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ABSTRACT. In this work, we give two applications of Karoubi’s fun-
damental theorem of hermitian K-theory. We prove some isomor-
phisms in L-theory of monoid rings and the ring of integers in a
finite extension of Q2.

1. INTRODUCTION

Let A be a regular ring and M be a commutative cancellative torsion free
and c-divisible monoid for some ¢ > 1. In [1], Joseph Gubeladze showed
that for ¢ € N, if

Ki(A) ~ K;(A[M]),
then
Ki(A) =~ K;(A[M]/AI)
for all proper radical ideals I of M. He also showed that if in addition,
there exists an integer p such that Z’jr CMC Qi, then

Ki(A) ~ K;(A[M])
for all 7 € Z.

Here, Z will denote the additive monoid of nonnegative integers and Q-
that of nonnegative rationals. In the first part of this work, we suppose that
F is a commutative field of characteristic different from 2 provided with the
trivial involution, M is a c-divisible monoid for some natural ¢ > 1 such
that Z8 ¢ M C Q% (p € N), and J is a proper ideal of M such that F.J
is maximal in F[M], and the field F[M]/F.J has a characteristic different
from 2. We prove that if

1L0(F) ~ 1L0(F[M]/FJ) and 1L1(F) ~ 1L1(F[M]/FJ),
then
eLn(F) ~ L, (F[M]/F.J)
for all n € N and ¢ = +1.
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In [5], Panin proved that for the ring of integers D in a local field K/Qq
with maximal ideal M, the natural homomorphism

Ki(D;Z/2") — [imK;(D /M’ Z/2")
is an isomorphism for all positive ¢ and n. In the second part of this work,
we prove that if there exists an integer » € N such that the groups
L.(D/M?;7/2") and L, (D/M7;7/2™)

are finite,
<L (D;2/2") = lim.L,(D/M?; Z/2")
and L1 (D;Z/2") = lim:Ly1(D/M?; Z/2"),
then _
eLq(D;Z)2") = lim:Lq(D/M?; Z/2")
for all ¢ > r.

2. REVIEW OF KNOWN FACTS

2.1. Here we recall some results obtained by using the algebraic suspension
SA of aring A.

Definition 2.1. The cone of A, called CA, is the set of infinite matrices
such that in each row and each column, we have a finite number of non-zero
elements in A. Clearly, CA is a ring by matriz multiplication. We define
the suspension SA of A as the quotient of CA by the two-sided ideal of
finite matrices (i.e. whose entries are 0, except for a finite number). This
definition may be iterated and S™(A) will denote the nth suspension of A.

Remark 2.2. If A is a hermitian ring, we endow SA with the following
imvolution o
M ="M.

Theorem 2.3. [6] Let A be a unitary ring. We have a natural homotopy
equivalence

QOBGL(SA)Y ~ Ko(A) x BGL(A)™.
The group Ko(A) is endowed with the discrete topology. In particular, for
every n > 1, we have

K (SA) ~ Kn_1(A).

Theorem 2.4. [2] Let A be a hermitian ring. We have a natural homotopy
equivalence
QOB.O(SA)t ~ _Lo(A) x B.O(A)™.
The group -Lo(A) is endowed with the discrete topology. In particular, for
every n > 1, we have
cLn(SA) =~ L,_1(A).
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These theorems are used to define groups K, and L, for all n < 0. For
a unitary ring (resp. hermitian ring) A and n < 0, we set

Ko(A) = Ko(S"A) (resp. .La(A) = -Lo(S " A)).

2.2. Let A be a hermitian ring. The hyperbolic functor [2] induces a group
homomorphism
Ko(A) —< Lo(A)
and the homomorphism
GLp(A) —e Opn(A)

defined by the following correspondence

w (Y )

0 tM-1
induces a map
BGL(A)t —. O(A)".
We denote U(A) the homotopic fiber of the map
Ko(A) x BGL(A)T —. Lo(A) x B:O(A)*.
Similarly, the forgetful functor [2] induces a group homomorphism
eLo(A) — Ko(A)
and the natural inclusions
On.n(A) — GLay,(A)
induce a map
B.O(A)t — BGL(A)™.
We denote ;V(A) the homotopic fiber of the map
cLo(A) x B.O(A)" — Ko(A) x BGL(A)*.

Theorem 2.5. [3] Let A be a hermitian ring containing in its center an
element X\, such that A\ + X = 1. Then there exists a natural homotopy
equivalence between QU(A) and _V(A).

For n > 0, we let

eUn(A) = mn(U(A)) and Vi (A) = 70 (V(A)).
For n < 0 we let

cUn(A) = Up(57"A) and Vi (A) = Vo(S7"A).
For every n € Z, we have

eUn+1 (A) =_Vu (A)
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We also have the following long exact sequences.

oo — Kpi1(A) — Vo (A) — L (A) — K (A) — Vi1 (A) — -

oo — Lpi1(A) — Un(A) — K (A) — Ly(A) — Up1(A) — - -+

3. HERMITIAN K-THEORY OF MONOID RINGS

Definition 3.1. Let M be a commutative monoid. M is called cancellative
if, for all a, b and ¢ € M, ab = ac implies that b = c.

