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Abstract. In this work the following problem in the hyperbolic
plane is investigated. Find the perimeter-minimizing regions of pre-
scribed area between two parallel horocycles. An explicit and de-
tailed description of all such regions is given through isoperimetric
inequalities.

1. Introduction

For a Riemannian manifold M , the classical isoperimetric problem con-
sists in classifying, up to congruency by the isometry group ofM , the (com-
pact) regions Ω ⊆ M enclosing a fixed volume that have minimal boundary
volume. The existence and regularity of solutions for a large number of
cases may be guaranteed by adapting some results from Geometric Mea-
sure Theory (cf. [9]).

When M is the Euclidean plane R
2, the classical isoperimetric problem

has the disk as the unique solution. After the simply connected spaces of
constant curvature, slabs are the most natural ambient to work in. If M
is a hyperbolic surface, the least-perimeter enclosures of prescribed area
are described in [1], [7] and [11]. Physically, the isoperimetric problem in
a slab corresponds to determining the shape of a drop trapped between
two parallel planes, which was solved by Vogel in [12]. Independently,
Athanassenas studied the isoperimetric problem between parallel planes
of R

3 in [2]. If M is a slab between two parallel horospheres in the 3-
dimensional hyperbolic space H

3(−1), the possible isoperimetric regions
were obtained in [3].

In this paper, the upper halfplane model R2
+ will be used to investigate

the isoperimetric problem when M is a slab between two parallel horocycles
of R2

+, represented by horizontal straight lines. A detailed and complete
classification of the isoperimetric solutions will be presented. The main
result of the paper is part of the doctoral thesis [5] presented at University
of Säo Paulo/Brazil in September, 2006, and is available in Portuguese from
the CAPES database and posted at arXiv.org in 2009. It has been
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generalized to regions between any constant-curvature curves in R
2, S

2,
or H2 in subsequent independent work by M. Simonson [11] using another
approach. Furthermore, this paper is focused on the case when the two
boundary curves have the same curvature.

In Section 2 some basic definitions for R
2
+ are given in order to get

some preliminary characterizations of the possible isoperimetric regions.
More explicitly they must be delimited by curves of constant geodesic cur-
vature and meet the horocycles perpendicularly when this intersection is
non-empty. Although this result is partially adapted from [3], the tech-
niques used in R

2
+ to determine the isoperimetric regions are very different.

Section 3 contains important results proved in [4] for the possible isoperi-
metric regions obtained in the previous section.

Section 4 is a fundamental part of the paper because the inequalities
which will be used in Section 5 are listed there. In this last section the
isoperimetric profile for the region between two parallel horocycles in R

2
+

is studied to prove the following sharp result.
Let c > 1 be a real constant and Fc = {(x, y) ∈ R

2
+ : 1 ≤ y ≤ c}. Let

A > 0 and Cc,A be the set of all Ω ⊂ Fc with area |Ω| = A and perimeter

|∂(Ω ∩ F
◦

c)| < ∞, where Ω is supposed to be connected, compact and 2-
rectifiable in Fc, having as boundary (between the horocycles) a simple
rectifiable curve.

Theorem 1.1. Let Lc,A = inf{|∂(Ω ∩ F
◦

c)| : Ω ∈ Cc,A}. Then

(1) there exists Ω ∈ Cc,A such that |∂(Ω ∩ F
◦

c)| = Lc,A;
(2) if Ω ⊂ Fc has minimal perimeter, the boundary of Ω has a single

connected component consisting of either
(a) a halfdisk (geodesic, horocycle, equidistant) above {y = 1};
(b) a section of Fc, namely

S[x0,x1] = [x0, x1]× [1, c].

More precisely, if d is the hyperbolic distance between the horocycles then

i. if d < 1, there exists A0(c) such that
– if A < A0(c) then Ω is a geodesic halfdisk;
– if A = A0(c) then Ω is a geodesic halfdisk or a section;
– if A > A0(c) then Ω is a section;

ii. if d = 1, there exists A0(c) such that
– if A < A0(c) then Ω is a geodesic halfdisk;
– if A = A0(c) then Ω is a horocycle halfdisk or a section;
– if A > A0(c) then Ω is a section;

iii. if d > 1, there exist two constants A0(c) < A1(c) such that
– if A < A0(c) then Ω is a geodesic halfdisk;
– if A = A0(c) then Ω is a horocycle halfdisk;
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– if A0(c) < A < A1(c) then Ω is an equidistant halfdisk;
– if A = A1(c) then Ω is an equidistant halfdisk or a section;
– if A > A1(c) then Ω is a section.

