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Abstract. The primary purpose of this paper is to present the defi-
nition of the a-pedal hypersurface with respect to a point in the inte-
rior of a closed, convex and smooth hypersurface M . The secondary
purpose of this paper is to give some new characteristic properties
of the a-pedal hypersurfaces related to the support function, Gauss
curvature, mean curvature, the first and second fundamental forms
and their coefficients of M (Section 3). Using the classical methods
of the hypersurfaces in differential geometry we have established that
the support function ha of the a-pedal hypersurface Ma is equal to

h
a+1

Pa
where P 2

a = h2 + a2
III

∇ (h, h).

1. Introduction

The notion of the pedal surface of a given surface M in E3 with respect
to a chosen origin is well-known in literature [1, 2, 9, 11]. Georgiou, Hasa-
nis and Koutroufiotis [1] have studied the differential geometry of the pedal
surface M with respect to a chosen origin and they investigated the appli-
cations in geometrical optics. Recently Kuruoğlu [8] has studied the pedal
surface with respect to a point in the interior of a closed, convex and smooth
surfaceM in E3 and some new characteristic properties of the pedal surface
M have been given by the author. Afterwards the pedal surface M in E3

has been generalized by Kuruoğlu and Sarıoğlugil [9]. Furthermore, some
characteristic properties of a-pedal surfaces have been given by Kuruoğlu
and Sarıoğlugil [10], the reciprocal surfaces have been studied by Kuruoğlu
and Sarıoğlugil in [13], and have been generalized by Sunma, Sarıoğlugil
and Kuruoğlu [14].

In this paper, using the method in [13], the a-pedal hypersurfaces with
respect to a point in the interior of a closed, convex and smooth surface
M are defined and some characteristic properties of reciprocal hypersurface
Ma of M are studied.
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2. Preliminaries

In this section, we will give a brief review related with the theory
of hypersurfaces in En+1 and some characteristic properties and definitions
of the hyperpedal and reciprocal hypersurfaces for later use.

Let M be a closed, convex and smooth hypersurface in En+1. We con-
sider an immersion ψ : M → En+1, pulled back onto the standard metric
in En+1, and make the usual local identifications of M and ψ(M).

We begin by making the following two assumptions [1].

I) The immersed hypersurface in En+1 has Gauss-Kronecker curva-
ture K =

∏n

i=1 ki 6= 0 everywhere; with ki denoting the principal
curvatures of M .

II) The origin O does not lie on a tangent hyperplane of M . Such an
origin will henceforth be called admissible for M . Clearly, admissi-
ble origins O always exist locally for a given M . It is sufficient to
pick O close enough to M .

If I) and II) hold for n ≥ 2, there exist an orientation of M , given in
the vicinity of any single point by certain ordered n-tuples of coordinates
(u1, u2, . . . , un), so that the corresponding unit normal vector field

N =
X1 ×X2 × · · · ×Xn

‖X1 ×X2 × · · · ×Xn‖
(2.1)

points to the half-space which lies in O. Here, Xi =
∂X
∂ui

, 1 ≤ i ≤ n, and ×

is the usual exterior product [1].
The support function h of M with respect to O is defined by

h = −〈X,N〉 (2.2)

where 〈, 〉 is the usual inner product of En+1.
Assuming we have chosen an admissible origin O, the corresponding

support function h clearly never vanishes. Because of connectivity, either
h > 0 or h < 0 is assumed throughout, by assumption II) and the choice
of orientation. It follows that we can always choose the unit normal vector
field N of M which makes h > 0.

Setting Xi =
∂X
∂ui

and Ni =
∂N
∂ui

in a chart (u1, u2, . . . , un), we can write

gij = 〈Xi, Xj〉, bij = −〈Xi, Nj〉 = 〈Xij , N〉, nij = 〈Ni, Nj〉, 1 ≤ i, j ≤ n,

(2.3)
for the coefficients of the first and second fundamental forms of M , respec-
tively.

Definition 1. Let M be a closed, convex and smooth hypersurface in En+1

and O be a point in the interior of P ∈ M . If X is the position vector at
point P ∈M with respect to the origin and is the inner unit vector field of
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M , then the hypersurface with the position vector field with respect to the
origin is called hyperpedal surface of and denoted by M , [9].

