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Abstract. We present a proof based on a 1905 paper by Henri
Lebesgue that any continuous function defined on an interval has
an antiderivative without first proving the existence of the definite

integral of the function. We also demonstrate how the definite in-
tegral is a byproduct of this proof. Instead of merely presenting an
efficient proof using modern techniques, we have chosen to present
a more instructive proof actually following the steps of Lebesgue in
the spirit of Otto Toeplitz’s [8] genetic approach.

H. Lebesgue [4] proved the existence of an antiderivative of a continuous
function with domain an interval, done without the benefit of the definite
integral; a rather remarkable result established almost 107 years ago. This
flies in the face of the traditional approach used in contemporary calculus
and analysis courses. Angus Taylor [6] in his review of Scenes From the
History of Real Functions, by Fyodor A. Medvedev states that the author

calls attention to another achievement of Lebesgue that
is interesting and, I believe, not well-known. Lebesgue
proved, without any use of integration, that every contin-
uous function defined on a interval has a primitive defined
on that interval.

Needless to say, such a statement piqued our interest. Recently, we were
reminded of Lebesgue’s perspective on reading the article by David M.
Bressoud [2] entitled Historical Reflections on Teaching the Fundamental
Theorem of Integral Calculus, and communication with others led us to
believe that many were not aware of Lebesgue’s 1905 proof. We believe it
is practically unknown, most likely, because the only proof that exists is in
Lebesgue’s original French language paper. His proof is relatively easy to
understand at some level, even in the French; however, the inner meaning
or the “soul” of the proof seemed elusive to some without additional details.
Unfortunately, his proof is cursory being essentially an outline of steps of
a proof relying on intuition. We attempt to bring clarity to his beautiful
result by being more precise. Moreover, Lebesgue’s proof will never become
mainstream unless it is published in English.
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The purpose of this article is two fold: to make this mathematical nugget
available in English, and to present a proof in modern mathematical par-
lance with details added for deeper understanding. We hope this presenta-
tion adds to the inherent beauty of Lebesgue’s discovery. The reader should
find the proof of this result useful and interesting. Moreover, this would be
a good starting point for a discussion in an undergraduate analysis course.

Introduction

Consider a set of n points {(a0, d0), (a1, d1), . . . , (an, dn)} where a =
a0 < a1 < · · · < an = b points of the interval [a, b]. We construct a
continuous function φ with domain including [a, b] that is linear on each
subinterval [ai, ai+1], i = 0, 1, . . . , n − 1 where the linear pieces are joined
end-to-end making φ(ai) = di, i = 0, 1, . . . , n. Thus, for i = 0, 1, . . . , n− 1,
there are numbers mi, bi where φ(x) = mix+ bi for each x in [ai, ai+1], and
the equality miai+1 + bi = mi+1ai+1 + bi+1 holds for i = 0, 1, . . . , n − 2.
We now define an antiderivative Φ for φ on [a, b]. First, define Φ0(x) =
(m0/2)x

2 + b0x − (m0/2)a
2
0 − b0a0 for each x in [a0, a1]. Second, de-

fine Φ1(x) = (m1/2)x
2 + b1x + Φ0(a1) − (m1/2)a

2
1 − b1a1 for each x in

[a1, a2]. Continue defining, in order, Φi, i = 2, 3, . . . , n − 1. Now that
Φ0(a0),Φ1(a1), . . . ,Φn−1(an−1) are well defined, the function Φ is defined
as follows:

Φ(x) =















m0

2
x2 + b0x−

m0

2
a20 − b0a0, if x ∈ [a0, a1];

mi

2
x2 + bix+Φi−1(ai)−

mi

2
a2i − biai,

if x ∈ [ai, ai+1],
i=1,2,...,n−1.

We see that Φ is piecewise quadratic, constructed from n second degree
polynomials whose left and right slopes at a1, a2, . . . , an−1, respectively, are
equal.

Having described and defined Φ, the reader may understand why this
construction leads to a function whose derivative is f . We believe this is the
significant result of his paper. However, our goal is to present the methods
Lebesgue used in his 1905 paper and not merely to prove his result.