2. Preliminaries

This section contains some basic facts and notations that will be used
throughout the paper. There is much literature about the subject (for
instance, [6]).

Let L3 = (R3, g) be the 3-dimensional Lorentz space endowed with the
metric g(x, y) = x1y1 + x2y2 − x3y3 and the hyperbolic plane

H
2 := {p = (x1, x2, x3) ∈ L3 : g(p, p) = −1, x3 > 0}.

The upper halfplane model R2
+ := {(x, y) ∈ R

2; y > 0} for H2 will be used,
endowed with the metric

<,>= ds2 =
dx2 + dy2

y2
.

The Euclidean straight line {y = 0} is the infinity boundary of R
2
+,

denoted by ∂∞R
2
+.

The curves of constant geodesic curvature k ≥ 0 in R
2
+ are classified

as geodesic, geodesic circles, horocycles and equidistant curves, which are
classical terms detailed, for instance, in [4] and [6].

Let F be the region inside two parallel horocycles (represented by two
horizontal Euclidean straight lines). Since the Euclidean homothety is an
isometry of R2

+, the lower horocycle can be chosen as {y = 1} to study
the isoperimetric problem, so that any solution is obtained by homothety.
Recall that Fc was defined in the Introduction. From now on F will be
denoted by Fc. The isoperimetric problem for Fc may be formulated as
follows.
Fix an area value and study the domains Ω ⊂ Fc with the prescribed area
which have minimal free boundary perimeter, but not counting its part of
the boundary contained in the horocycles.

Definition 2.1. A (compact) minimizing region Ω for this problem will be
called an isoperimetric solution or region in Fc.

Remark 2.1. By adapting the demonstration of Theorem 1.1 from [3] to
the case studied in this paper, namely R

2
+, together with Lemma 2.1 of

[1], there exist regular isoperimetric solutions and they are regions whose
boundary consists of curves of constant geodesic curvature perpendicular
to the horocycles (when the intersection is non-empty). Essentially, this
proves the first item of Theorem 1.1 in this present paper, stated in the
Introduction.
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Therefore there are only the following possibilities for barriers: vertical
geodesics, geodesic circles, horocycles represented by Euclidean circles of
R

2
+ tangent to ∂∞R

2
+, and equidistant curves represented by Euclidean

circles not entirely contained in R
2
+ and neither tangent nor perpendicular

to {y = 0}. A region in Fc delimited by two vertical geodesics will be
called a section. A region in Fc delimited by geodesic circles perpendicular
to {y = 1} or {y = c} will be called a geodesic halfdisk. A region in Fc

delimited by horocycles and equidistant curves perpendicular to {y = 1}
will be called a horocycle halfdisk and an equidistant halfdisk, respectively.
Halfdisk above (respectively below) {y = c} means the part of the Euclidean
halfdisk above (respectively below) the horocycle {y = c}.

3. Expressions for perimeter and area

This section contains expressions for the perimeter and area of the possi-
ble isoperimetric solutions Ω in Fc. All results of this section are proved in
detail in [4] but brief sketches of the proofs are given here. For the purposes
of this paper only regions that are 2(-dimensional)-rectifiable (with respect
to Hausdorff measure) with boundary 1(-dimensional)-rectifiable will be
considered. This measure is denoted by | · |, so that any Ω has area |Ω| and
perimeter |∂Ω|, but it never counts ∂Ω ∩ ∂Fc. See [9] for more details.

3.1. Perimeter and area of a section. Let c > 1 and x0 < x1 be
real constants. For the sake of simplicity, consider the vertical geodesics
{x = x0} and {x = x1} contained in R

2
+, and the parallel horocycles {y = 1}

and {y = c}.
Lemma 3.1. Using the notation above, if T is a section then

|∂T | = 2 ln c and |T | = (x1 − x0)(−1/c+ 1).

