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Abstract. Suppose P (x) and Q(x) are two arbitrary polynomials.
In this paper we use the theory of resultants of two polynomials
including Sylvester’s Matrix to specify a large number of polynomial
relations involving P (x), Q(x) and their derivatives. We also include
a research problem for the reader to consider.

1. Introduction

Consider the quadratic P (x) = Ax2 +Bx + C = P ′′(0)x2/2 + P ′(0)x+
P (0) whose discriminant is B2 − 4AC = (P ′(0))2 − 2P ′′(0)P (0). Surpris-
ingly, for any number b, it is true that B2−4AC = (P ′(0))2−2P ′′(0)P (0) =
(P ′(b))2−2P ′′(b)P (b). In this paper we prove the following much more gen-
eral result, with the special case above, simply using a quadratic P (x) and
its derivative P ′(x) for the two polynomials P (x), Q(x) in the theorem.

Theorem 1. Let P (x) and Q (x) be polynomials of degrees n and m, re-

spectively. Let P (i) (x) and Q(j) (x) denote the ith and jth derivatives of

P (x) and Q (x). Define the (m+ n)× (m+ n) matrix M (x) as follows.

(1) Each row i, 1 ≤ i ≤ m, of M (x) is the following.

←i−1→
︷ ︸︸ ︷

0, 0, . . . , 0,
P (n) (x)

n!
,
P (n−1) (x)

(n− 1)!
, . . . ,

P ′ (x)

1!
, P (x) ,

←m−i→
︷ ︸︸ ︷

0, 0, . . . , 0 .

(2) Each row m+ i, 1 ≤ i ≤ n, of M (x) is the following.

←i−1→
︷ ︸︸ ︷

0, 0, . . . , 0,
Q(m) (x)

m!
,
Q(m−1) (x)

(m− 1)!
, . . . ,

Q′ (x)

1!
, Q (x) ,

←n−i→
︷ ︸︸ ︷

0, 0, . . . , 0 .

Then the determinant |M (x)| of M (x) has a value that is indepen-

dent of x.

Thus, we can call |M (x)| an invariant. However, some readers may
prefer to call |M (x)| a constant. We will give the reader all of the necessary
background material and this will make the paper accessible to almost any
undergraduate mathematics student. Also near the end, we give some
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specific examples which involve derivatives and at the end, we outline a
research problem.

2. The Resultant of Two Polynomials

The resultant ρ (P (x) , Q (x)) of two polynomials P (x), Q (x) is the
standard determinant, given in Theorem 2, which gives by its zero or non-
zero value the necessary and sufficient condition so that P (x) and Q (x)
have no roots in common.

Also, if

P (x) = An ·

n∏

i=1

(x− ri) and Q (x) = Bm ·

m∏

i=1

(x− si) ,

then

ρ (P (x) , Q (x)) = Am
n Bn

m

∏

(ri − sj) .

If this last property is taken as a definition, then Theorem 2 is a standard
property of resultants that is proved in the theory of equations. See [3, pp.
99–104] and [2, page 21] for the details. Also, see [1] for many related prob-
lems. Of course, the reader will immediately see the similarity of Theorem
2 and the determinant |M (x)| that was given in the Introduction.

In Theorems 2 and 3, we use the notation

P (x) =

n∑

i=0

Aix
i = An ·

n∏

i=1

(x− ri) , An 6= 0,

and

Q (x) =

m∑

i=0

Bix
i = Bm ·

m∏

i=1

(x− si) , Bm 6= 0.

Theorem 2. ρ (P (x) , Q (x)) equals the determinant of the (m+ n) ×
(m+ n) matrix M defined as follows.

(1) Each row i, 1 ≤ i ≤ m, of M is defined as follows.

←i−1→
︷ ︸︸ ︷

0, 0, . . . , 0, An, An−1, . . . , A1, A0,

←m−i→
︷ ︸︸ ︷

0, 0, . . . , 0 .

