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Abstract. The planar soap bubble problem seeks the least perime-
ter way to enclose and separate m regions of m given areas. We
discuss a useful approach, especially for m ≤ 8.

1. Introduction

The soap bubble problem in R
n is the search for the optimal way to en-

closem regions of given volumes. For the planar case, for givenA1, . . . , Am >
0, we seek a length minimizing enclosure of regions R1, . . . , Rm of areas
A1, . . . , Am. The exterior region is denoted by R0 = R

2 \ R1 ∪ · · · ∪Rm.
Each region is a union of disjoint open components. Although it is intuitive
that each region should be connected, it is hard to prove. For a single area,
a circle was proven to be the shortest in 1880. For two areas, in 1991, Foisy
et al. [12] proved that the standard double bubble in Figure 1, is uniquely
minimizing.

Figure 1. A standard double bubble.

For three areas, in 2002, Wichiramala [23, 24] proved that the standard
triple bubble in Figure 2, is the unique minimizer.
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Figure 2. A standard triple bubble.

The problem is still open for m ≥ 4. In higher dimensions, the standard
double bubble was proven to be the best in 2008 [18]. The case of R3 and
m = 3 is virtually untouched.

The soap bubble problem is also studied on other surfaces. For example,
the double bubble conjecture was settled on a half plane [13, 15], corners
and cones [15], flat tori [9, 2], spheres and hyperbolic spaces [16, 7, 10, 8].

As mentioned earlier, the most difficult step is showing that every region,
including the exterior one, must be connected. The weak approach was
first introduced in [12] to make R0 connected by allowing R1, . . . , Rm to
have greater areas than A1, . . . , Am. In particular, bounded components of
R0 can be removed as follows. Make each component part of an adjacent
component of bounded region and then remove the redundant edge between
them. This process yields an enclosure of less length and greater areas.
Consequently, we may ignore enclosures with disconnected R0 in finding
the shortest enclosure with areas at least A1, . . . , Am. Finally, we have to
show that enclosures of greater areas are not minimizing.

Besides the plane, this approach has been used on cones, a half plane,
corners, and other scaling-invariant spaces.

In this work, we provide more advantages of using the weak approach.
We also show that this approach can make it easier to prove each region
connected for m = 7 and 8.

2. Previous Results

In this section we list previously known results, focusing on the planar
case.

From the argument in [17, 11], we obtain the following existence and
regularity theorem.

Theorem 2.1. For given A1, . . . , Am > 0, there exists a minimizing en-
closure of areas A1, . . . , Am. Each minimizer is composed of finitely many
circular or straight edges separating pairs of different regions. These edges
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meet in threes at 120 degree angles. There are real numbers p1, . . . , pm,
called pressures, such that each edge between Ri and Rj has curvature
|pi − pj | and curves into the lower pressure region where p0 is set to be
0.

From the main theorem of [4] and Lemma 6 of [5], we obtain the following
theorem.

Theorem 2.2. [4, 5] For a minimizing enclosure, 1) all edges form a con-
nected graph and 2) every two components may meet at most once.

We define a bubble to be an enclosure with properties in Theorems 2.1
and 2.2. An m-bubble is a bubble enclosing m regions. Hence, for m ≥ 3,
an m-bubble has no 2-sided component. A bubble is called standard if its
regions are connected and, if m ≤ n+ 1, has structure described in [3].

In coming figures, the number in 1, 2, . . . ,m, 0 on each component will
indicate the region this component contribute area to.

A variation of a bubble B is a smooth deformation of B by enclosures
{Bt|0 ≤ t ≤ T }. From Proposition 4.2 of [11], we have the following lemma.

Lemma 2.3. [11] Let Bt be a variation of a bubble B. Then

d

dt
l(Bt)

∣

∣

t=0
=

∑

i

pi
d

dt
A(Rt

i)
∣

∣

t=0
.

For a component, we give the direction of each edge counterclockwise.
The signed turning angle of each edge is then well-defined as follows. If a
directed edge is turning left, then its signed turning angle is positive. If it is
turning right, then the sign is negative. From the Gauss-Bonnet Theorem,
we obtain the next lemma.