Geometrically, we can construct the hyperpedal surface as follows. We
draw the perpendicular line from the origin O to the tangent plane TM (P )
and we get the normal to TM (P ). The normal meets TM (P ) at a point P .
The locus of all the points P corresponding to all the points P on M will
give the hyperpedal surface.

The position vector of the point P ∈M can be given by

X = −hN. (2.4)

Thus for the position vector field X of M we can write

X = XT +XN (2.5)

where XT and XN = X = −hN denote the decompositions of tangential
and normal of X , respectively.

Furthermore, because M is strictly convex, we can express it locally in
terms of the inverse tensor (nik) of the third fundamental form III = (nik)
of M , with respect to arbitrary parameter system, namely

X = −hN −
∑

i,k

nikhiNk, 1 ≤ i, k ≤ n, (2.6)

where hi, Nk are the partial derivatives with respect to the local parameters
[9]. The shape operator S is the self-adjoint linear transformation defined
by S(V ) = DVN for all V ∈ TM (P ). Using equation (2.5), we can write

grad ρ =
1

ρ
X and grad h = SXT (2.7)

where XT ∈ TM (P ) and ‖X‖ = ρ [2].
Furthermore, the qth-order Gauss curvature Kq of M is defined by

Kq =

n
∑

i1≤i2≤···≤iq

ki1ki2 · · · kiq , 1 ≤ q ≤ n, (2.8)

where k1, k2, . . . , kn are the eigenvalues of S [4].
Here, K1 and Kn are the mean and Gauss curvatures of M and denoted

by H and K. If the Gauss curvature K of M is constant, we can say that
M is a hypersurface with constant curvature.

Furthermore, the volume V of M may be written as

V =
1

n+ 1

∫

M

hdA (2.9)

where h is the support function of M [11].
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Lemma 1. Let M be a hypersurface of En+1. We list the following rela-
tions between the higher order Gauss curvature functions and the principal
curvature functions of M .

K(p)
p + kp+1 = K

(p+1)
p+1

kp+1 +K
(p)
1 = K

(p+1)
1 , 1 ≤ p+ 1 ≤ n

kp+1K
p
r−1 +K(p)

r = K(p+1)
r . (2.10)

Here K
(p)
r and K

(p+1)
r is not defined on the same manifold. For exam-

ple, K
(p)
r and K

(p+1)
r are defined on p-dimensional and (p+1)-dimensional

manifolds, respectively. We know that p-dimensional manifold is included
in the (p+ 1)-dimensional manifold [5].

Definition 2. Let M be a closed, convex and smooth hypersurface in En+1

and O be a point in the interior of M . If X is the position vector at point
P ∈M with respect to the origin O and N is the inner unit vector field of
M , then the hypersurface with the position vector field Xrc = − 1

h
N with

respect to the origin O is called reciprocal hypersurface of M and denoted
by Mrc [14].

3. Some New Characteristic Properties of the a-pedal

Hpersurfaces in En+1

In this section we will give the definition and some new characteristic
properties of the a-pedal hypersurfaces in En+1.

Definition 3. Let M be a closed, convex and smooth hypersurface in En+1

and O be a point in the interior of M . The a-pedal of M is the hypersurface
having the position vector field

Xa = −haN (3.1)

with respect to the origin O. Here, N is the unit normal vector field of M
at the point P ∈M and h is the support function of M .

Theorem 1. Let M be a closed, convex and smooth hypersurface in En+1.
For the unit normal vector field Na of the a-pedal hypersurface Ma we have

Na =
1

Pa

{(a+ 1)hN + aX} (3.2)

where X is the position vector field of M and P 2
a = h2 + a2

III

∇ (h, h).

