied an M [x]/G/1 queue with vacation time. Madan and
Anabosi [6] studied server vacations based on Bernoulli schedules and a
single vacation policy. Madan and Choudhury [8] studied a single server
queue with two phases of heterogeneous service under Bernoulli schedule
and a general vacation time. Thangaraj and Vanitha [2] studied a single
server M/G/1 feedback queue with two types of services having general
distribution. Madan and Choudhury [7] proposed a queueing system with
restricted admissibility of arriving batches. Igaki [12], Levi and Yechilai
[13], and Madan and Abu-Davyeh [14] studied vacation queues with differ-
ent vacation policies.
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S. Maragathasundari and S. Srinivasan [15] analyzed the M/G/1 feed-
back queue with three stages multiple server vacations. S. Maragatha-
sundari and S. Srinivasan [16] analyzed the triple stages of service having
compulsory vacation and service interruptions. S. Maragathasundari and
S. Srinivasan [17] studied the three phase M/G/1 queue with Bernoulli
feedback and multiple server vacation. Various aspects like phase vaca-
tions, stages of services, and phases of service have been discussed by S.
Maragathasundari and S. Srinivasan [18, 19, 20, 21, 24, 25, 26].

In this paper, we consider non-Markovian single server batch arrival
queueing system of two stages of service with interruption, in which we
assume that after every service completion, the server has the option to
leave for a vacation of random length with probability p or to continue
staying in the system with probability 1− p. The vacation period has two
heterogeneous phases. On completion of two vacation phases the server
returns back to the system.

This paper is organized as follows. The mathematical description of our
model is given in Section 2. Definitions and equations governing the system
are given in Section 3. The time dependent solution is obtained in Section
4. The steady state results are derived in Section 5. Average queue size
and average waiting time are computed in Sections 6 and 7, respectively.
The conclusion is given in Section 8.

2. Mathematical Description of the Model

We assume the following to describe the queueing model of our study.

a) Customers arrive at the system in batches of variable size in a
compound Poisson process and are provided one by one service on
a first-come-first-served basis. Let λci dt with i = 1, 2, . . . be the
first order probability that a batch of i customers arrives at the
system during a short interval of time (t, t+ dt), where 0 ≤ ci ≤ 1,
Σ∞

i=1ci = 1, and λ > 0 is the arrival rate of batches.
b) A single server provides service to all arriving customers with the

service time having general distribution. Let M(ν) and m(ν) be
the distribution and the density function of the service time, re-
spectively.

c) We assume interruptions arrive at random while serving the cus-
tomers are assumed to occur according to a Poisson process with
mean time rate α > 0. Let β be the server’s rate of attending
interruptions. Furthermore, we assume that once the interruption
arrives the customer whose service is interrupted comes back to
the head of the queue. Let µ(x) dx be the conditional probability
of completion of service during the interval (x, x + dx) given that
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the elapsed time is x, so that

µ(x) =
m(x)

1−M(x)
,

and therefore,

m(s) = µ(s)e−
∫

s

0
µ(s) dx.

d) As soon as the service is over, the server may take a vacation with
probability p or may continue staying in the system with probability
1 − p. After phase one vacation completion, the server undergoes
phase two vacation. On completion of two heterogeneous phase of
vacation the server returns back to the system.

e) The server’s vacation time follows a general (arbitrary) distribution
with distribution function Vi(t) and density function νi(t). Let
γi(x) dx be the conditional probability of a completion of a vacation
during the interval (x, x+ dx) given that the elapsed vacation time
is x, so that

γi(x) =
νi(x)

1− Vi(x)
i = 1, 2, 3

and therefore,

νi(t) = γi(t)e
−

∫
t

0
γi(s)dxi = 1, 2, 3.

f) On returning from vacation the server instantly starts serving the
customer at the head of the queue if any.

g) Various stochastic processes involved in the system are assumed to
be independent of each other.

3. Definitions and Equations Governing the System

We define P
(i)
n (x, t) to be the probability that at time t, the server is

providing the ith stage of service and there are n (n ≥ 0) customers in the
queue excluding the one being served and the elapsed service time for this
customer is x. Consequently,

P (i)
n (t) =

∫

∞

0

Pn(x, t) dx

denotes the probability that at time t there are n customers in the queue
excluding one customer in the essential service irrespective of the value of
x for i = 1, 2.