Lemma 2.4. Let ti be the signed turning angles of edges of an n-sided
component. Then

∑n

i=1
ti =

6−n
3

π.

3. The Weak Approach

Although, the weak approach has analogs in higher dimensions, we will
focus on the planar case.

We define a weak enclosure for areas A1, . . . , Am to be an enclosure of
area a1, . . . , am where ai ≥ Ai. Next, we will show existence of minimizing
weak enclosures and list their properties.

Let L(A1, . . . , Am) be the length of a minimizing bubble of areas A1,
. . ., Am. Since L(A1, . . . , Am) is continuous and tends to infinity as each
Ai approaches infinity, together with compactness argument, we have that

min
ai≥Ai

L(A1, . . . , Am)
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exists. Equivalently a minimizing weak enclosure exists and necessarily has
to minimize the areas it encloses. Hence these minimizers are also bubbles.
Consequently, we may call them minimizing weak bubbles or weakly min-
imizing bubbles. From Proposition 3.5 of [24] ([23, Proposition 3.6]), we
have the following lemma.

Lemma 3.1. [23, 24] A weak minimizer for areas A1, . . . , Am has connected
R0 and nonnegative pressures. Moreover, if pi > 0, then A(Ri) = Ai.

Then we conclude in Theorem 3.6 of [24] ([23, Theorem 3.8]) that the
weak approach is valid for m ≤ 6 as follows.

Proposition 3.2. [23, 24] For m ≤ 6, if every weakly minimizing m-bubble
is standard, then every minimizing m-bubble is standard.

Moreover, the weak approach is valid in higher dimensions as in Theorem
3.7 of [24] ([23, Theorem 3.10]).

Proposition 3.3. [23, 24] In R
n, for m ≤ n+1, if every weakly minimizing

m-bubble is standard, then every minimizing m-bubble is standard.

Now we will generalize Proposition 3.2 to more properties of minimizers.
We first conclude from the proof of Proposition 3.6 of [24] ([23, Proposition
3.8]) into smaller steps as the following lemmas.

Lemma 3.4. For a bubble with nonnegative pressures, if a component has
at most five sides, then its pressure is positive.

Lemma 3.5. For a weak minimizer, if every component has at most five
sides, then all pressures are positive.

Lemma 3.6. For m ≤ 6, every m-bubble with connected regions and non-
negative pressures must have all pressures positive.

Lemma 3.7. For m ≤ 6, every weakly minimizing m-bubble with connected
regions is also minimizing for the same areas.

The next lemma indicates that some properties can be inherited from
weak minimizers to minimizers.

Lemma 3.8. Consider minimizers and weak minimizers for areas A1, . . .,
Am. Suppose 1) every weak minimizer has property P and 2) every weak
minimizer with property P has the same length as a minimizer. Then every
minimizer has property P.

Proof. Suppose B is a minimizer and W is a weak minimizer. Hence, from
assumption 1), W has property P. Thus, from assumption 2), l(W ) = l(B).
Consequently, B is a weak minimizer. Finally, from assumption 1), B has
property P. �
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Again, using the previous two lemmas, we may obtain Proposition 3.2.
The advantage of using the weak approach is that we only have to show

that a weak minimizer has the property we desire. Then we can easily
conclude that a minimizer also has that desired property. In order to remove
an unwanted bubble, we may find a shorter enclosure that encloses greater
areas.

In another space, we may use the weak approach to solve the bubble
conjecture if we have the following conditions. First a weakly minimizing
enclosure must exist. Next we need that every weak minimizer with con-
nected regions must have the same length as a minimizer. With these two
conditions, we may prove the conjecture by just showing that every weak
minimizer has connected regions. In general, we may replace having con-
nected regions by another property, for example, having combinatorial type
in some specific collection.

4. Basic Results

In this section, we list some lemmas needed in the main section. An
additional advantage of using the weak approach is also listed here.

For a bubble, we define ni to be the number of sides of Ri.

Lemma 4.1. For an m-bubble with connected regions,
∑m

i=0
ni = 6(m−1).