Proof. Let {u1, u2, . . . , un} be a local coordinate system on M . By dif-
ferentiating the position vector field Xa with respect to the parameter ui,
1 ≤ i ≤ n, we get

(Xa)i − aha−1hiN − haNi, 1 ≤ i ≤ n. (3.3)
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Thus, using (2.1) for the unit normal vector field Na we can write

Na =
(Xa)1 × (Xa)2 × · · · × (Xa)n
‖(Xa)1 × (Xa)2 × · · · × (Xa)n‖

. (3.4)

By computing the vector field (Xa)1 × (Xa)2 × · · · × (Xa)n we obtain

(Xa)1 × (Xa)2 × · · · × (Xa)n

= hna−1‖X1 ×X2 × · · · ×Xn‖

(

hN − a

n
∑

i=1

n
hi

kigii
Xi

)

and using (2.6) we can rewrite the vector field (Xa)1 × (Xa)2 × · · ·× (Xa)n
as

(Xa)1×(Xa)2×· · ·×(Xa)n = hna−1‖X1×X2×· · ·×Xn‖((a+1)hN+aX).
(3.5)

On the other hand, by computing the norm of the vector field we get

‖(Xa)1 × (Xa)2 × · · · × (Xa)n‖ = hna−1‖X1 ×X2 × · · · ×Xn‖Pa. (3.6)

Substituting (3.5) and (3.6) into (3.4), we get the result of the theorem. �

Theorem 2. Let M be a closed, convex and smooth hypersurface in En+1.
For the unit normal vector field ha of the a-pedal hypersurface Ma we have

ha =
ha+1

Pa

. (3.7)

Proof. Using the definition of the support function, (3.1) and (3.2), the
proof of this theorem can be easily shown. �

Theorem 3. Let M be a closed, convex and smooth hypersurface in En+1

and Ma be the a-pedal hypersurface of M . For the hyper-area element dAa

of Ma we have
dAa = hna−1KPadA (3.8)

where K is the Gauss curvature of M .

Proof. For the hyper-area element dAa of Ma

dAa = ‖(Xa)1 × (Xa)2 × · · · × (Xa)n‖du1du2 · · · dun (3.9)

where {ui : 1 ≤ i ≤ n} is a local coordinate system on M . Substituting
(3.6) into (3.9) we get

dAa = hna−1KPa‖X1 ×X2 × · · · ×Xn‖du1du2 . . . dun.

Setting dA = ‖X1 ×X2 × · · · ×Xn‖du1du2 . . . dun in the equation above,
we obtain the result of the theorem. �

Theorem 4. Let M be a closed, convex and smooth hypersurface in En+1

and Ma be the a-pedal hypersurface of M .
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For the coefficient (ga)ij , 1 ≤ i, j ≤ n of the first fundamental form Ia
of Ma we can write

(ga)ij = h2(a−1)
{

a2hihj + h2nij

}

(3.10)

where nij is the coefficient of the third fundamental form III of M .

Proof. Using (2.3), for the coefficient (ga)ij of the first fundamental form
Ia of Ma we can write

(ga)ij = 〈(Xa)i, (Xa)J 〉, 1 ≤ i, j ≤ n. (3.11)

Then, by differentiating the position vector field with respect to the param-
eter we obtain

(Xa)j = −aha−1hjN − haNj , 1 ≤ j ≤ n. (3.12)

Substituting (3.3) and (3.12) into (3.11) we get

(ga)ij = h2(a−1)
{

a2hihj + h2nij

}

, 1 ≤ i, j ≤ n.

This completes the proof. �

Thus, we can give the following lemma.

Lemma 2. Let M be a closed, convex and smooth hypersurface in En+1

and Ma be the a-pedal hypersurface of M . Then we have

det (ga)ij = hna−1KPa det gij . (3.13)

Theorem 5. Let M be a closed, convex and smooth hypersurface in En+1

and Ma be the a-pedal hypersurface of M . For the (ba)ij coefficient of the
second fundamental form IIa of Ma we can write

(ba)ij =
ha−1

Pa

{

a(a+ 1)hihj − ahbij + (a+ 1)h2nij

}

(3.14)

where bi,j is the coefficient of the second fundamental form II of M .

Proof. Using (2.3) for the (ba)ij coefficient of the second fundamental form
IIa of Ma we can write

(ba)ij = 〈(Xa)ij , N〉, 1 ≤ i, j ≤ n. (3.15)

By differentiating the position vector field (Xa)i with respect to the pa-
rameter uj we have

(Xa)ij = −a[(a− 1)hihj + aha−1bij ]− aha−1hiNj − aha−1hjNi − haNij .