Let Vn(x, t) denote the probability that at time t, the server is under
vacation with elapsed vacation time x and there are n (n ≥ 0) customers
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in the queue. Consequently,

V (i)
n (t) =

∫

∞

0

V (i)
n (x, t) dx

denotes the probability that at time t there are n customers in the queue
and the server is under vacation irrespective of the value of x for i = 1, 2.

Let Rn(t) be the probability that at time t, the server is inactive due to
arrival of interruption. Let Q(t) be the probability that at time t, there are
no customers in the queue or in service and the server is idle but available
in the system.

According to the mathematical model mentioned above, the system has
the following set of differential-difference equations.

∂

∂x
P

(1)
0 (x, t) +

∂

∂x
P

(1)
0 (x, t) + [λ+ α+ µ1(x)]P

(1)
0 (x, t) = 0; (1)

∂

∂x
P (1)
n (x, t) +

∂

∂x
P (1)
n (x, t) + [λ+ α+ µ1(x)]P

(1)
n (x, t)

= λ

n
∑

k=1

ckPn−k(x, t), n ≥ 1; (2)

∂

∂x
P

(2)
0 (x, t) +

∂

∂x
P

(2)
0 (x, t) + [λ+ α+ µ2(x)]P

(2)
0 (x, t) = 0; (3)

∂

∂x
P (2)
n (x, t) +

∂

∂x
P (2)
n (x, t) + [λ+ α+ µ2(x)]P

(2)
n (x, t)

= λ

n
∑

k=1

ckPn−k(x, t), n ≥ 1; (4)

∂

∂x
V

(1)
0 (x, t) +

∂

∂x
V

(1)
0 (x, t) + [λ+ α+ γ1(x)]V

(1)
0 (x, t) = 0; (5)

∂

∂x
V (1)
n (x, t) +

∂

∂x
V (1)
n (x, t) + [λ+ γ1(x)]V

(1)
n (x, t)

= λ

n
∑

k=1

ckV
(1)
n−k(x, t), n ≥ 1; (6)
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∂

∂x
V

(2)
0 (x, t) +

∂

∂x
V

(2)
0 (x, t) + [λ+ α+ γ1(x)]V

(2)
0 (x, t) = 0; (7)

∂

∂x
V (2)
n (x, t) +

∂

∂x
V (2)
n (x, t) + [λ+ γ2(x)]V

(2)
n (x, t)

= λ

n
∑

k=1

ckV
(2)
n−k(x, t), n ≥ 1; (8)

d

dt
R0(t) = −(λ+ β)R0(t); (9)

d

dt
Rn(t) = −(λ+ β)Rn(t) + λ

n
∑

k=1

ckRn−k(t) + α

∫

∞

0

P
(1)
n−1(x, t) dx

+ α

∫

∞

0

P
(2)
(n−1)(x, t) dx; and (10)

d

dt
Q(t) = −λQ(t) + βR0(t) +

∫

∞

0

γ2(x)V
(2)
0 (x, t) dx

+ (1− p)

∫

∞

0

µ(x)P
(2)
0 (x) dx. (11)

Equations are to be solved subject to the following boundary conditions:

P (1)
n (0, t) = λc(n+1)Q(t) + (1− p)

∫

∞

0

µ2(x)P
(2)
n+1(x, t) dx

+ βR(n+1)(t) +

∫

∞

0

γ2(x)V
(2)
(n+1)(x, t) dx, n ≥ 0;

(12a)

P (2)
n (0, t) =

∫

∞

0

P (1)
n (x, t)µ1(x) dx; (12b)

V (1)
n (0, t) = p

∫

∞

0

µ2(x)P
(2)
n (x, t) dx, n ≥ 0; and (13)

V (2)
n (0, t) =

∫

∞

0

γ1(x)V
(1)
n (x, t) dx, n ≥ 0. (14)

We assume that initially there are no customers in the system and the
server is idle. So the initial conditions are

V
(i)
0 (0) = V (i)

n (0) = 0, Q(0) = 1, Rn(0) = 0,

Pn(0) = 0 for n ≥ 0 and i = 1, 2. (15)
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4. Generating Functions of the Queue Length: The

Time-Dependent Solution

In this section, we obtain the transient solution for the above set of
differential-difference equations.