Proof. Let V,E, F be the number of vertices, edges, and faces, respectively.
Hence, F = m + 1. Since all edges meet in threes, 2E = 3V . By Euler’s
Formula, F − E/3 = F − E + V = 2 and thus E = 3(m − 1). Since
2E =

∑m

i=0
ni, we have

∑m

i=0
ni = 6(m− 1) as desired. �

Hence the total number of edges in an m-bubble with connected regions
is 1

2

∑m

i=0
ni = 3(m−1). In general, for a bubble with possible disconnected

regions, we have 1

6

∑m

i=0
ni + 2 components, including those of R0.

The next lemma ([24, Lemma 5.9] and [23, Lemma 5.11]) shows that a
3-sided component of a bubble can be reduced to get another bubble.

Lemma 4.2. [23, 24] Let B be a bubble with a 3-sided component C. If the
three incident edges of C are prolonged into C, they will meet at a point at
120 degree angles and then, after removing all edges of C, create another
bubble with the pressures of the remaining regions unchanged.

Proof. Since reducing C maintains curvatures of every edge, all pressure
differences are preserved. Then so are the pressures of remaining regions.
It is clear that the remaining edges still form a connected graph and every
two components still meet at most one. Therefore the new cluster is a
bubble. �
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Now we mention some extra advantage of using the weak approach. The
main work required is to show that every unwanted bubble is not weakly
minimizing. Note that a nonminimizing bubble is not weakly minimizing.
Hence one way to show that an unwanted bubble is not weakly minimizing
is to show that it is not minimizing by finding an area-preserving variation
that preserves length in first order but 1) decreases length in second order
or 2) preserves length in second order but causes some conflict mentioned,
for example, in [23, 24, 6]. However, in the weak approach, as we allow
regions to have greater areas, we need not preserve the areas. More specif-
ically, we may find a variation that increases areas of regions with zero
pressures. Then the variation will automatically preserve length in first
order. Specifically, if we have one region with zero pressure, we need not
preserve the area of the region. But we have to choose the direction of the
variation so that we increase the area of that region. In the same fashion, if
there are two regions with zero pressures, we need to make sure that both
areas are initially increasing or fixed.

5. Main Results

Now we conclude the main results for m = 7 and 8.
The argument in this section depends heavily on considering a bubble

as a connected graph formed by its edges. This will help reduce the com-
plications in listing all possibilities of bubbles. We recall that a tree is a
connected graph of degrees 3 or 1 with no closed path. A vertex of degree 1,
possibly together with its single edge, is called a leaf (see more information
in [22]). When a vertex of a tree is adjacent to two vertices of degree 1, its
three adjacent edges form a triple junction called a Y-shape end. We say
an edge is external if it is between a component and R0. A component is
external if it meets R0.

First we obtain a result about the number of Y-shape ends in a big tree.

Lemma 5.1. A tree with at least seven edges has at least two Y-shape ends.

Proof. First note that a tree has an even number of edges. When a tree has
seven edges, its shape is unique and there is exactly two Y-shape ends. For
a given tree of at least seven edges, we may make a bigger tree with two
more edges by adding two adjacent leaves. The number of Y-shape ends
may increase by one or stay the same. Any tree may be obtained by adding
pairs of adjacent leaves to the tree of seven edges. Therefore the statement
is clear. �

From Lemmas 3.6 and 4.2, we have the following lemma.

Lemma 5.2. If a 7-bubble with connected regions and nonnegative pres-
sures has a 3-sided bounded component, then all pressures are positive.
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Lemma 5.3. A 7-bubble with connected regions and nonnegative pressures
must have positive pressures.

Proof. Suppose the contrary, that is, p1 = 0. By Lemma 2.4, R1 has at
least six sides. We will divide the proof into cases according to the number
of sides of R1 and the surrounding regions. Note that R1 has at most seven
sides.
Case 1: R1 is 6-sided and surrounded by R2, R3, . . . , R7 as in Figure 3.

Figure 3. R1 is surrounded by R2, . . . , R7.