To lay a firm foundation for this paper, we state the following. The set
of all real numbers inclusively between the real numbers, a and b, where
a < b, is called the interval [a, b]. Here, a partition of an interval [a, b] is
a finite collection of abutting subintervals whose union is [a, b] with no two
members having more than one point in common. When P is a partition
of [a, b], by ||P || we mean ||P || = max{q − p : [p, q] ∈ P}. A regular

partition is a partition of [a, b] each two members having the same length.
Moreover, a refinement of a partition of [a, b] is itself a partition of [a, b]
where each end point of each member of the original partition is an end
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point of some member of the refinement. For convenience, at times, for
n = 1, 2, . . . , we use the notation Pn to denote a regular partition of [a, b]
with 2n−1 members or subintervals each of which has length (b− a)/2n−1.
Thus, Pm is a refinement of Pn for positive integers m,n where m ≥ n.
The functions φn and Φn will be based on the partition Pn for n = 1, 2, . . . .
Throughout this paper when the symbols Pn, φn, and Φn are used without
any descriptors for the subscripts, the reader should assume that whatever
symbol is being used as a subscript is a positive integer unless otherwise
stated. Lebesgue did not use the terminology of partition and refinement
but the concepts are there.

We are reminded that when f is continuous on [a, b], it is continuous on
each subinterval of [a, b], and, as a result, by the Extreme Value Theorem,
the range of f has both a maximum and a minimum value on any subinterval
of [a, b]. It is to our advantage to note that the maximum and minimum
values of a continuous function on a subinterval “approach” each other as
the length of the subinterval “approaches” zero.

Oscillations

We elucidate some of the underlying ideas of the main result of Lebesgue’s
paper [4] that are almost hidden from the casual reader of the original
French. For brevity, we assume throughout this paper that f denotes a
continuous function with domain including the interval [a, b].

By the oscillation of f on δ (written ωδ), a subinterval of the domain
of f , we mean the real number

ωδ = max
δ

f −min
δ

f.

Of course, by the Extreme Value Theorem, the continuity of f is sufficient
for the existence of the extreme values and, thus, ωδ. Moreover, by the
total oscillation of f on a partition P of [a, b] (written Ω(P )), we mean
the maximum value of the finite set of oscillations of f on δ for each δ in
P . (Remember that P is finite; thus, guaranteeing the existence of Ω(P ).)
By Ωn, we mean Ω(Pn).

Whenever each of m and n is a positive integer with m ≥ n and Ωn < ε
for some ε > 0, then Ωm < ε. (Remember that Pm is a refinement of Pn.)
This result is an application of the previous definitions of oscillation and
total oscillation. We state the following propositions and useful corollar-
ies, without proofs, which are relatively straightforward applications of the
finite covering theorem (Heine - Borel Theorem).

Proposition 1. For each ε > 0, there is a partition P of [a, b] such that
ΩP ′ < ε for any refinement P ′ of P .
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Corollary 1. For each ε > 0, there is a δ > 0 such that |f(u)− f(v)| < ε
for each u, v in [a, b] where |u− v| < δ.

Corollary 2. For each ε > 0, there is δ > 0 such that Ω(P ) < ε for each
partition P of [a, b] where ||P || < δ.

Proposition 2. For each ε > 0, there is a positive integer n such that
Ωm < ε for each positive integer m ≥ n.

Existence of an Antiderivative of a Continuous Function

Without resorting to integrability, we now prove that any continuous
function on an interval “admits” an antiderivative on that interval.

We remind the reader that throughout this paper f denotes a continuous
function with domain including [a, b]. Moreover, let φn denote a collection
of straight line segments joined end-to-end where φn and f agree at each
end point of each member of Pn. Note that φn is continuous on [a, b].1

Moreover, denote by Φn an antiderivative of φn constructed in the manner
described in the introduction.

Lemma 1. For each positive integer n, |f(x)− φn(x)| ≤ Ωn for each x in
[a, b].