Theorem 4.1. The system of differential-difference equations to describe
an M [X] /G/1 queue with essential service with service interruption and two
phases of vacation are given by equations (1) to (14) with initial conditions
(15) and the generating functions of transient solution are given by equation
(58a) to (61).

Proof. We define the probability generating functions,

P (x, z, t) =
∞
∑

n=0

znP (i)
n (x, t), P (i)(z, t) =

∞
∑

n=0

znP (i)
n (t); i = 1, 2 (16)

R(z, t) =

∞
∑

n=0

znRn(t);C(z) =

∞
∑

n=0

cnz
nRn(t); (17)

V (i)(x, z, t) =
∞
∑

n=0

znV (i)
n (x, t), V (i)(z, t) =

∞
∑

n=0

znV (i)
n (x, t) for i = 1, 2

(18)

which are convergent inside the circle given by z ≤ 1 and define the Laplace
transform of a function f(t) as

f(s) =

∫

∞

0

e−stf(t) dt, <(s) > 0. (19)

We take the Laplace transform of equations (1) to (14) and using (15), we
obtain

∂

∂x
p̄
(1)
0 (x, s) + [s+ λ+ α+ µ1(x)]p̄

(1)
0 (x, s) = 0; (20)

∂

∂x
p̄(1)n (x, s) + [s+ λ+ α+ µ1(x)]p̄

(1)
n (x, s) = λ

n
∑

k=1

ckP̄n−k(x, s), n ≥ 1;

(21)

∂

∂x
p̄
(2)
0 (x, s) + [s+ λ+ α+ µ2(x)]p̄

(2)
0 (x, s) = 0; (21a)

∂

∂x
p̄(2)n (x, s) + [s+ λ+ α+ µ2(x)]p̄

(2)
n (x, s) = λ

n
∑

k=1

ckP̄n−k(x, s), n ≥ 1;

(21b)
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∂

∂x
V̄

(1)
0 (x, s) + [s+ λ+ γ1(x)]V̄

(1)
0 (x, s) = 0; (22)

∂

∂x
V̄ (1)
n (x, s) + [s+ λ+ γ1(x)]V̄

(1)
n (x, s) = λ

n
∑

k=1

ckV̄
(1)
n−k(x, s), n ≥ 1; (23)

∂

∂x
V̄

(2)
0 (x, s) + [s+ λ+ γ2(x)]V̄

(2)
0 (x, s) = 0; (24)

∂

∂x
V̄ (2)
n (x, s) + [s+ λ+ γ2(x)] V̄

(2)
n (x, s) = λ

n
∑

k=1

CK V̄
(2)
n−k(x, s), n ≥ 1

(25)

(s+ λ+ β)R̄0(s)7 = 0; (26)

(s+ λ+ β)R̄n(s) = λ

∞
∑

n=0

CKR̄n−k(s) +
[

α

∫

∞

0

P̄
(1)
n−1(x, s) dx

+ α

∫

∞

0

P̄
(2)
n−1(x, s) dx

]

, n ≥ 1; (27)

(s+ λ)Q̄(s) = 1 + βR̄0(s) +

∫

∞

0

γ2(x)V̄
(2)
0 (x, s) dx

+ (1− p)

∫

∞

0

µ(x)P̄
(2)
0 (x, s) dx; (28)

P̄ (1)
n (0, s) = λcn+1Q̄(S) + βR̄n+1(s) + (1 − p)

∫

∞

0

µ2(x)P̄
(2)
n+1(x, s) dx

+

∫

∞

0

γ2(x)V̄
(2)
n+1(x, s) dx;

(29a)

P̄ (2)
n (0, s) =

∫

∞

0

P̄ (1)
n (x, s)µ1(x) dx; (29b)

V̄ (1)
n (0, s) = p

∫

∞

0

P̄ (2)
n (x, s)µ2(x) dx, n ≥ 0; and (30)

V̄ (2)
n (0, s) =

∫

∞

0

V̄ (1)
n (x, s)γ1(x) dx, n ≥ 0. (31)

Now multiplying equations (21), (21b), (23), (25) by zn and summing
over n from 0 to ∞, adding equations (20), (21a), (22), (24) and using the
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generating functions defined in equations (17) and (18) we obtain