By Lemma 2.4, R1 has straight sides. Hence, p2, . . . , p7 = 0 and thus
n2, . . . , n7 ≥ 6. By Lemma 4.1, 36 = 6(m−1) = n0+· · ·+n7 ≥ 3+6+6·6 =
45, a contradiction. (In addition, we have p2, . . . , p7 = p1 = 0 and this
contradicts l = 2

∑m
i=1

piAi from Proposition 4.3 in [11].)
Case 2: R1 is 6-sided and surrounded by R2, . . . , R6, R0 as in Figure 4.

Figure 4. R1 is surrounded by R2, . . . , R6, R0.

By Lemma 2.4, R1 has straight sides. By Lemma 4.1, 36 = 6(m− 1) ≥
3+6+5 ·6+3 = 42, a contradiction. (In addition, R7 has an external edge
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of turning angle at least 3π, a contradiction.)
Case 3: R1 is 7-sided. Hence R1 is surrounded by R2, . . . , R7, R0. Consider
the connected graph outside the dotted path (to infinity) in Figure 5.

Figure 5. R1 is surrounded by R2, . . . , R7, R0.

Since the graph has no other face, it is a tree of seven leaves. Hence, by
Lemma 5.1, it has at least two Y-shape ends. One Y-shape end may cause
R0 to be 3-sided. The other end causes R2, . . . , R6 or R7 to be 3-sided. By
Lemma 5.2, p1 > 0. �

Proposition 5.4. A weakly minimizing 7-bubble for areas A1, . . . , A7 with
connected regions is also minimizing for areas Ai.

Proof. By the previous lemma, all pressures are positive. By Lemma 3.1,
A(Ri) = Ai for all i. �

From Lemmas 4.2 and 5.3, we have the following lemma.

Lemma 5.5. If an 8-bubble with connected regions and nonnegative pres-
sures has a 3-sided bounded component, then all pressures are positive.

Let 8f be the type in Figure 6.
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Figure 6. A flower type 8f of 8-bubbles.

Note that the figure looks like a fully blossomed flower. Let 8m be the
type in Figure 7.

Figure 7. A mangosteen type 8m of 8-bubbles.

Note that the figure looks like a mangosteen, the queen of fruits from
Thailand, and has combinatorial type with many symmetries.

Lemma 5.6. Let B be an 8-bubble with connected regions and nonnegative
pressures. Suppose B is not of type 8f with p1 = 0 and is not of type 8m
with p1 = 0 or p8 = 0. Then all pressures are positive.

Proof. First, we relabel regions and suppose the contrary, that p1 = 0. By
Lemma 2.4, R1 has at least six sides. We will divide the proof into cases
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according to the number of sides of R1 and the surrounding regions. Note
that R1 has at most eight sides. Similar to the case m = 7, R1 has at least
six sides and at most eight sides.
Case 1: R1 is 6-sided and surrounded by R2, . . . , R7 as in Figure 8.

Figure 8. R1 is surrounded by R2, . . . , R7.

By Lemma 2.4, R1 has straight sides. Hence, p2, . . . , p7 = p1 = 0.
Thus, n2, . . . , n7 ≥ 6. By Lemma 4.1, 42 = 6(m − 1) = n0 + · · · + n8 ≥
3 + 6 + 6 · 6 + 3 = 48, a contradiction.
Case 2: R1 is 6-sided and surrounded by R2, . . . , R6, R0 as in Figure 9.

Figure 9. R1 is surrounded by R2, . . . , R6, R0.
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Hence, p2, . . . , p6 = 0. Thus, n2, . . . , n6 ≥ 6. By Lemma 4.1, 42 =
6(m− 1) = n0 + · · ·+ n8 ≥ 3 + 6 + 5 · 6 + 3 + 3 = 45, a contradiction.
Case 3: R1 is 7-sided and surrounded by R2, . . . , R8 as in Figure 10.

Figure 10. R1 is surrounded by R2, . . . , R8.