Proof. Suppose x is any point in [a, b], Pn is any partition of [a, b], δ is
any member of Pn. Because f is continuous on [a, b], min

δ
f and max

δ
f both

exist on [a, b], positioning f(x) between min
δ

f and max
δ

f . Since φn is a line

segment agreeing with f at its end points, φn(x) lies between min
δ

f and

max
δ

f . Thus, we see that min
δ

f − max
δ

f ≤ f(x) − φn(x) ≤ max
δ

f − min
δ

f .

With the definition of ωδ, we have

|f(x)− φn(x)| ≤ max
δ

f −min
δ

f = ωδ.

Therefore, from the definition of Ωn,

|f(x)− φn(x)| ≤ Ωn.

In summary, for each positive integer n, |f(x)− φn(x)| ≤ Ωn for each x
in [a, b]. �

The remaining propositions and theorems represent the major points of
Lebesgue’s paper in a genetic style in the spirit of Otto Toeplitz [8].

Proposition 3. The sequence {Φn} converges uniformly on [a, b].

1Imagine the behavior of φn as n increases.
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Proof. Suppose ε > 0. By Proposition 2, there is a positive integer n such
that

Ωm < ε/(4(b− a)) (1)

for each positive integer m ≥ n. Now, let m be an arbitrary positive integer
greater than n and x ∈ (a, b].

Applying the Mean Value Theorem to (Φm − Φn) on [a, x], there exists
some real number c in (a, x) for which

(Φm − Φn)
′(c)(x − a) = (Φm − Φn)(x) − (Φm − Φn)(a).

Since Φm and Φn are antiderivatives of φm and φn, respectively, and Φm(a) =
Φn(a), we have

Φm(x) − Φn(x) = (φm(c)− φn(c))(x − a). (2)

By Lemma 1,

|φm(c)− f(c)| ≤ Ωm and |φn(c)− f(c)| ≤ Ωn.

Combining the foregoing, using the triangle inequality, we obtain

|φm(c)− φn(c)| ≤ Ωm +Ωn. (3)

Therefore, from (2) and (3), we have

|Φm(x) − Φn(x)| ≤ (b− a)[Ωm +Ωn]. (4)

Then, by (1) and (4),

|Φm(x)− Φn(x)| < ε/2.

Or, in a more useful form, using an additional positive integer m′ ≥ n and
the triangle inequality, we obtain

|Φm(x)− Φm′(x)| < ε.

Summarizing, for each ε > 0, the case of x = a being trivial, there is a
positive integer n such that for each positive m and m′ greater than or
equal to n we have

|Φm(x) − Φm′(x)| < ε

for all x in [a, b]; therefore, proving the proposition. �

We have proved that {Φn(x)} is a Cauchy sequence for each x in [a, b].
Thus, by the Axiom of Completeness (Reed [5]) or some equivalent axiom
or theorem, {Φn(x)} converges for all x in [a, b]. Since all sequences of real
numbers converge to a unique value, we now define F (x) as Φn(x) → F (x)
for each x in [a, b].
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Proposition 4. The sequence {Φn} is uniformly convergent to F ; that is,
for each ε > 0, there is a positive integer n such that

|Φm(x)− F (x)| < ε

for each positive integer m ≥ n and for all x in [a, b].2

Proof. Suppose ε > 0. By the previous proposition, there is a positive
integer n1 such that

|Φm′(x) − Φm(x)| < ε/2 (5)

for each positive integer m ≥ n1, for each positive integer m′ ≥ n1, and for
all x in [a, b].

Now, let x be any member of [a, b]. From the definition of F (x), there
is a positive integer n2 such that for each positive integer m ≥ n2, we have

|Φm(x)− F (x)| < ε/2. (6)

Let n = max{n1, n2} and m be any positive integer greater than or equal
to n. Since n ≥ n1, n2, then, from (5) and (6),

|Φm(x) − Φn(x)| < ε/2 and |Φn(x)− F (x)| < ε/2.