∂

∂x
P̄ (1)
n (x, z, s) + [s+ λ− λC(z) + α+ µ1(x)] P̄

(1)
n (x, z, s) = 0; (32a)

∂

∂x
P̄ (2)
n (x, z, s) + [s+ λ− λC(z) + α+ µ2(x)] P̄

(2)
n (x, z, s) = 0; (32b)

∂

∂x
V̄ (1)
n (x, z, s) + [s+ λ− λC(z) + γ1(x)] V̄

(1)(x, z, s) = 0; (33)

∂

∂x
V̄ (2)
n (x, z, s) + [s+ λ− λC(z) + γ2(x)] V̄

(2)(x, z, s) = 0; and (34)

(s+ λ− λC(z) + β)R̄(z, s) = αz
[

∫

∞

0

P̄ (1)(x, z, s) dx

+

∫

∞

0

P̄ (2)(x, z, s) dx
]

. (35)

For the boundary conditions, we multiply both sides of equation (29a)
by zn, sum over n from 0 to ∞, and use the equations (17) and (18) to get

zP̄ 1(0, z, s) = λC(Z)Q̄(S) + βR̄(z, s)− βR̄0(s)

+ (1 − p)

∫

∞

0

µ2(x)P̄
(2)(x, z, s) dx

− (1 − p)

∫

∞

0

µ0(x)P̄
(2)(x, z, s) dx

+

∫

∞

0

γ2(x)V̄
(2)(x, z, s) dx

−

∫

∞

0

γ2(x)V̄
(2)
0 (x, z, s) dx. (36)

Using equation (28), equation (36) becomes

zP̄ (1)(0, z, s) =
[

1− sQ(s)
]

+ λ (C(z)− 1) Q̄(S) + βR̄(z, s)

+

∫

∞

0

γ2(x)V̄
(2)(x, z, s) dx

+ (1 − p)

∫

∞

0

µ2(x)P̄
(2)(x, z, s) dx; and (37)

P̄ (2)(0, z, s) =

∫

∞

0

P̄ (1)(x, z, s)µ2(x) dx. (37a)
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Performing a similar operation on equations (30) to (31), we obtain

V̄ (1)(0, z, s) = p

∫

∞

0

µ2(x)P̄
(2)(x, z, s) dx; and (38)

V̄ (2)(0, z, s) =

∫

∞

0

γ1(x)V̄
(1)(x, z, s) dx. (39)

Integrating equation (32a) between 0 to x, we get

P̄ (1)(x, z, s) = P̄ (1)(0, z, s)e−[s+λ−λC(z)+α]x−
∫

∞

0
µ1(t)dt. (40a)

Integrating equation (32b) between 0 to x, we get

P̄ (2)(x, z, s) = P̄ (2)(0, z, s)e−[s+λ−λC(z)+α]x−
∫

∞

0
µ2(t)dt (40b)

where P̄ (1)(0, z, s) is given by equation (37). Again integrating equation
(40a) by parts with respect to x yields

P̄ (1)(z, s) = P̄ (1)(0, z, s)

{

1− M̄1(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

}

(41a)

where P̄ (2)(0, z, s) is given by equation (37a). Again integrating equation
(40b) by parts with respect to x yields

(41b)
P̄ (2)(z, s) = P̄ (2)(0, z, s)

{

1− M̄2(s+ λ− λC(z) + α)

s+ λ− λC(z) + α

}

,

where

M̄1(s+ λ− λC(z) + α) =

∫

∞

0

e−[s+λ−λC(z)+α]xdM1(x) (42a)

and

M̄2(s+ λ− λC(z) + α) =

∫

∞

0

e−[s+λ−λC(z)+α]xdM2(x) (42b)

are the Laplace-Stieltjes transform of the first stage of service time M1(x)
and second stage of service time M2(x). Now multiplying both sides of
equation (40a) by µ1(x) and integrating over x we obtain

∫

∞

0

P̄ (1)(x, z, s)µ1(x) dx = P̄ (1)(0, z, s)M̄1(s+ λ− λC(z) + α) (43a)
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which is the Laplace-Stieltjes transform of the second stage of service time
B2(x). Now multiplying both sides of equation (40b) by µ2(x) and inte-
grating over x we obtain

(43b)

∫

∞

0

P̄ (2)(x, z, s)µ2(x) dx = P̄ (2)(0, z, s)M̄2(s+ λ− λC(z) + α).