(3.16)
Substituting (3.2) and (3.16) into (3.15) and by rearranging the last equa-
tion obtained, we get the result of the theorem. �
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Theorem 6. Let M be a closed, convex and smooth hypersurface in En+1

and Ma be the a-pedal hypersurface of M . For the principal curvatures
(ka)i, 1 ≤ i ≤ n− 1 and (ka)n of Ma we have

(ka)i =
1

haPa

[

(a+ 1)h−
a

kiPa

]

(3.17)

and

(ka)n =
1

aha−1Pa

[

(a+ 1)(1 +
a− 1

P 2
a

h2)−
h

knP 2
a

]

(3.18)

where ki, 1 ≤ i ≤ n, is the ith principal curvature of M .

Proof. Let {u1, u2, . . . , un} be a local parameter system consisting of the
curvature lines on M . Since Y =

∑n

i=1 λi
∂

∂ui
∈ χ(M) we have

(dXa)(Y ) =

n
∑

i=1

λi(Xa)i (3.19)

where Xa is the position vector field of Ma. Substituting (3.4) into (3.19),
we find

(dXa)(y) = −aha−1

[

n
∑

i=1

λihi

]

N − ha
n
∑

i=1

λiNi. (3.20)

Substituting
∑n

i=1 λihi = 〈Y, grad h〉 and Ni = −kiXi into (3.20), we
obtain

(dXa)(Y ) = −aha−1〈Y, grad h〉N + haSY

where S is the shape operator of M .
Setting grad h = St in the equation above, we get

(dXa)(Y ) = −aha−1〈Y, St〉 N + haSY. (3.21)

Then for the unit normal vector field Na we can write

(dNa)(Y ) =

n
∑

i=1

λi(Na)i. (3.22)

By differentiating the vector field Na with respect to the parameter ui we
get

(Na)i =
(a+ 1)(hiN + hNi) + aXi

Pa

+
(a+ 1)hN + aX

P 2
a

(Pa)i, 1 ≤ i ≤ n.

(3.23)
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By substituting (3.23) into (3.22) and by rearranging terms of the last
equation obtained, we get

(dNa)(Y ) =
1

Pa

[

n
∑

i=1

λi [(a+ 1)(hiN + hNi) + aXi]

]

N

−
a+ 1

P 2
a

h

[

n
∑

i=1

λi(Pa)i

]

N −
a

P 2
a

[

n
∑

i=1

λi(Pa)i

]

X. (3.24)

Setting
∑n

i=1 λi(Pa)i = 〈Y, grad Pa〉 and
∑n

i=1 λihi = 〈Y, grad h〉 into
(3.24), we get

(dNa)(Y ) =
a+ 1

Pa

〈Y, grad h〉N −
a+ 1

P 2
a

h〈Y, grad Pa〉N

−
a

P 2
a

〈Y, grad Pa〉X −
a+ 1

Pa

hSY +
a

Pa

Y.

By writing X = t− hN in the equation above, we obtain

(dNa)(Y ) =
a+ 1

Pa

〈St, Y 〉N −
1

P 2
a

h〈Y, grad Pa〉N

−
a

P 2
a

〈Y, grad Pa〉t−
a+ 1

Pa

hSY +
a

Pa

Y. (3.25)

Setting 〈Y, grad Pa〉 =
1−a2

P 2
a

h〈St, Y 〉+ a2tY
Pa

in (3.25) we get

(dNa)(Y ) =

{

a+ 1

Pa

〈St, Y 〉 −
a2 − 1

P 3
a

h2〈St, Y 〉 −
ha2

P 3
a

〈Y, t〉

}

N

−
a+ 1

Pa

hSY +
a

Pa

Y +
a

P 3
a

{

(a2 − 1)h〈St, Y 〉 − a2〈Y, t〉
}

t.