(2) Each row m+ i, 1 ≤ 1 ≤ n, of M is defined as follows.

←i−1→
︷ ︸︸ ︷

0, 0, . . . , 0, Bm, Bm−1, . . . , B1, B0,

←n−i→
︷ ︸︸ ︷

0, 0, . . . , 0 .

The matrix used in Theorem 2 is usually called Sylvester’s Matrix [2].
We now illustrate Theorem 2. First, suppose P (x) = (x − a)(x − b) =
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x2 − (a+ b)x+ ab and Q(x) = x− c. Then ρ(P (x), Q(x)) = (a− c)(b− c).
Also, by Theorem 2,

ρ(P (x), Q(x)) =

∣
∣
∣
∣
∣
∣

1 −(a+ b) ab
1 −c 0
0 1 −c

∣
∣
∣
∣
∣
∣

= c2 − (a+ b)c+ ab = (a− c)(b− c).

Second, suppose P (x) = (x− a)(x− b) and Q(x) = (x− c)(x− d). Then
ρ(P (x), Q(x)) = (a− c)(b− c)(a− d)(b − d). Also, by Theorem 2,

ρ(P (x), Q(x)) =

∣
∣
∣
∣
∣
∣
∣
∣

1 −(a+ b) ab 0
0 1 −(a+ b) ab
1 −(c+ d) cd 0
0 1 −(c+ d) cd

∣
∣
∣
∣
∣
∣
∣
∣

.

The expansion of this determinant is a little tedious and is left to the
reader.

Theorem 3. For all complex numbers b,

ρ (P (x+ b) , Q (x+ b)) = ρ (P (x) , Q (x)) .

Proof. Of course, r1, r2, . . . , rn are the roots of P (x) and s1, s2, . . . , sm are
the roots of Q (x). Also, let r1, r2, . . . , rn be the roots of P (x+ b) and let
s1, s2, . . . , sm be the roots of Q (x+ b). Now each ri = ri − b and each
sj = sj − b.

Also, ρ (P,Q) = Am
n Bn

m

∏
(ri − sj). Therefore, ρ (P (x+ b) , Q (x+ b)) =

Am
n Bn

m

∏
(ri − sj) = Am

n Bn
m

∏
(ri − sj) = ρ (P,Q). �

3. Proving the Theorem Given in the Introduction

As always, let P (x) =
∑n

i=0 Aix
i, An 6= 0. Now

P (x) =

n∑

i=0

P (i) (b)

i!
(x− b)i .

Therefore,

P (x+ b) =

n∑

i=0

P (i) (b)

i!
xi. (1)

Likewise, if Q (x) =
∑m

i=0 Bix
i, Bm 6= 0, then

Q (x+ b) =
m∑

i=0

Q(i) (b)

i!
xi. (2)

From Theorem 3, ρ (P (x+ b) , Q (x+ b)) = ρ (P (x) , Q (x)) which
means that ρ (P (x+ b) , Q (x+ b)) has a value that is independent of b.
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If we now use Theorem 2 with (1) and (2) to evaluate ρ (P (x+ b) , Q (x+ b)),
we immediately see that Theorem 1, given in the Introduction is true, where
we are now using the variable b instead of the variable x.

4. Some Specific Examples

Suppose

P (x) =

2∑

i=0

Aix
i = A2x

2 +A1x+A0

and

Q (x) =

2∑

i=0

Bix
i = B2x

2 +B1x+B0.

Of course, P (x) and Q (x) are second degree polynomials and P ′ (x),
Q′ (x) are first degree polynomials. Therefore, by using the theorem with
each pair (P,Q), (P ′, Q), (P,Q′), (P ′, Q′), we have the following four in-
variants (or constants) involving the derivatives of P (x), Q (x).

In 2), 3), and 4), we note that (P ′)
′

= P ′′, (Q′)
′

= Q′′.