Similarly, on integrating equations (33) to (34) from 0 to x,

V̄ (1)(x, z, s) = V̄ (1)(0, z, s)e−[s+λ−λC(z)]x−
∫

∞

0
γ1(t)dt (44)

and

V̄ (2)(x, z, s) = V̄ (2)(0, z, s)e−[s+λ−λC(z)]x−
∫

∞

0
γ2(t)dt (45)

where V̄ (1)(0, z, s) and V̄ (2)(0, z, s) are given by equations (38) and (39).
Again integrating equations (44) and (45) by parts with respect to x yields,

V̄ (1)(z, s) = V̄ (1)(0, z, s)

{

1− V̄1(s+ λ− λC(z))

s+ λ− λC(z)

}

; (46)

V̄ (2)(z, s) = V̄ (2)(0, z, s)

{

1− V̄2(s+ λ− λC(z))

s+ λ− λC(z)

}

; (47)

where

V̄1(s+ λ− λC(z)) =

∫

∞

0

e−[s+λ−λC(z)+α]xdV1(x); (48)

V̄2(s+ λ− λC(z)) =

∫

∞

0

e−[s+λ−λC(z)+α]xdV2(x) (49)

is the Laplace-Stieltjes transform of the first phase and second phase of va-
cation V1(x) and V2(x), respectively. Now multiplying both sides of equa-
tions (44) and (45) by γ1(x) and γ2(x) and integrating over x we obtain

∫

∞

0

V̄ (1)(x, z, s)γ1(x) dx = V̄ (1)(0, z, s)V̄ (1) [(f3(Z))] ; (50)

∫

∞

0

V̄ (2)(x, z, s)γ2(x) dx = V̄ (2)(0, z, s)V̄ (2) [(f3(Z))] . (51)

Using equation (43a) and (43b) in equation (38), we obtain

V̄ (1)(0, z, s) = pM̄1(f1(z))p̄
(2)(0, z, s). (52)

Now using equation (50) and (52) in (39), we obtain

V̄ (2)(0, z, s) = pV̄1(f3(z))M̄2(f1(z))p̄
(2)(0, z, s). (53)

From (35), (40a), and (40b), we obtain

R̄(z, s) =
az

(f1(z))(f2(z))
p̄(1)(0, z, s)

[

1− M̄1(f1(Z))M̄2(f1(z))
]

. (54)
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Now using equation (43b), (51), and (54), we obtain

p̄(1)(0, z, s) =

[

1− sQ̄(s) + λ(C(z)− 1)Q̄(s)
]

f1(z)f2(z)

DR
and (55a)

p̄(2)(0, z, s) =

[

1− sQ̄(s) + λ(C(z) − 1)Q̄(s)
]

f1(z)f2(z)M̄1(f1(z))

DR
. (55b)

Similarly using equation (66), in equations (61), (62), and (63), we obtain

V̄ (1)(0, z, s) = p
{

p̄(1)(0, z, s)
}

M̄1(f1(z))M̄2(f1(z)), (56a)

V̄ (2)(0, z, s) = pV̄ (1)(f3(z))M̄1(f1(z))p̄
(1)(0, z, s)M̄2(f1(z)), (56b)

where

DR =















z − pV̄1(f3(z))V̄2(f3(z))

M̄1(f1(z))M̄2(f1(z))

−(1− p)M̄1(f1(z))M̄2(f1(z))















f1(z)f2(z)

− βαz(1 − M̄1(f1(z))M̄2(f1(z))× {M̄1(f1(z))(1− M̄2(f1(z))}

(57)

where s+λ−λC(z)+α = f1(z), s+λ−λC(z)+β = f2(z), V̄1(s+λ−λC(z)) =
V̄ (f3(z)). Using equations (55a) to (56) in equations (41a), (41b), (46), and
(47), we obtain

p̄(1)(z, s) =
f2(z)

{

(1− sQ̄(s) + λ(C(z)− 1)Q̄(s)
}{

1− M̄1(f1(z))
}

DR
,

(58a)

p̄(2)(z, s) =

{

(1− sQ̄(s) + λ(C(z) − 1)Q̄(s)
}

f1(z)

DR
(58b)

×

{

M̄1(f1(z))
{

1− M̄1(f1(z))
}

}

.