By the Olinde-Rodriques formula we may write

(dNa)(Y ) + ka(Y )(dXa)(Y ) = 0. (3.26)

By substituting (3.21) and (3.25) into (3.26), we obtain
[{

a+ 1

Pa

〈St, Y 〉 −
a2 − 1

P 3
a

h2〈St, Y 〉 −
ha

P 3
a

〈Y, t〉

}

N

+
a

P 3
a

{

(a2 − 1)h〈St, Y 〉 − a2〈Y, t〉
}

t−
a+ 1

Pa

hSY +
a

Pa

Y

]

+ ka(Y )
[

−aha−1〈Y, St〉 N + haSY
]

= 0.

From the equation above, the following linear equation system becomes

a(ka)h
a−1〈St, Y 〉 =

a+ 1

Pa

〈St, Y 〉 −
a2 − 1

P 3
a

h2〈St, Y 〉 −
ha2

P 3
a

〈Y, t〉
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and

(ka)h
aSY =

a+ 1

Pa

hSY −
a

Pa

Y −
a

P 3
a

{

(a2 − 1)h〈St, Y 〉 − a2〈Y, t〉
}

t.

Setting Y = Xi and SXn = knXn in the first equation of the linear
equation system above we get

(ka)n =
1

aha−1Pa

[

(a+ 1)(1 +
a− 1

P 2
a

h2)−
h

knP 2
a

]

.

Setting Y = Xi, 1 ≤ i ≤ n− 1, and 〈t,Xi = 0〉 in the second equation
of the linear equation system above we get

(ka)i =
1

haPa

[

(a+ 1)h−
a

kiPa

]

.

This completes the proof. �

Theorem 7. Let M be a closed, convex and smooth hypersurface in En+1

andMa be the a-pedal hypersurface ofM . For the qth order Gauss curvature
(Ka)

n
q of Ma we have

(Ka)
n
q =

1

hqaP
q
aK

(n)
n

(

n− 1

q − 1

)[

n− q

q
λ+

h

a
η −

h2

aP 2
a kn

]

K(n)
n λq−1

+ (−1)
q
aqknK

(n−1)
n−q−1

(

h2

P 2
a

− (hη − aλ)kn

)

×

q−1
∑

i=1

(−1)
i+1

(

q − 1

i

)

ai−1λq−i−1K
(n−1)
n−i−1 (3.27)

where K
(n−1)
n−q−1 and K

(n−1)
(n−1)−(q−1) are the [(n−1)−q]th and [(n− 1)− (q − 1)]th

Gauss curvatures of M , respectively. Here, λ = (a+1)h and η = (a+1)(1+
a−1
P 2

a

h2).

Proof. Using (2.8), for the qth order Gauss curvature (Ka)
n
q of Ma we may

write

(Ka)
n
q =

n
∑

i1≤i2≤···≤iq

(ka)i1(ka)i2 · · · (ka)iq , 1 ≤ q ≤ n.

By expanding the equation above we obtain

(Ka)
n
q =

n−1
∑

i1≤i2≤···≤iq

(ka)i1(ka)i2 · · · (ka)iq

+ (ka)n

n−1
∑

i1≤i2≤···≤iq−1

(ka)i1 (ka)i2 · · · (ka)iq−1
. (3.28)
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By substituting (3.17) and (3.18) into (3.28) and rearranging the last equa-
tion obtained we get the result of the theorem. �

Theorem 8. Let M be a closed, convex and smooth hypersurfaces in En+1

and Ma be the a-pedal hypersurfaces of M . For the volume Va of Ma, we
have

Va =
1

n+ 1

∫

M

ha(n+1)KdA (3.29)

where K is the Gauss curvature of M .

Proof. Using (2.9), the volume Va of Ma, we can write

Va =
1

n+ 1

∫

M

hadAa.

By substituting (3.8) and (3.9) into the equation above, we get the result
of theorem. �

Remark 1. For a = −1, the a-pedal hypersurface is a reciprocal hyper-
surface. Setting a = −1 in the equations above we obtain the results in
[14].

Similarly, for a = 1 the a-pedal hypersurface is a pedal hypersurface.
Thus, we get the results in [9].
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[8] N. Kuruoğlu, Some new characteristic properties of the pedal surfaces in Euclidean

space, Pure and Applied Mathematika Sciences, 23 (1986), no. 1–2, 7–11.
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