Proof. Since the length of a vertical geodesic segment 1 < y < c is ln(c/1) =
ln c, then |∂T | = 2 ln c and

|T | =
∫ x1

x0

∫ c

1

1

y2
dy dx = (x1 − x0)(−1/c+ 1).

�

3.2. Perimeter and area for a geodesic halfdisk and a horocycle

halfdisk. Now suppose c > 1 and consider the parallel horocycles {y = 1}
and {y = c}. Let S1 be the circle centered at (0, 1) with radius r1 < 1,
and S2 the circle centered at (0, c) with radius r2 < c − 1 (see Figure 1).
Hence, S1 can be viewed as a geodesic circle S1

H with hyperbolic center
C1

H = (0, h1) and S2 as a geodesic circle S2
H with hyperbolic center C2

H =
(0, h2).
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Let β1 be the central angle of S
1
H corresponding to the arc above {y = 1}

and β2 the central angle of S2
H corresponding to the arc below {y = c}.

y= 1

1

H
2

1
H

2

y

S

S

β

β

x

y=c

Figure 1. Perimeter and area for geodesic halfdisks.

For geodesic halfdisks the following result holds (see Figure 1):

Lemma 3.2. Using the notation above, let S̃1 be the geodesic through C1
H

and (r1, 1), and S̃2 the geodesic through C2
H and (r2, c). Let θ1 = β1/2

and θ2 = π − β2/2 with 0 < θ1, θ2 < π/2. Let S+
1 be the geodesic halfdisk

delimited by S1
H and above {y = 1}, and S−

2 the halfdisk delimited by S2
H

and below {y = c}. Then

|∂S+
1 | = 2θ1 cot θ1, |∂S−

2 | = 2(π − θ2) cot θ2, (1)

and

|S+
1 | = 2θ1

sin θ1
− π + 2 cos θ1, |S−

2 | = 2(π − θ2)

sin θ2
− π − 2 cos θ2. (2)

Proof. The arclengths determined by β1 and β2 are

|∂S+
1 | = β1 sinh ρ1, |∂S−

2 | = β2 sinh ρ2.

But

sinh ρ1 =
r1

√

1− r21
= cot θ1, sinh ρ2 =

r2
√

c2 − r22
= cot θ2,

so that the first part of the lemma is proved.
Now observe that

|S+
1 |/2 = |S̃1| − |S̄1|,
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where S̃1 is the sector corresponding to θ1 and S̄1 is the region delimited
by S̃1, axis y and the horocycle {y = 1}. In the same way,

|S−
2 |/2 = |S̃2|+ |S̄2|,

where S̃2 is the sector corresponding to β2/2 = π − θ2 and S̄2 is the region

delimited by S̃2, axis y and the horocycle {y = c}.
Therefore, the area of S+

1 and S−
2 are given by

|S+
1 | = 2θ1 (cosh ρ1 − 1)− 2(−r1 + π/2− arcsin(h1)),

|S−
2 | = 2(π − θ2) (cosh ρ2 − 1) + 2(−r2/c+ π/2− arcsin(h2/c)).

(3)

But

cosh ρ1 =
1

√

1− r21
, cosh ρ2 =

c
√

c2 − r22
. (4)

Furthermore,

arccos(r1) = arcsin(
√

1− r21) = arcsin(h1),

arccos(r2/c) = arcsin
(

√

c2 − r22
c

)

= arcsin(h2/c).
(5)

Since cos θ1 = r1 and cos θ2 = r2/c

sin θ1 =
√

1− r21 , sin θ2 =

√

c2 − r22
c

. (6)

By (3), (4), (5), and (6) the proof of (2) is complete. �

Corollary 3.1. Let H be the horocycle halfdisk above {y = 1} represented
by a Euclidean semicircle with center (0, 1) and radius 1. Then

|∂H | = 2 and |H | = 4− π. (7)

Proof. It is enough to calculate |∂S+
1 | and |S+

1 | from (1) and (2) for the
limiting case when θ1 → 0. �

3.3. Perimeter and area for an equidistant halfdisk. Let Ē be the
equidistant curve represented by a Euclidean circle with center (0, 1) and
radius r > 1. The Euclidean equation of Ē is given by x2 + (y − 1)2 = r2.

