SOME NEW CHARACTERISTIC PROPERTIES OF THE
A-PEDAL HYPERSURFACES IN E"*!

AYHAN SARIOGLUGIL, SIDIKA TUL, AND NURI KURUOGLU

ABSTRACT. The primary purpose of this paper is to present the defi-
nition of the a-pedal hypersurface with respect to a point in the inte-
rior of a closed, convex and smooth hypersurface M. The secondary
purpose of this paper is to give some new characteristic properties
of the a-pedal hypersurfaces related to the support function, Gauss
curvature, mean curvature, the first and second fundamental forms
and their coefficients of M (Section 3). Using the classical methods
of the hypersurfaces in differential geometry we have established that
the support function h, of the a-pedal hypersurface M, is equal to

a III
B where P2 = h2 4 a2 V (h, h).

1. INTRODUCTION

The notion of the pedal surface of a given surface M in E® with respect
to a chosen origin is well-known in literature [1, 2, 9, 11]. Georgiou, Hasa-
nis and Koutroufiotis [1] have studied the differential geometry of the pedal
surface M with respect to a chosen origin and they investigated the appli-
cations in geometrical optics. Recently Kuruoglu [8] has studied the pedal
surface with respect to a point in the interior of a closed, convex and smooth
surface M in E? and some new characteristic properties of the pedal surface
M have been given by the author. Afterwards the pedal surface M in E3
has been generalized by Kuruoglu and Sarioglugil [9]. Furthermore, some
characteristic properties of a-pedal surfaces have been given by Kuruoglu
and Sarioglugil [10], the reciprocal surfaces have been studied by Kuruoglu
and Sarioglugil in [13], and have been generalized by Sunma, Sarioglugil
and Kuruoglu [14].

In this paper, using the method in [13], the a-pedal hypersurfaces with
respect to a point in the interior of a closed, convex and smooth surface
M are defined and some characteristic properties of reciprocal hypersurface
M, of M are studied.
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2. PRELIMINARIES

In this section, we will give a brief review related with the theory
of hypersurfaces in E"t! and some characteristic properties and definitions
of the hyperpedal and reciprocal hypersurfaces for later use.

Let M be a closed, convex and smooth hypersurface in E"*1. We con-
sider an immersion ¢: M — E"+! pulled back onto the standard metric
in E"T! and make the usual local identifications of M and ¢ (M).

We begin by making the following two assumptions [1].

I) The immersed hypersurface in E™*! has Gauss-Kronecker curva-
ture K = [[\_, k; # 0 everywhere; with k; denoting the principal
curvatures of M.

II) The origin O does not lie on a tangent hyperplane of M. Such an
origin will henceforth be called admissible for M. Clearly, admissi-
ble origins O always exist locally for a given M. It is sufficient to
pick O close enough to M.

If T) and II) hold for n > 2, there exist an orientation of M, given in
the vicinity of any single point by certain ordered n-tuples of coordinates
(u1,ug,...,uy), so that the corresponding unit normal vector field

XixXox - xX,

N:
[|[ X1 x Xo x -+ x X,

(2.1)

points to the half-space which lies in O. Here, X; = g—ii, 1 <i<n,and X
is the usual exterior product [1].
The support function h of M with respect to O is defined by

h=—(X,N) (2.2)

where (,) is the usual inner product of E"T1.

Assuming we have chosen an admissible origin O, the corresponding
support function h clearly never vanishes. Because of connectivity, either
h > 0 or h < 0 is assumed throughout, by assumption II) and the choice
of orientation. It follows that we can always choose the unit normal vector
field N of M which makes i > 0.

Setting X; = g—i and N; = g—fx in a chart (u1,ug,...,u,), we can write

9i5 = (X5, Xj), bij = —(Xi, Nj) = (Xij, N), nij = (Ni, Nj), 1 <, j <n,

(2.3)
for the coefficients of the first and second fundamental forms of M, respec-
tively.

Definition 1. Let M be a closed, convex and smooth hypersurface in E™T*
and O be a point in the interior of P € M. If X is the position vector at
point P € M with respect to the origin and is the inner unit vector field of
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M, then the hypersurface with the position vector field with respect to the
origin is called hyperpedal surface of and denoted by M, [9].

Geometrically, we can construct the hyperpedal surface as follows. We
draw the perpendicular line from the origin O to the tangent plane Ths(P)
and we get the normal to T/ (P). The normal meets T/ (P) at a point P.
The locus of all the points P corresponding to all the points P on M will
give the hyperpedal surface.