V̄ (1)(z, s) =

{

(1− sQ̄(s) + λ(C)(z) − 1)Q̄(s)
}

DR
pM̄1(f1(z))

× M̄2(f1(z))f1(z)f2(Z)

{

1− V̄1(f3(z))

s+ λ− λC(z)

}

,

(59)
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V̄ (2)(z, s) =

{

(1− sQ̄(s) + λ(C(z)− 1)Q̄(s)
}

DR
pM̄1(f1(z))

× M̄2(f1(z))V̄ f1(z)f2(Z)

{

1− V̄2(f3(z))

s+ λ− λC(z)

}

, (60)

R̄(z, s) =
αz{1− sQ̄(s) + λ(C(z)− 1)Q̄(s)}

DR

×
[

1− M̄1(f1(z))M̄2(f1(z))
]

(61)

where DR is given by equation (57). Thus, P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s),
V̄ (2)(z, s), and R̄(z, s) are completely determined from equations (58a) to
(61) which complete the proof of the theorem. �

5. The Steady State Results

In this section, we shall derive the steady state probability distribution
for our queueing model. These probabilities are obtained by suppressing
the argument t whereever it appears in the time dependent analysis. This
can be obtained by applying the well-known Tauberian property

lim
s→0

sf̄(s) = lim
t→∞

f(t). (62)

In order to determine P̄ (1)(z, s), P̄ (2)(z, s), V̄ (1)(z, s), V̄ (2)(z, s), and R̄(z, s)
completely, we have yet to determine the unknown Q which appears in the
numerators of the right-hand sides of equations (58a) to (61). For that
purpose, we shall use the normalizing condition

P
(1)
(1) + P

(2)
(1) + V̄ (1)(1) + V̄ (2)(1) +R(1) +Q = 1. (63)

Theorem 5.1. The steady state probabilities for an M [x]/G/1 queue of
two stages of service with service interruption and two phases vacation are
given by

p
(1)
(1) =

βλE(I){1− M̄1(α)}Q

dr
, (64a)

p
(2)
(1) =

βλM̄1(α)E(I){1 − M̄2(α)}Q

dr
, (64b)
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V̄ (1)(1) =
λpαβE(I)M̄1(α)M̄2(α)E(V1)Q

dr
, (65)

V̄ (2)(1) =
λpαβE(I)M̄1(α)M̄2(α)E(V2)Q

dr
, (66)

R(I) =
λαE(I){1 − M̄1(α)M̄2(α)}Q

dr
, (67)

where

dr = −λ(α+β)[1−M̄1(α)M̄2(α)]+αβ
[

M̄1M̄2(1 − pλE(I)(E(v1) + E(v2)))
]

.
(68)

E(V ) = E(V1) + E(V2), P (1), V̄ (1)(1), V̄ (2)(1), R(1) and Q are the steady
state probabilities that the server is providing essential service, first phase
of vacation, second phase of vacation and server under idle, respectively
without regard to the number of customers in the queue.

Proof. Multiplying both sides of equations (58a) to (61) by s, taking limit
s −→ 0, applying Tauberian property and simplifying, we obtain

p(1)(z) =
f2(z)

(

1− M̄1(f1(z))
)

λ(C(Z) − 1)Q

dr
, (69)

p(2)(z) =
f2(z)M̄1 (f1(z))

(

1− M̄2(f1(z))
)

λ(C(z)− 1)Q

dr
, (70)

V (1)(z) =
pf1(z)f2(z)M̄1(f1(z))M̄2(f1(z))(V̄1(λ− λC(z)− 1)Q

dr
, (71)

V (2)(z) =
Qpf1(z)f2(z)V̄1(f3(z))M̄1(f1(z))M̄2(f1(z))

dr
× (V̄2(λ − λC(z)− 1)− 1), (72)

and

R(z) =
az

(

1− M̄1(f1(z))M̄2(f1(z))
)

λ(C(z)− 1)Q

dr
. (73)

Let Wq(z) denote the probability generating function of the queue size
irrespective of the state of the system. Then adding equations (69) to (73)
we obtain

Wq(z) = p(1)(z) + P (2)(z) + V (1)(z) + V (2)(z) +R(z), and hence
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Wq(z) =
f2(z)

(

1− M̄1 (f1(z))
)