Consider the connected graph outside the dotted closed path. Since the
graph has only one external face, it is a cycle of external edges decorated
by trees inside with seven leaves in total.
Subcase 3.1: The graph has no Y-shape end. Then it is a closed path
decorated by seven leaves. Hence B is of the type 8f. By the assumption,
p1 > 0.
Subcase 3.2: The graph has a Y-shape end. Hence that Y-shape end causes
R2, . . . , R7 or R8 to be 3-sided, a contradiction to Lemma 5.5.
Case 4: R1 is 7-sided and surrounded by R2, . . . , R7, R0 as in Figure 11.

Figure 11. R1 is surrounded by R2, . . . , R7, R0.
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Consider the connected graph outside the dotted path (to infinity). Since
the graph has only one face surrounded by the edges of R8, it is a closed
path decorated by trees outside with a total of seven leaves.
Subcase 4.1: The graph has no Y-shape end. Then the graph is a closed
path decorated by seven leaves. Hence B is of type 8m. By the assumption,
p1 > 0.
Subcase 4.2: The graph has a Y-shape end. If any Y-shape end meets the
dotted line, R2, . . . , R6 or R7 becomes 3-sided. Hence one Y-shape end
meets R0, B as in Figure 12.

Figure 12. R1 is surrounded by R2, . . . , R7, R0 and n0 = 3.

Since the edge between any two components is unique, we use eij to refer
to the edge between Ri and Rj . From Lemma 4.2, we also have that the
edges e12, e17, e27 can be prolonged inside B and meet at a point. This is
impossible since, as e10 is vertically straight, e12 is going up while e17 is
going down.
Case 5: R1 is 8-sided. Hence R1 is surrounded by R2, . . . , R8, R0. By the
same argument as in Case 3 of Lemma 5.3, pi > 0. �

Note that, by Lemma 4.2, we may assume in the previous two proofs
that n1, . . . , nm ≥ 4.

A bubble of type 8m with p1 = 0 tends to have long R2 and R7. Hence
it does not seem to be minimizing. Furthermore, if p1 and p8 are zero, the
two external edges of R2 and of R7 must have total turning angle 10π/3.
This makes both regions a long way away from being chubby as they should
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be. Consequently, it is unlikely to have a weak minimizer of type 8m with
A(R1) > A1 or A(R8) > A8.

Proposition 5.7. Let B be a weakly minimizing 8-bubble for areas A1, . . .,
A8 with connected regions. Suppose B is not of type 8m with A(R1) > A1

or A(R8) > A8. Then B is also minimizing for areas Ai.

Proof. Suppose B is not of type 8m and 8f. By the previous lemma, pi > 0.
By Lemma 3.1, A(Ri) = Ai. Suppose B is of type 8m with A(R1) = A1 and
A(R8) = A8. Since R2, . . . , R7 are 4-sided, by Lemma 3.4, p2, . . . , p7 > 0.
Again, A(Ri) = Ai. Suppose B is of type 8f. By Lemma 3.4, p2, . . . , p8 > 0
and thus A(Ri) = Ai for i = 2, . . . , 8. Suppose to the contrary that
A(R1) > A1. Hence p1 = 0. Note that every 4-sided component is be-
tween zero pressure R0 and R1. Recall the definition from [23, 24] that a
circular component is a 4-sided component with two (opposite) edges on
a circle. First, suppose that one of the 4-sided components is not circular.
By Proposition 5.24 of [24] ([23, Proposition 5.40]), every 4-sided compo-
nent is symmetric and hence forms a straight chain, a contradiction. Now
suppose that the 4-sided components are circular. By Lemma 5.22 of [24]
([23, Lemma 5.38]), we can move the chain of circular components while
fixing length, A(R2), . . . , A(R8) and decreasing A(R1). If A(R1) reaches
A1, then the new bubble is a minimizer. Having the same length, B is also
a minimizer. If we encounter an illegal meeting, we create a nonminimizing
weak enclosure of length l(B), a contradiction. �

Therefore we may conclude that a weak minimizer of type 8f is also
minimizing for the same areas. The next proposition will show that a weak
minimizer of the excluded type 8m is also minimizing or ties in length to
a minimizer for the same areas (satisfying the second condition of Lemma
3.8) provided that there exists a special variation below.