Definition 3.2. A monoid M is called c-divisible for some ¢ € N if, for
any x € M, there exists y € M for which cy = x.

Remark 3.3. If A is a hermitian ring. We endow A[M] with the following

involution:
n n
i=0 i=0

Later, Z will denote the additive monoid of nonnegative integers and Q4
that of monnegative rationals.

Theorem 3.4. [1] Let A be a unitary ring and M be a commutative can-
cellative torsion free and c-divisible monoid for some ¢ > 1. The equality

Ki(A) ~ K;(A[M])
implies
Ki(A) ~ Ki(A[M]/AI)
where i € N and I is an arbitrary proper radical ideal of M .
Theorem 3.5. [1] Let A be a regular ring, p € N, and ¢ > 1 a natural

number. Then for an intermediate c-divisible monoid Zﬁ CcCMC Qﬁ, we
have the natural isomorphisms

where 1 € Z.

Theorem 3.6. Let A be a hermitian regular ring containing in its center
an element X\, such that A+ X = 1, ¢ > 1 a natural number, and M an
intermediate c-divisible monoid Z8. C M C QY. Let r € Z, and suppose
that

eLy(A) ~ L. (AM]) and Ly+1(A) ~ cLr11(A[M]).
Then

foralln >r.
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Proof. For all n € Z the homomorphism
A — A[M)]
induces the following diagrams of long exact sequences.

s K (A) Vu(4) <Ln(A) K,.(4) V1 (A)— -

| l | l

oKy 1 (AIM]) — Vi (AIM]) — L (A[M]) — K, (A[M]) — Vyu_1 (A[M])— - -

o —eLna1(4) Un(4) K.(4) <La(4) Un1(A)— -

| | l

o —— L1 (A[M]) —— Up(A[M]) — K, (A[M]) —— L (A[M]) — Up—1(A[M])—— - -+

Consider the following diagram of exact sequences.

elrp1(A) — = Krq1(4) Vi (A) eLr(A) — = Kr(4)
| T T
cLrp1(AM]) — > K, p1(A[M]) — > Vo (A[M]) — > L (A[M]) — > K. (A[M])
We deduce that for any e,
Vi (A) = Vi (A[M])
Then we have
cUri1(A) = Upya (A[M]).
We proceed now by induction on n. Assume that
eLn(A) ~ cLn(A[M]) and Un(A) ~ Un(A[M]).
The diagram of exact sequences
Knp1(A) —— cLnt1(A) ———— Un(A) ——— K (4)
] l | |
Kn1(AM]) — cLn1 (A[M]) —— Un(A[M]) — K,.(A[M])
prove that the homomorphism
cLni1(A) — Loy (A[M])

is surjective. Consider the following diagram.

ELn+1(A) I Kn+1(A) eVn(A) eln(A) —> Kn(A)

l S T

eLny1(AM]) — Kypp 1 (AM]) = Va(A[M]) — cLn(A[M]) — Kn(A[M])
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We deduce that for any e

Consequently, we have

cUny1(A) ~ Up 1 (A[M]).

Finally, consider the diagram of exact sequences.

eUnt1(A) — = Kp41(A) — > cLp11(4) cUn(A) Kn(A)

| | | P

eUnt1(AM]) — Kp 1 (AM]) ——> Ly 11 (A[M]) — Un(A[M]) —> K (A[M])
It follows that

eLnt1(A) = Lo (A[M]).
The theorem follows. O

Theorem 3.7. Let F' be a field of characteristic different from 2 provided
with the trivial involution, M an intermediate c-divisible monoid Zﬁ -
M c QY, and J a proper ideal of M such that F.J is mazimal in F[M],
and the field F[M] F.J has a characteristic different from 2. If

1Lo(F) ~ 1 Lo(F[M]/F.J) and 1L,(F)~Li(F[M]/F.J),
then
cln(F) = Ln(F[M]/F.J)
foralln >0 and e = 1.

Proof. Since
Kn(F) ~ K, (F[M])
we have, according to Theorem 3.4, an isomorphism
K, (F)~ K,(FIM]|/F.J)
for all n € N. On the other hand, we have

1 Lo(F) ~7Z ~ _1Lo(F[M]/F.J) (see [2], p. 6)
_1L1(F) = _1L1(F[M]/FJ) =0 (see [2], p. 96)

Then we prove the result by proceeding as in Theorem 3.6. 0
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4. HERMITIAN K-THEORY WITH COEFFICIENTS OF THE RING OF
INTEGERS IN A FINITE EXTENSION OF Q5

Let X be a topological space. For n > 2, m,(X;Z/l) will denote the nth
homotopy group of X with coefficients in Z/I.