1)

∣
∣
∣
∣
∣
∣
∣
∣
∣

P ′′(x)
2 P ′ (x) P (x) 0

0 P ′′(x)
2 P ′ (x) P (x)

Q′′(x)
2 Q′ (x) Q (x) 0

0 Q′′(x)
2 Q′ (x) Q (x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

2)

∣
∣
∣
∣
∣
∣

P ′′ (x) P ′ (x) 0
0 P ′′ (x) P ′ (x)

Q′′(x)
2 Q′ (x) Q (x)

∣
∣
∣
∣
∣
∣

,

3)

∣
∣
∣
∣
∣
∣

P ′′(x)
2 P ′ (x) P (x)

Q′′ (x) Q′ (x) 0
0 Q′′ (x) Q′ (x)

∣
∣
∣
∣
∣
∣

,

4)

∣
∣
∣
∣

P ′′ (x) P ′ (x)
Q′′ (x) Q′ (x)

∣
∣
∣
∣
.

We invite the reader to write the invariants when P (x) is third degree
and Q(x) is second degree and also consider the case where Q(x) = P (k)(x)
for some positive integer k. If we make P (x) simple and let Q (x) be
arbitrary, then we can write down invariants that can easily be evaluated.
For example, if P (x) = x−b and Q (x) is a cubic, then we have the following
invariant:
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∣
∣
∣
∣
∣
∣
∣
∣

1 x− b 0 0
0 1 x− b 0
0 0 1 x− b

Q′′′(x)
6

Q′′(x)
2 Q′ (x) Q (x)

∣
∣
∣
∣
∣
∣
∣
∣

= Q (x) +Q′ (x) (b− x) +
Q′′ (x)

2
(b− x)

2
+

Q′′′ (x)

3!
(b− x)

3
= Q (b) .

This is the standard Taylor’s series if we interchange x and b. Finally,
suppose P (x) is an arbitrary polynomial of degree n. Define P (x) =

P
(i)

(x) , Q (x) = P
(j)

(x). Then by varying i, j ∈ {0, 1, 2, . . . , n− 1}, i < j,
we can create

(
n
2

)
different invariants that involve the derivatives of P (x).

5. A Research Problem

Since we deal with P (x) and its horizontal translation P (x + b) in this
paper, this motivated us to consider the following problem below.

Suppose

P (x) =

n∑

i=0

Aix
i, An 6= 0,

and

P (x) =
n∑

i=0

Bix
i, Bn 6= 0,

are two nth degree polynomials. We say that P and P are weakly congru-

ent (denoted P (x) ∼= P (x)) if P (x) = P (x + b) for some complex number
b. It is easy to show that ∼= is reflexive, symmetric and transitive, and
therefore an equivalence relation for the collection of all degree n polyno-
mials. We can see quickly that An = Bn. Also, the values of An−1, Bn−1,
An = Bn allow us to compute the value of b, and this explains why we
do not use P2(An, An−1) = P2(Bn, Bn−1) in the following list. We wish
to find a collection of n − 1 polynomials, P3(x1, x2, x3), P4(x1, x2, x3, x4),
P5(x1, x2, x3, x4, x5), . . ., Pn+1(x1, x2, . . . , xn+1) such that P (x) ∼= P (x) if
and only if

1) An = Bn

2) P3(An, An−1, An−2) = P3(Bn, Bn−1, Bn−2)
3) P4(An, An−1, An−2, An−3) = P4(Bn, Bn−1, Bn−2, Bn−3)

...
n) Pn+1(An, An−1, . . . , A0) = Pn+1(Bn, Bn−1, . . . , B0).

The reader may wish to solve the quadratic version of this problem before
going further. We can call P3, P4, . . ., Pn+1 invariants under ∼= that classify
the equivalence relation. We now start the reader off on the general solution.
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If P (x) ∼= P (x), then

P (x) =

n∑

i=0

Bix
i = P (x+ b) =

n∑

i=0

P (i)(b)

i!
xi.