Applying the triangle inequality to the preceding,

|Φm(x)− F (x)| < ε

for all x in [a,b].
To summarize, for each ε > 0, there is a positive integer n such that if

m is any positive integer greater than or equal to n, then

|Φm(x)− F (x)| < ε

for all x ∈ [a, b]. �

Theorem 1. F ′(x) = f(x) for all x in [a, b].

Proof. Let x be any member of [a, b] and ε > 0. By Corollary 1, there is
α > 0 such that

|f(u)− f(v)| < ε/4 (7)

for each u, v in [a, b] where |v − u| < α. From Lemma 1 and Proposition 2,
for each u in [a, b], there is a positive integer n1 such that

|φm(u)− f(u)| < ε/4 (8)

for each m ≥ n1. Adding (7) and (8), for each u, v in [a, b] where |v−u| < α
we have

|φm(u)− f(v)| < ε/2 (9)

for each m ≥ n1.

2This proposition ultimately relies on the Heine-Borel Theorem.
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Let h be any nonzero number where |h| < α and [x−h, x] and [x, x+h],
as appropriate, are subsets of [a, b]. By Proposition 4, there is a positive
integer n2 such that

|F (t)− Φm(t)| < |h|ε/4

for each positive integer m ≥ n2 and for each t in [a, b]. Then, since x, x+h
are in [a, b], we have

|F (x+ h)− Φm(x+ h)| < |h|ε/4 and |F (x) − Φm(x)| < |h|ε/4

for each m ≥ n2. From the above, we derive
∣

∣

∣

∣

F (x + h)− F (x)

h
−

Φm(x+ h)− Φm(x)

h

∣

∣

∣

∣

< ε/2 (10)

for x, x+ h in [a, b] and each m ≥ n2.
Let n = max{n1, n2}. Applying the Mean Value Theorem to Φn on

[x, x+ h], we obtain

Φn(x+ h)− Φn(x) = (φn(c))h (11)

for some real number c between x and x + h. Thus, since n ≥ n1, substi-
tuting (11) into (10),

∣

∣

∣

∣

F (x+ h)− F (x)

h
− φn(c)

∣

∣

∣

∣

< ε/2. (12)

Since c is between x and x+h, and |c−x| < α, from (9) and the preceding,
we obtain

∣

∣

∣

∣

F (x+ h)− F (x)

h
− f(x)

∣

∣

∣

∣

< ε. (13)

To summarize, we have shown that for each x in [a, b] and each ε > 0,
there is α > 0, such that

∣

∣

∣

∣

F (x+ h)− F (x)

h
− f(x)

∣

∣

∣

∣

< ε

for each h where |h| < α and [x, x + h] and [x − h, x], as appropriate, are
subsets of [a, b].

By the definition for derivative, we see that F ′(x) = f(x) for each x in
[a, b]. Thus, each continuous function has an antiderivative. �

We now have accomplished our main objective, but Lebesgue was not yet
finished for, after all, the title of his paper is Remarques sur la définition

de l’intégrale. We wish to remain true to Lebesgue’s approach without
resorting to notational devices. That we have done. However, Lebesgue
finished his paper with a proof that the integral of f exists on [a, b], but,
which of the various definitions that were extant in 1905 did he use? All
are equivalent and commonly called the Riemann integral. Cauchy (1823)
thought of the integral as the limit of

∑n

i=1 f(ai−1)(ai − ai−1) where f
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is a continuous function on an interval with division points a0, a1, . . . , an.
He took the limit as the maximum of the lengths ai − ai−1 approach zero.
Riemann generalized Cauchy’s definition in two ways. The function f was
not necessarily continuous on the interval of integration, and he used a
sum of the form

∑n

i=1 f(x)(ai − ai−1) where x was any arbitrary point
between ai−1 and ai. Darboux, on the other hand, defined upper sum
U(P ) =

∑

max
δ

f(q − p) and lower sums L(P ) =
∑

min
δ

f(q − p) where the

sums are taken over all δ = [p, q] of the partition P , and f is a bounded
function with domain [a, b]. Then, he defined lower integrals and upper
integrals. He defined f to be integrable if the lower integral and upper
integral were equal. The Darboux integral is the one most commonly used
today. Just check with any undergraduate analysis text. However, this is
not the definition that Lebesgue used in his paper. It appears to be very
close to Riemann’s definition.