Then Ē ∩ ∂∞R
2
+ = {(−

√
r2 − 1, 0), (

√
r2 − 1, 0)} (see Figure 2). The curve

Ē is equidistant from the geodesic η with equation x2 + y2 = r2 − 1. If ρ
denotes the hyperbolic distance between Ē and η, then

r = coth ρ. (8)

If α is the non-oriented angle between Ē and η, 0 < α < π/2, then (for
instance, see Proposition 3 in Chapter 5 of [6])

tanh ρ = sinα. (9)
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Figure 2. Perimeter and area for an equidistant halfdisk.

Lemma 3.3. Using the notation above, let E be the equidistant halfdisk
above {y = 1}. Then

|∂E| = 2

cosα
ln
( 1

sinα
+ cotα

)

,

|E| = 2

sinα
− π +

2

cotα
ln
( 1

sinα
+ cotα

)

.

(10)

Proof. In order to calculate |∂E|, E can be parametrized by

β(t) = (r cos t, 1 + r sin t), 0 ≤ t ≤ π.

Then

|∂E| = 2

∫ π/2

0

r

1 + r sin t
dt =

2r√
r2 − 1

ln(r +
√

r2 − 1).

By (8) and (9), it holds that r = 1/ sinα, hence
√
r2 − 1 = cotα, because

0 < α < π/2. Therefore,

|∂E| = 2

cosα
ln
( 1

sinα
+ cotα

)

,

and the first part of (10) is proved. Now,

|E| = 2

∫ r

0

∫ 1+
√
r2−x2

1

1

y2
dy dx = 2r − π +

1√
r2 − 1

ln |(r +
√

r2 − 1)2|.

By (8) and (9), it follows that |E|, as function of the equidistance angle α,
is given by

|E| = 2

sinα
− π +

2

cotα
ln
( 1

sinα
+ cotα

)

,
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which proves the second part of (10). �

4. Comparison of perimeters of regions with prescribed area

In this section the perimeter and the area of regions delimited by curves
of constant geodesic curvature are compared. Their isoperimetric profiles in
Fc will be obtained in the next section as functions of its hyperbolic width
d. Since we have been considering the horocycles {y = 1} and {y = c}, the
constant c must satisfy the following condition: if H is a horocycle halfdisk
above {y = c} and T is a section in Fc, then |∂H | = |∂T |. By (7) and
Lemma 3.1, this means 2 = 2 ln c, hence c = e and d = 1. This is why d is
compared with 1 in Theorem 1.1.

From the geometric analysis done in [4] for the perimeter and area of
the possible isoperimetric solutions, there are only the following cases to
consider:

(1) to compare a geodesic halfdisk above {y = 1} with a geodesic disk
entirely contained in Fc;

(2) to compare a geodesic halfdisk above {y = 1} with a geodesic
halfdisk below {y = c};

(3) to compare a horocycle halfdisk above {y = 1} with a geodesic
halfdisk below {y = c};

(4) to compare an equidistant halfdisk above {y = 1} with a geodesic
halfdisk below {y = c}.

In order to prove the second part of Theorem 1.1, one must determine the
least-perimeter regions with prescribed area. For this purpose, the following
strategy will be used: determine the regions with prescribed perimeter
and biggest area. In fact, it is enough to show that if a region has the
maximum area among all regions with a prescribed perimeter, then it has
the minimum perimeter among all regions with the same prescribed area
(see Lemma 4.1 below). Since all possible isoperimetric solutions beside the
section were just listed, Lemma 4.1 will then refer to the above case 2. The
other cases are proved analogously. Without loss of generality suppose that
the geodesic halfdisk above {y = 1} has maximum area when compared to
any geodesic halfdisk below {y = c} with the same perimeter.

Lemma 4.1. Let Ω0 be the geodesic halfdisk above {y = 1} with |Ω0| ≥ |Ω|,
whenever |∂Ω| = |∂Ω0|, for any geodesic halfdisk Ω below {y = c}, c > 1. If
Ω1 is a geodesic halfdisk below {y = c} with |Ω0| = |Ω1|, then |∂Ω0| ≤ |∂Ω1|.