Proposition 5.8. Let B be a weakly minimizing bubble for areas A1, . . . , A8

of type 8m with A(R1) > A1. Let e be the external edge of R1 in Figure
7. Suppose that there is a variation {Bt|0 ≤ t ≤ T } such that B0 = B, Bt

is a bubble for t < T , areas of Rt
2
, . . . , Rt

8
are fixed, the edge et is straight

and shortening, and BT has an illegal meeting. Then B has the minimizing
length for areas Ai.

Proof. Consider t < T . Since Bt is a bubble and et is straight, p
t
1
= 0. By

Lemma 2.3, d
dt
l(Bt) = 0. Thus l(Bt) = l(B0) = l(B). First suppose that

A(Rt
1) > A1 for t < T . Thus, by continuity, l(BT ) = l(B) and A(RT

1 ) ≥ A1.
Hence BT is a weak enclosure for areas Ai that is not weakly minimizing
but with length l(B), a contradiction. Now suppose that Rt0

1
has area A1

at some t0 < T . Hence Bt0 is a weak minimizer enclosing areas exactly Ai.
Finally B has the same length as the minimizing Bt0 . �
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By Lemma 3.8, we now obtain the following two main theorems. They
show an easier way to prove the planar bubble conjecture for m = 7 and 8.

Theorem 5.9. For m ≤ 7, if every weakly minimizing bubble has connected
regions, then every minimizing bubble has connected regions.

Proof. This result follows from Propositions 3.2, 5.4 and Lemma 3.8. �

Theorem 5.10. If every weakly minimizing 8-bubble has connected regions
and is not of type 8m with A(R1) > A1 or A(R8) > A8, then every mini-
mizing 8-bubble has connected regions.

Proof. This result follows from Proposition 5.7 and Lemma 3.8. �

For 8-bubbles, we have stronger results (than Proposition 5.7 and The-
orem 5.10) with similar proofs as follows.

Proposition 5.11. Let B be a weakly minimizing 8-bubble for areas with
connected regions. Suppose B is not of type 8m with p1 = 0 or p8 = 0.
Then B is also minimizing for the same areas.

Theorem 5.12. If every weakly minimizing 8-bubble has connected regions
and is not of type 8m with p1 = 0 or p8 = 0, then every minimizing 8-bubble
has connected regions and is not of type 8m with p1 = 0 or p8 = 0.
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[6] A. Cañete and M. Ritoré, Least-perimeter partitions of the disk into three regions

of given areas, Indiana Univ. Math. J., 53 (2004), 883–904.
[7] J. Corneli, I. Corwin, Y. Xu, S. Hurder, V. Sesum, E. Adams, D. Davis, M. Lee,

R. Pettit, and N. Hoffman, Double bubbles in Gauss space and spheres, Houston
J. Math., 34 (2008), 181–204.

180 MISSOURI J. OF MATH. SCI., VOL. 24, NO. 2



WEAK APPROACH TO PLANAR SOAP BUBBLE CLUSTERS

[8] J. Corneli, N. Hoffman, P. Holt, G. Lee, N. Leger, S. Moseley, and E. Schoenfeld,
Double bubbles in S3 and H3, J Geom. Anal., 17 (2007), 189–212.

[9] J. Corneli, P. Holt, G. Lee, N. Leger, E. Schoenfeld, and B. Steinhurst, The double

bubble problem on the flat two-torus, Trans. Amer. Math. Soc., 356 (2004), 3769–
3820.

[10] A. Cotton and D. Freeman, The double bubble problem in spherical and hyperbolic

space, Intern. J. Math. Sci., 32 (2002), 641–699.
[11] C. Cox, L. Harrison, M. Hutchings, S. Kim, J. Light, A. Mauer, and M. Tilton,

The shortest enclosure of three connected areas in R
2, Real Anal. Exchange, 20

(1994/95), 313–335.
[12] J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba, The standard double soap

bubble in R
2 uniquely minimizes perimeter, Pacific J. Math., 159 (1993), 47–59.

[13] C. Hruska, D. Leykekhman, D. Pinzon, B. Shay, and J. Foisy, The shortest enclo-

sure of two connected regions in a corner, Rocky Mountain J. Math., 31 (2001),
437–482.
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