Theorem 2. The function f is integrable on [a, b].

Proof (Riemann). Suppose ε > 0. By Corollary 2, there is α > 0 such that
Ω(P ) < ε/(b−a) for each partition P of [a, b] where ||P || < α. Let Q be any
partition of [a, b] where ||Q|| < α. Note that F (b)−F (a) =

∑

(F (q)−F (p))
where this sum and all sums to follow are taken over all δ = [p, q] in Q.
Then, as shown above, since F ′(x) = f(x) for each x, we apply the Mean
Value Theorem to each [p, q] in Q; thereby, proving there is a c in [p, q]
where F (q)− F (p) = F ′(c)(q − p) = f(c)(q − p) for each [p, q] in Q. Thus,

F (b)− F (a) =
∑

(F (q) − F (p)) =
∑

F ′(c)(q − p) =
∑

f(c)(q − p).

Let

S(Q) =
∑

f(x)(q − p)

where the sum is as described above and x is any point in δ = [p, q] for each
δ in Q. From the preceding, by the definition of ωδ, |f(x)− f(c)| ≤ ωδ for
each x in δ, we obtain

|F (b)− F (a)− S(Q)| ≤
∑

|f(c)− f(x)|(q − p)

≤
∑

[max
δ

f −min
δ

f ](q − p) =
∑

ωδ(q − p).

And, since ωδ ≤ Ω(Q) < ε/(b− a) for each δ in Q, we have

|F (b)− F (a)− S(Q)| ≤ Ω(Q)
∑

(q− p) = Ω(Q)(b− a) <
ε

b− a
(b− a) = ε.

In summary, there is a number W = f(b) − f(a) such that for each ε > 0
there is α > 0 such that

|W − S(Q)| < ε
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for each partition Q where ||Q|| < α. Thus, the definition of the Riemann
integral is satisfied. �

Conclusion

The following are suggested questions for discussion:

(a) Prove integrability of f using the Darboux integral. It is not what
Lebesgue used in his paper; however, it is what most undergradu-
ates know as the integral. The proof is amazingly short. Moreover,
proving integrability in this manner will reinforce the ideas of this
paper.

(b) In the spirit of Lebesgue’s original proof, we used regular partitions
Pn. This allowed us to speak of infinite sequences of the functions,
{φn} and {Φn}, rather than dealing with a partial order induced
by refinements of partitions. Lebesgue likely did not have the use
of what we call the ε-partition-refinement approach created after
1905. See Apostol [1] for an introduction to this beautiful integral.
This would be worthy of debate. Is this approach better for an
audience of nascent mathematicians? The proof using this method
is slightly shorter than the proof we gave and is less cumbersome.

(c) Why do functions as concrete as φ and Φ, linear and quadratic
functions, prove useful in showing that any continuous function
with domain an interval has an antiderivative? To some readers
the foregoing proof may appear “mysterious.” Will other functions
work as well?

(d) With a somewhat different and modern approach, Brian Thom-
son [7] proves that every bounded, continuous function on an open
interval (a, b) [bounded or unbounded] where there are at most
only finitely many discontinuities has an antiderivative that must
be Lipschitz on (a, b). However, Thomson does not use the oscil-
lation function defined by Lebesgue in his 1905 paper. We found
this particular device to be elegant and quite instructive leading to
an easily understandable proof. Comparing Thomson’s result with
the genetic approach of this paper following Lebesgue’s proof would
make a good discussion topic.

We have been true to Lebesgue’s proof while keeping it at a primitive level
albeit with more details, at such a level as to give the reader a “bedrock”
understanding, the Zeitgeist of his result. We hope the reader has enjoyed
Lebesgue’s result as much as we have.
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