Proof. Suppose by contradiction that |∂Ω0| > |∂Ω1|. By (1) and (2) the
radius of the Euclidean circle that represents Ω1 can be increased to get a
geodesic halfdisk Ω′ such that |∂Ω′| = |∂Ω0|. This procedure could fail if
Ω′ surpassed {y = 1}, but then the section will prevail as the isoperimetric
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solution. This fact will be proved later on in Section 5. By (2), the area
increases with the radius. Therefore, |Ω′| > |Ω1| = |Ω0| and |∂Ω′| = |∂Ω0|.
This is a contradiction with the fact that Ω0 maximizes the area when
compared to regions of the same perimeter, by hypothesis. �

Throughout this section the area of the possible isoperimetric solutions
for a prescribed perimeter will be compared. All results here are proved in
[4], in a style different from that of classical H2-geometry (see [1, 7, 11],
for example). There the authors apply the Gauss-Bonet theorem to get an
isoperimetric inequality between the area and the perimeter, whereas in [4]
trigonometry is used. This offers a nice alternative for computing values in
H

2, but is not reproduced here for the sake of brevity.
For Case 1 described above, the area of a geodesic halfdisk above {y = 1}

is compared with the area of a geodesic disk entirely contained in Fc, when
they have the same perimeter. Let S be the Euclidean circle with radius
r2, 0 < r2 < y2 − 1, and center (0, y2), 1 < y2 < c, which delimits the
geodesic halfdisk (see Figure 3 left).

1y=

y

x

y=c

y=c

y=y

y=

x

2

1

y

Figure 3. Cases 1 (left) and 2 (right).

Recall that the regions S+
1 , S−

2 , H and E were defined in Section 3. The
next lemma shows that |S+

1 | > |S| when |∂S+
1 | = |∂S|.

Lemma 4.2. Let θ1, θ2 ∈ ]0, π/2[ such that

θ1 cot θ1 = π cot θ2.

Then
2θ1
sin θ1

+ 2 cos θ1 − π >
2π

sin θ2
− 2π.

Case 2 is related to Lemma 4.3, which shows that |S+
1 | > |S−

2 | when
|∂S+

1 | = |∂S−
2 | (see Figure 3 right).
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Lemma 4.3. Let θ1, θ2 ∈ ]0, π/2[ such that

θ1 cot θ1 = (π − θ2) cot θ2.

Then
θ1

sin θ1
+ cos θ1 >

π − θ2
sin θ2

− cos θ2.

The next lemma shows that |H | > |S−
2 | when |∂H | = |∂S−

2 |. Case 3 is
illustrated in Figure 4 left.

1y= 1y=

x

y

x

y=c

y=c=ey

Figure 4. Cases 3 (left) and 4 (right).

Lemma 4.4. Let θ2 ∈ ]0, π/2[ such that 1 = (π − θ2) cot θ2. Then 2 >
π − θ2
sin θ2

− cos θ2.

Case 4 is related to the next lemma, which shows that |E| > |S−
2 | when

|∂E| = |∂S−
2 | (see Figure 4 right).

Lemma 4.5. Let α, θ2 ∈ ]0, π/2[ such that

1

cosα
ln
( 1

sinα
+ cotα

)

= (π − θ2) cot θ2.

Then
1

sinα
+

1

cotα
ln
( 1

sinα
+ cotα

)

≥ π − θ2
sin θ2

− cos θ2.

From Lemmas 4.2 to 4.5, it is possible to conclude that the family of
geodesic, horocycle and equidistant halfdisks above {y = 1} are the solu-
tions to the isoperimetric problem, instead of the geodesic halfdisks below
{y = c}, c > 1.
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5. Isoperimetric Profile in R
2
+

In this section the isoperimetric profile for Fc (see Figure 5) is studied.
A well-known result from Isoperimetric Problem Theory can be adapted to
guarantee that the boundaries of the connected components of an isoperi-
metric solution are curves with the same constant geodesic curvature (for
instance, see [1, Lemma 2.1]). It will be proved that a connected compo-
nent of an isoperimetric region must be either a section or a halfdisk above
the horocycle {y = 1} before showing that a minimizing region is made of a
single connected component. Here the analysis done in Section 3 of [4] will
be needed. The perimeter of the section in Fc is equal to 2 ln c. Now there
are only three possibilities which are classified according to the hyperbolic
distance d = ln c: d < 1, d = 1, and d > 1. Only the analysis for the
most general case d > 1 will be presented here, because the others are quite
analogous.

section

section

section

L
e=c

A

equidistant halfdisk

horocycle halfdisk

geodesic halfdisk

L

Figure 5. Isoperimetric profile for the region between the
parallel horocycles.