The position vector of the point P € M can be given by

X = —hN. (2.4)
Thus for the position vector field X of M we can write
X=Xr+Xn (2.5)

where X7 and Xy = X = —hN denote the decompositions of tangential
and normal of X, respectively.

Furthermore, because M is strictly convex, we can express it locally in
terms of the inverse tensor (n'*) of the third fundamental form ITI = (n;)
of M, with respect to arbitrary parameter system, namely

X =—hN =Y n"*hNi, 1<ik<n, (2.6)
where h;, Ni are the partial derivatives with respect to the local parameters

[9]. The shape operator S is the self-adjoint linear transformation defined
by S(V) = DyN for all V € T (P). Using equation (2.5), we can write

1
grad p = ;X and grad h = SX7 (2.7)

where X € Th(P) and | X|| = p [2].
Furthermore, the gth-order Gauss curvature K, of M is defined by

Kq = Z kilkiz e kiqv 1< q<n, (28)

i1 <ip<--<ig

where ki, ka, ..., k, are the eigenvalues of S [4].

Here, K1 and K,, are the mean and Gauss curvatures of M and denoted
by H and K. If the Gauss curvature K of M is constant, we can say that
M is a hypersurface with constant curvature.

Furthermore, the volume V of M may be written as

1
= hdA 2.

where h is the support function of M [11].
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Lemma 1. Let M be a hypersurface of E"t. We list the following rela-
tions between the higher order Gauss curvature functions and the principal
curvature functions of M.

KW 4k = Ky

p+1
kpi1 + KP = K" 1<pii<n
kp 1 KP | + KP = KD, (2.10)

Here K and K®Y is not defined on the same manifold. For exam-
ple, K% and K™ are defined on p-dimensional and (p + 1)-dimensional
manifolds, respectively. We know that p-dimensional manifold is included
in the (p + 1)-dimensional manifold [5].

Definition 2. Let M be a closed, convexr and smooth hypersurface in E"H1
and O be a point in the interior of M. If X is the position vector at point
P € M with respect to the origin O and N is the inner unit vector field of
M, then the hypersurface with the position vector field X,. = —%N with
respect to the origin O is called reciprocal hypersurface of M and denoted

by M, [14].

3. SOME NEwW CHARACTERISTIC PROPERTIES OF THE A-PEDAL
HPERSURFACES IN Ent1

In this section we will give the definition and some new characteristic
properties of the a-pedal hypersurfaces in E*+1,

Definition 3. Let M be a closed, convex and smooth hypersurface in E™+1
and O be a point in the interior of M. The a-pedal of M is the hypersurface
having the position vector field

X, = —h°N (3.1)

with respect to the origin O. Here, N is the unit normal vector field of M
at the point P € M and h is the support function of M.

Theorem 1. Let M be a closed, convex and smooth hypersurface in E™1,
For the unit normal vector field N, of the a-pedal hypersurface M, we have

N, = % {(a+ 1)AN + aX} (3.2)

11
where X is the position vector field of M and P2 = h? + a?> V (h, h).

Proof. Let {u,us,...,u,} be a local coordinate system on M. By dif-
ferentiating the position vector field X, with respect to the parameter u;,
1 <4< n, we get

(Xa)i —ah® 'hiN —h°N;, 1<i<n. (3.3)
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Thus, using (2.1) for the unit normal vector field N, we can write

(Xa)1 X (Xo)2 X -+ x (Xo)n

”(Xa)l X (Xq)2 X -+ X (Xa)nH

By computing the vector field (X;)1 x (X4)2 X -+ X (X4)n we obtain
(Xa)1 X (Xo)2 X -+ x (Xo)n

N, = (3.4)

Ly
_ 1na—1 7 .
=h | X1 x Xo x - x X, (hN — a}ﬂ nkigiin>

and using (2.6) we can rewrite the vector field (X,)1 X (Xg)2 X -+ X (Xa)n

as

(Xo)1 X (X2)a XX (Xg)n = A" Y X1 x Xo x- - x X ||((a+1)AN +aX).
(3.5)
On the other hand, by computing the norm of the vector field we get

[(Xa)1 % (Xa)2 X -+ X (Xo)nll = A7 X1 x Xo X -+ X Xp||[Pa. (3.6)
Substituting (3.5) and (3.6) into (3.4), we get the result of the theorem. O

Theorem 2. Let M be a closed, convex and smooth hypersurface in E™1,
For the unit normal vector field h, of the a-pedal hypersurface M, we have

ha+1
he = . 3.7
Proof. Using the definition of the support function, (3.1) and (3.2), the
proof of this theorem can be easily shown. O