Definition 4.1. Let A be a unitary (resp. hermitian) ring. For alln > 2,
we let

K. (A;Z)1) = m,(BGL(A) Y, Z/1) (resp. <Ln(A;Z)1) = 7,(B:O(A)T; Z/1)).
Forn < 2, we let
Kn(AZ)1) = Ko(S* " A L)1) (resp. Lu(A;Z)1) = La(S* " A;Z)1)).
Definition 4.2. Let A be a hermitian ring. For n > 2, we let
Un(A;ZJ1) = w0 (U(AY ZJ1) and Va(A;Z/1) = mu (V(A); 2.
Forn < 2, we let
Un(A2)1) = Ua(S* A Z/1) and Vo (A Z)1) =< Va(S* A Z)1),
Note that for all n € Z, we have
cUn(SA L)1) e Un—1(A;Z)1), Va(SAZJ) = Vi1 (A Z]1)
and
eUnt1 (A Z)1) ~_c V(A Z)1).
We also have the following long exact sequences.
o K1 (A Z/1) — Vi (A Z/1) — Ly (AT Z/1) — K (AiZ/1) —> e Vy 1 (AZ/1) —> - --

== e Ly 1 (A L)1) — eUn(AZ)1) — Kn(A52/1) — e Ln(A5Z/1) —¢ Up_1(A;Z/1) — - -+

Theorem 4.3. [5] Let p be a prime integer and K/Q, a finite field exten-
sion. Let D C K be the ring of integers in K, and M its maximal ideal.
Then for all v > 0 and n > 1, we have the following statements.

1. The group K.(D/M7;Z/p"™) is finite for all j € N.
2. The natural homomorphism

K (D; Z/p") — LimK,(D/M?; Z/p")

is an isomorphism.
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Theorem 4.4. Let K/Q2 be a finite field extension with involution. Let
D C K be the ring of integers in K containing in its center an element
A, such that A+ X =1, and M its mazimal ideal such that D and M are
invariant by the involution. Suppose that there exists r € N such that the
groups < L.(D/M3;7/2"™) and -L,+1(D/M7;Z/2") are finite, e = +1, and
j € N. Then for all ¢ > r, the groups :U,(D/M7;Z/2"), Vy(D/M7;Z/2™)
and .Ly(D/M3;7Z/2™) are finite.

Proof. Consider the following exact sequence.

’
Xyl

Ly (D/MI;7.)2™) 5 EUT(D/MJ';Z/zn)ﬁKr(D/Mj;Z/T).
We also have
|cU.(D/M?;7,)2™)| = |keray,||[Ima|
= [Imav. . |[|[Imay].
Since the groups ¢ L,41(D/M7;7Z/2") and K,.(D/M?7;7/2") are finite, the
group U, (D/M7;Z/2") is finite.
We proceed now by induction on g. Assume that .L,(D/M7;Z/2") is
finite. The following exact sequence
K1 (D/MIS2/2") —s. Vy(D/MI32/2") —se Ly(D/M5Z/2")
proves that for any e the group .V, (D/M7;Z/2") is finite. Hence for any
g, the group Ug+1(D/M7;Z/2™) is also finite. Finally, consider the exact
sequence
Kosa(D/MIZ/2Y) —b. Lysa(D/MIZ/2%) —. Ugia (D/MP2,/27).

It follows that the group  Ly12(D/M7;7/2") is finite. The theorem follows.
|

Theorem 4.5. Under the conditions of Theorem 4.4, assume moreover
that

L (D;Z/2") =~ lim.L,(D/M’; Z/2")
and Ly 11(D;Z/2") = lim. Ly41(D/M7; Z/2").
Then

-Ly(DiZ/2") = [im. Ly(D /M7 2/2")

for all g > r.

Proof. Since for all j € N and ¢ > r, the groups .U, (D/M7;Z/2"),
Vy(D/MI;7/2™), Ky(D/M7;7Z/2"), and . Ly(D/M7;7/2") are finite, then
the following long sequences

o B2 (D /M3 Z27) — [im.Vi(D /M3 2)27) — lim.L(D/M; Z/2") — limK(D/M;Z/2")
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<o = lime Ly 1 (D/M75 2/27) — Lim.Up(D/M7; 2,/2") — [imK,(D/M7; 2,/2") — lim. L(D/M?; Z/2").

are exact. |

The proof of this theorem is completely analogous to that of Theo-
rem 3.6. We only have to replace K, (A4), :Ln(4), ..., by K,(D;Z/2"),
Ln(D;Z/2™), and K, (A[M]), cL,(A[M]), ..., by éi_mKn(D/Mj;Z/T),
and éi_mELn(D/Mj;Z/2”).

Remark 4.6. The same statements of Theorem 4.4 and 4.5 are true for
odd prime p, but the case p = 2 is more interesting. The case p odd is
an immediate consequence of the periodicity theorem for odd torsion of the

Witt groups [4].
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