Case d > 1.
Consider a horocycle {y = c} with c > e. Let A0(c) = 4−π be the area of

the horocycle halfdisk S0 above {y = 1}, centered at (0, 1) with Euclidean
radius r0(c) = 1 and |∂S0| = 2. Let T0 be a section with |T0| = A0(c) and
A1(c) be the area of an equidistant halfdisk S1 above {y = 1}, centered at
(0, 1) with Euclidean radius r1(c) and |∂S1| = |∂T1|, where T1 is a section
with |T1| = A1(c) (see Figure 6). In this case, observe that |∂T1| > 2.

Consequently,

– if A = A0(c) = 4 − π then |S0| = |T0| = A, but |∂T0| > 2 = |∂S0|.
Therefore, the minimizing Ω is a horocycle halfdisk;
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1y=

y= 2

y=e

y=c

0
A    c(   )

1
A    c(   )

x

y

Figure 6. Case c > e.

– if A = A1(c) then |S1| = |T1| = A and |∂S1| = |∂T1|. Therefore,
the minimizing Ω is an equidistant halfdisk or a section;

– if A < A0(c), let S2 be a geodesic halfdisk with |S2| = A, centered
at (0, 1) and with Euclidean radius r2. Then r2 < r0(c) and |∂S2| <
|∂S0|. Let T2 be a section with |T2| = A. Then |S2| = |T2| = A,
but |∂S2| < |∂T2| = |∂T0| = |∂S0|. Therefore, the minimizing Ω is
a geodesic halfdisk;

– if A0(c) < A < A1(c), let S3 be an equidistant halfdisk with |S3| =
A, centered at (0, 1) and with Euclidean radius r3. Then r0(c) <
r3 < r1(c) and |∂S3| < |∂S1|. Let T3 be a section with |T3| =
A. Then |S3| = |T3| = A, but |∂S3| < |∂T3| = |∂T1| = |∂S1|.
Therefore, the minimizing Ω is an equidistant halfdisk;

– if A > A1(c), let S4 be an equidistant halfdisk with |S4| = A,
centered at (0, 1) and with Euclidean radius r4. Then r4 > r1(c)
and |∂S4| > |∂S1|. Let T4 be a section with |T4| = A. Then
|S4| = |T4| = A, but |∂S4| > |∂T4| = |∂T1| = |∂S1|. Therefore, the
minimizing Ω is a section.

Remark 5.1. A minimizing region consists of only one connected compo-
nent, and in fact it is enough to show that it cannot have two. If this were
the case, their geodesic curvatures would agree. Consider A > 0 and Ω′ a
region with area A and two disjoint sections. Their “gluing” would result in
another section with area A but with smaller perimeter, because two vertical
geodesics would not count anymore. Then Ω′ is not minimizing.

The other case to consider is two connected components consisting of two
geodesic halfdisks above {y = 1}. In this case, the fact that a non-regular
region is not minimizing can be used: let A > 0 and Ω′ be a region with area
A and two geodesic halfdisks above {y = 1} with the same Euclidean radius,

MISSOURI J. OF MATH. SCI., FALL 2012 113



M. F. DA SILVA

hence the same geodesic curvature. By sliding one of them over {y = 1}
until it touches the other, since horizontal translations are isometries of the
hyperbolic plane, a non-regular region Ω′′ with area A is obtained. Then
Ω′′ does not have the least-perimeter among all regions with prescribed area
A. Since |Ω′| = |Ω′′|, Ω′ is not minimizing.

Therefore, a minimizing region must consist of a single connected com-
ponent.

Theorem 1.1 is proved now.

Proof. The first part of Theorem 1.1 was already discussed in Remark 2.1.
The existence of such an isoperimetric region follows from adaptations of
some results from [8] and [9]: the group G of isometries of R2

+ that leave
Fc invariant consists of horizontal Euclidean translations and Euclidean re-
flections with respect to a vertical geodesic, so that Fc/G is homeomorphic
to the interval [0, 1], hence compact.

The second part of Theorem 1.1 follows from the analysis of the isoperi-
metric profile done in the three possibilities above, together with Remark
5.1. �
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