λ(C(z) − 1)Q

dr

+
f2(z)M̄1(f1(z))

(

1− M̄2(f1(z))
)

λ(C(z)− 1)Q

dr

+
pf1(z)f2(z)M̄1(f1(z))M̄2(f1(z))(V̄1(λ− λC(z)− 1))Q

dr

+
Qpf1(z)f2(z)V̄1(f3(z))M̄1(f1(z))M̄2(f1(z))

dr
× (V̄2(λ− λC(z)− 1)− 1)

+
az

(

1− M̄1(f1(z))M̄2(f1(z))
)

λ(C(z)− 1)Q

dr
. (74)

We see that for z = 1, WQ(1) is the indeterminate of the form 0/0.
Therefore, we apply L’Hopital’s rule and on simplifying we obtain the result
(89), where C(1) = 1, C ′(1) = E(I) is the mean batch size of the arriving
customers. −V̄ ′

i (0) = E(Vi), i = 1, 2.

Wq(1) =
[

λQ{(α+ β)(E(I))[1 − M̄1(α)M̄2(α)]

+ αβ
[

M̄1(α)M̄2(α) (1− pλE(I)(E(v1) + E(v2)))
]

}
]

[

− λ(α + β)
[

1− M̄1(α)M̄2(α)
]

+ αβ
[

M̄1(α)M̄2(α) (1− pλE(I)(E(v1) + E(v2)))
]

]

−1

(75)

And dr is given by equation (68). Therefore, adding Q to equation (75),
equating to 1 and simplifying, we obtain

Q = 1− ρ (76)

and hence the utilization factor ρ of the system is given by

ρ =
[

λQ{(α+ β)(E(I))[1 − M̄1(α)M̄2(α)]

+ αβ
[

M̄1(α)M̄2(α) (1− pλE(I)(E(v1) + E(v2)))
]

}
]

[

− λ(α + β)
[

1− M̄1(α)M̄2(α)
]

+ αβ
[

M̄1(α)M̄2(α) (1− pλE(I)(E(v1) + E(v2)))
]

]

−1

(77)

where ρ < 1 is the stability condition under which the steady state exists.
Equation (76) gives the probability that the server is idle. Substituting Q
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from (76) into (74), we have completely and explicitly determined Wq(z),
the probability generating function of the queue size. �

6. The Average Queue Size

Let Lq denote the average number of customers in the queue under the
steady state. Then

Lq =
d
dz
Wq(z) at Z = 1.

Since this formula gives 0/0 form, then we write Wq(z) given in (74) as

Wq(z) =
N(z)
D(z) where N(z) and D(z) are numerator and denominator of the

right-hand side of (74), respectively. Then we use

Lq = lim
z→1

d

dz
Wq(z) = lim

z→1

(

D′(1)N ′′(1)−N ′(1)D′′(1)

2(D′(1))2

)

Q (78)

where primes and double primes in (78) denote first and second derivative
at z = 1, respectively. Carrying out the derivative at z = 1 we have

N ′(1) = λQ{(α+ β)(E(I))
[

1− M̄1(α)M̄2(α)
]

+ αβM̄1(α)M̄2(α)E(I) [E(v1) + E(v2)]}. (79)

D′(1) = −λ(α+ β)
[

1− M̄1(α)M̄2(α)
]

+ αβ
[

M̄1M̄2 (1− pλE(1)(E(v1) + E(v2)))
]

. (80)

Similarly, the second order derivatives are calculated. Substituting all
the derivatives in equation (78) we obtain Lq in the closed form. Further-
more, we find the mean system size L using Little’s formula. Thus, we
have

L = Lq + ρ (81)

where Lq has been found by equation (78) and ρ is obtained from equation
(77).

7. The Average Waiting Time

Let Wq and W denote the mean waiting time in the queue and in the
system, respectively. Then using Little’s formula, we obtain

Wq =
Lq

λ
(82)

and

W =
L

λ
(83)

where Lq and L have been found in equations (78) and (81).
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8. Conclusion

In this paper, we have studied a batch arrival, two stage heterogeneous
services with random breakdown, and Bernoulli schedule with two phases
of server vacation. This paper clearly analyzes the time dependent solution
and steady state results, and some performance measures of the queueing
system. The result of this paper is useful for computer communication
network, and large scale industrial production lines.
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