Theorem 3. Let M be a closed, convex and smooth hypersurface in E™+1
and M, be the a-pedal hypersurface of M. For the hyper-area element dA,
of M, we have
dA, = k" 'K P,dA (3.8)
where K is the Gauss curvature of M.
Proof. For the hyper-area element dA, of M,
dAa = ||(Xa)1 X (Xa)z X oo X (Xa)anulduQ e dun (39)

where {u; : 1 <1i<n} is a local coordinate system on M. Substituting
(3.6) into (3.9) we get

dA, = K" 'K P,|| X1 x Xo % -+ x X, ||durdus . . . du,.

Setting dA = || X1 X X3 X -+ x X, ||duidus . . .du, in the equation above,
we obtain the result of the theorem. O

Theorem 4. Let M be a closed, convex and smooth hypersurface in E"H1
and M, be the a-pedal hypersurface of M.
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For the coefficient (ga)ij , 1 <i,j < n of the first fundamental form I,
of M, we can write

(ga);; = b~V {a’hih; + hPni;} (3.10)
where n;; is the coefficient of the third fundamental form III of M.

Proof. Using (2.3), for the coefficient (g,);; of the first fundamental form
1, of M, we can write

(9a)i; = (Xa)i, (Xa)g),1 <4y j < (3.11)

Then, by differentiating the position vector field with respect to the param-
eter we obtain

(Xa); = —ah® 'hjN — h°N;, 1 < j <n. (3.12)
Substituting (3.3) and (3.12) into (3.11) we get
(Qa)ij = p2la—1) {a2hihj + hznij} ,1<4,5 <n.
This completes the proof. O
Thus, we can give the following lemma.

Lemma 2. Let M be a closed, convex and smooth hypersurface in E"H1
and M, be the a-pedal hypersurface of M. Then we have

det (ga);; = b 'K Py det gij. (3.13)

Theorem 5. Let M be a closed, convex and smooth hypersurface in E™+1
and M, be the a-pedal hypersurface of M. For the (by)i; coefficient of the
second fundamental form I, of M, we can write

a—1

(ba)ij = 7

where b; ; is the coefficient of the second fundamental form II of M.

{a(a+ 1)h;hj — ahb;; + (a + 1)h*ng; } (3.14)

Proof. Using (2.3) for the (b,);; coefficient of the second fundamental form
11, of M, we can write

(ba)ij = <(Xa)ij7N>; 1 S Z,j S n. (315)

By differentiating the position vector field (X,); with respect to the pa-
rameter u; we have

(Xa)ij = —a[(a — 1)hzh3 + ahailbij] — ahailhiNj — ahailthi — haNij.

(3.16)
Substituting (3.2) and (3.16) into (3.15) and by rearranging the last equa-
tion obtained, we get the result of the theorem. O
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Theorem 6. Let M be a closed, convex and smooth hypersurface in E™T1
and M, be the a-pedal hypersurface of M. For the principal curvatures
(ka)is 1 <i<n—1 and (kq)n of M, we have

(ko) = halPa [(a—!— 1)h — kZDJ (3.17)
and
(ka)n = crmrp; [(a—l— 1)1+ a};glfﬁ) - k;})g} (3.18)

where k;, 1 < i < n, is the ith principal curvature of M.

Proof. Let {u1,us,...,u,} be a local parameter system consisting of the
curvature lines on M. Since Y = Y7 | /\i% € x(M) we have

n

(AXa)(Y) =D Ni(Xa)s (3.19)

i=1

where X, is the position vector field of M,. Substituting (3.4) into (3.19),
we find

(dX4)(y) = —ah®? lzn: )\ihi] N — h® zn: i N;. (3.20)

Substituting > i, A;h; = (Y,grad h) and N; = —k;X; into (3.20), we
obtain

(dX,)(Y) = —ah® (Y, grad h)N + h*SY
where S is the shape operator of M.
Setting grad h = St in the equation above, we get
(dX,)(Y) = —ah® 1Y, St) N + h*SY. (3.21)

Then for the unit normal vector field N, we can write

n

(ANG)(Y) =D Mi(Na)i- (3.22)

i=1
By differentiating the vector field N, with respect to the parameter u; we
get

(N.)i = (a+1)(hiN + hN;) + aX; n (a+ l)hN—i-aX(Pa)i’ l<i<n.