Therefore, Bi =
P (i)(b)

i! . Also, Ai =
P (i)(0)

i! . It follows that P (i)(b) = i!Bi,

P (i)(0) = i!Ai. For each i, j ∈ {0, 1, 2, . . . , n − 1}, i < j, if we call x = b,
then we know that we can use each pair (P (i), P (j)) to create an invari-
ant (under ∼=) that involve the coefficients A0, A1, . . . , An, B0, B1, . . . , Bn.
These invariants are necessary conditions for P (x) ∼= P (x). However, when
n ≥ 3, this collection is too large, and it overshoots the number of invariants
required in the problem. So the problem is to cull out (with proof) a subcol-
lection that solves the problem. As an example, let P (x) = A2x

2+A1x+A0,

P (x) = B2x
2+B1x+B0. Then Bi =

P (i)(b)
i! , Ai =

P (i)(0)
i! , i = 0, 1, 2. Using

(P, P ′), we have the invariant

∣
∣
∣
∣
∣
∣

P ′′(b)
2 P ′(b) P (b)

P ′′(b) P ′(b) 0
0 P ′′(b) P ′(b)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

P ′′(0)
2 P ′(0) P (0)

P ′′(0) P ′(0) 0
0 P ′′(0) P ′(0)

∣
∣
∣
∣
∣
∣

.

This gives ∣
∣
∣
∣
∣
∣

B2 B1 B0

2B2 B1 0
0 2B2 B1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

A2 A1 A0

2A2 A1 0
0 2A2 A1

∣
∣
∣
∣
∣
∣

which gives 4B0B
2
2 − B2

1B2 = 4A0A
2
2 − A2

1A2. Since A2 = B2 6= 0, it
follows that 4B0B2 − B2

1 = 4A0A2 − A2
1. Of course this is the standard

discriminant of a quadratic. Equating P (x) = B2x
2+B1x+B0 = P (x+b) =

A2x
2 + (2A2b+A1)x+A2b

2 +A1b+A0, we see that A2 = B2, b =
B1−A1

2A2
.

Also, we require A2

[
B1−A1

2A2

]2

+A1

[
B1−A1

2A2

]

+A0 = B0. Since A2 6= 0, this

is true if and only if (B2
1 −2B1A1+A2

1)+2A1(B1−A1)+4A0A2 = 4A2B0.
Since A2 = B2, this is true if and only if B2

1 − 4B0B2 = A2
1 − 4A0A2, and

these are the same two conditions as are given above.
As the reader explores higher degree polynomials, he will begin to ap-

preciate the theory in this paper. Ed Barbeau suggested another way to
attack this problem, but he did not solve the problem. Thus the reader
might like to try solving this in a different way.

Let us now define another relation. We say P (x), P (x) are strongly con-

gruent (denoted by P (x) ./ P (x)) if P (x) = P (x+ b)+ a for some complex
numbers a, b. We invite the reader to very slightly modify his solution to
the weak congruence problem above to define and solve an analogous prob-
lem for strong congruence. Finally, the reader might like to discuss the
relationship between strong congruence and geometric congruence.
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6. Discussion

Since in general the two polynomials P (x) of degree n and Q (x) of de-
gree m need not be correlated in any way, it seems to be a remarkable fact
that we can write down so many different invariants involving the deriva-

tives of P (x) , Q (x). By defining P (x) = P
(i)

(x) , i ∈ {0, 1, 2, . . . , n− 1},

and Q (x) = Q
(j)

(x) , j ∈ {0, 1, 2, . . . ,m− 1}, and then using each pair
(

P
(i)

(x) , Q
(j)

(x)
)

we can write down n · m different invariants involv-

ing the derivatives of P (x) , Q (x). Thus, if n = m = 100, we would
have ten thousand different invariants involving two unrelated polyno-
mials P (x) , Q (x). This seems almost unbelievable. Also, if we include
(P (i), P (j)) and (Q(i), Q(j)), we can write down more invariants.
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