P, P2
(3.23)
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By substituting (3.23) into (3.22) and by rearranging terms of the last
equation obtained, we get

(dNa)(Y) = % lzn: Ai[(@+1)(hiN + hN;) + aX;| | N

a

1
_atl,

53 (3.24)

ixi(pa)z N i/\i(P
=1 =1

Setting Y7, Ai(Pa)i = (Y,grad P,) and > i \ih; = (Y,grad h) into
(3.24), we get

a+1 a+1

(dNo)(Y) = - (Y,grad h)N — P—3h<Y, grad P,)N
-1 @1y, grad P)X — alzlhsy + P%Y.
By writing X = ¢ — hIV in the equation above, we obtain
(@N.)(Y) = S5 SLY)N = Zrh(Y. grad PN
-4 % (Y, grad P,)t — PathY + 5. (3.25)

Setting (Y, grad P,) = (St Y) + % in (3.25) we get

(dN,)(Y) = {“;;1<St,Y>—“ %(Y,w}N

a+1 a 9
7 hSY+EY+ P3 {(a® = 1)h(St,Y) — a*(Y,t) } ¢.
By the Olinde-Rodriques formula we may write
(dNo)(Y) + ko (Y)(dXo)(Y) = 0. (3.26)
By substituting (3.21) and (3.25) into (3.26), we obtain
a+1 a® -1 ha
t,Y) — h*(St,Y Y,t) ¢ N
{2t sy - St sy - e

a a

L2 (St,Y) —

a+1
Pg{a — Dh(SEY) —at (Y.} = 1o

hSY + Y}
+ kao(Y) [-ah® (Y, St) N + hasy} =0.
From the equation above, the following linear equation system becomes
a+1 a?—1 ha?
St,Y) — h?(St,Y) — —
Pa < ? > < ) > P3

a

a(ka)h®HSt,Y) =

(Y1)

a
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and
a+1
ko)h®SY =
Setting Y = X; and SX, = k,X,, in the first equation of the linear
equation system above we get

a a 2 2
hSY — EY ~ B3 {(a®> = 1)n(St,Y) — a*(Y,t)} t.

1 a—1 h
kan: 1 1)(1 h2 — .
(koo = gty (@ DO+ S5 1) = |

a
Setting Y = X;, 1 <i<n-—1, and (¢, X; = 0) in the second equation
of the linear equation system above we get

(ko): = jap: [(a+1)h— ki)] :

This completes the proof. O

Theorem 7. Let M be a closed, convex and smooth hypersurface in E™T1
and M, be the a-pedal hypersurface of M. For the qth order Gauss curvature
(Ka)y of My we have

1 n—1\ [n—gq h h? _
K)'= —— A= — KMt
(Kol hae P <q—1) [ g Al aP(%kn} "

_ h?
+(=1)? aqanéiqi)l (— — (hn — a/\)kn>

F;
g—1 g—1
_yi (4 i=1yq—i—1p(n—1) 92

I (17 )t wten, (327)
where Kf;l:ql_)l and K((::i))f(qq) are the [(n—1)—q]th and [(n — 1) — (¢ — 1)]¢th
Gauss curvatures of M, respectively. Here, A = (a+1)h and n = (a+1)(1+
a—1 h2)
PZ

Proof. Using (2.8), for the gth order Gauss curvature (K,); of M, we may

write
n

(Kll)g = Z (ka)il (ka)iz o '(ka)iqv I<g<n.

i1 <in < <ig
By expanding the equation above we obtain

n—1

(K‘I)Z = . Z _ (ka)il (ka)iz to (ka)iq

n—1

+ (ka)n Z (ka)h (ka)iz T (ka)iqfl' (3'28)

11 <2< <ig—1
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By substituting (3.17) and (3.18) into (3.28) and rearranging the last equa-
tion obtained we get the result of the theorem. g

Theorem 8. Let M be a closed, convexr and smooth hypersurfaces in E™ 1
and M, be the a-pedal hypersurfaces of M. For the volume V, of M,, we

have )
Vo = / R K dA (3.29)
M

Cn+1
where K is the Gauss curvature of M.

Proof. Using (2.9), the volume V, of M,, we can write

1
Vo =—— hadA,.
a n +1 M a a
By substituting (3.8) and (3.9) into the equation above, we get the result
of theorem. O
Remark 1. For a = —1, the a-pedal hypersurface is a reciprocal hyper-
surface. Setting a = —1 in the equations above we obtain the results in

[14].

Similarly, for a = 1 the a-pedal hypersurface is a pedal hypersurface.
Thus, we get the results in [9].
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