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Abstract. In an article published in 1979, Kainen and Bernhart [1]

laid the groundwork for further study of book embeddings of graphs. They

define an n-book as a line L in 3-space, called the spine, and n half-planes,

called pages, with L as their common boundary. An n-book embedding of a

graph G is an embedding of G in an n-book so that the vertices of G lie on

the spine and each edge of G lies within a single page so that no two edges

cross. The book thickness bt(G) or page number pg(G) of a graph G is the

smallest n so that G has an n-book embedding.

Finding the book thickness of an arbitrary graph is a difficult problem.

Even with a pre-specified vertex ordering, the problem has been shown to

be NP-complete [6]. In this paper we will introduce book embeddings with

particular focus on results for graphs with small book thickness.

1. Graphs With Book Thickness bt(G) ≤ 1. The only graphs

with bt(G) = 0 consist entirely of isolated vertices, since each edge

of a graph must be assigned to a page. Observing that the vertices

of the components C1, C2, . . . , Ck of a disconnected graph G can

be grouped by components along the spine, it follows that bt(G) =

max{bt(C1), bt(C2), . . . , bt(Ck)}. Hence, from this point forward, all graphs

are assumed to be connected. Loops and multiple edges also do not com-

plicate the book embedding problem. In a book embedding, a loop can

be placed next to the spine and a single edge can be replaced by multiple

copies without causing edge crossings. For simplicity, we will also restrict

our discussion to simple graphs.

It is easy to see that the set of one-page embeddable graphs includes

paths. We embed the vertices along the spine according to the natural

ordering of the path, v0, v1, . . . , vn. Now all edges {vi, vi+1} can be placed

on a single page without crossing (see Figure 1). Not only paths, but

all trees admit one-page embeddings. This is shown by induction on the

number of vertices in the tree.
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Figure 1.

One-page book embedding of the path of length n.

Theorem 1. If T is a tree, then bt(T ) ≤ 1.

Proof. Let T be a tree. If |V (T )| = 1, place the single vertex on the

spine.

Now suppose the theorem holds for all trees with |V (T )| = 1, 2, . . . , k−
1, k ≥ 2. Consider tree T with |V (T )| = k. Since k ≥ 2, T must have at

least one leaf, v. Removing v and its adjoining edge e results in a tree T −v

with k−1 vertices. By induction, we may now embed V −v in a book with

one or fewer pages. Let u be the unique vertex of T adjacent to v. Then u

must lie on the spine in the book embedding of V − v. Place v on the spine

to the immediate right of u. Since edges of V − v lie only on the pages,

this placement will not conflict with the existing book embedding of V − v.

We may now draw edge e between u and v below any edges on the page,

avoiding crossings with other edges adjacent to u. This gives the desired

one-page embedding of T (see Figure 2).

Figure 2.

One-page book embedding of the height three binary tree.

Figure 2 shows a one-page embedding of the complete binary tree of

height three. Theorem 1 guarantees that graphs without cycles are one-

page embeddable. However, there are clearly graphs with cycles that also
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have book thickness one. We can embed the cycle of length n in a one-page

book just as we embedded the path of length n. In the case of the cycle, the

additional edge {v0, vn} can be placed above the other edges in the page,

without crossing, as illustrated by the dotted line segment in Figure 1.

Now suppose the vertices of an arbitrary graph are ordered v1, v2, . . . ,

vn along the spine of a book. The edges of the cycle v1, v2, . . . , vn can be

added to any page of the book without causing edge crossings in a simple

way. We place the edges of the path v1, v2, . . . , vn close to the spine

and the edge {v0, vn} above the other edges on the page. Every edge on a

particular page lies within or is on this outer cycle.

If we stretch this cycle into a circle, the problem of determining whether

a given graph can be embedded in a k-page book can be viewed in terms of

a circular embedding problem. Embedding a graph G in a k-book is equiv-

alent to placing the vertices in a circle and coloring the edges (represented

by chords of the circle) with k colors so that no two edges of the same color

cross. With this circular view of the spine, it is also now clear that if G

is embeddable in a k-page book with vertex-ordering v1, v2, . . . , vn along

the spine, then any cyclic permutation of the vertices along the spine also

gives a k-book embedding of G.

The circular realization of the spine allows us to give an alternate

description of graphs with book thickness k. A graph G is called outerplanar

if it can be drawn in the plane so that all vertices of G lie on the same face.

Equivalently, G is outerplanar if all the vertices of G can be placed in a

circle in such a way that all edges of G are non-crossing chords of the circle.

This leads to the following results [1, 7].

Theorem 2. A graph G has a k-page embedding with vertex ordering

v1, v2, . . . , vn if and only if G = G1 ∪ G2 ∪ · · · ∪ Gk, where each Gi is an

outerplanar graph embedded with vertex-ordering v1, v2, . . . , vn.

Theorem 3. bt(G) ≤ 1 if and only if G is outerplanar.

Large classes of outerplanar, and thus one-page embeddable, graphs are

known [14]. There are many examples of graphs that are planar but not

outerplanar. A simple one-page embeddable graph with n vertices can have

at most 2n−3 edges, since it can have at most n edges for a completed outer

n-cycle and at most n−3 edges (corresponding to a complete triangulation)

in the interior of that n-cycle. The graph K4 is the smallest example of a

graph that is not outerplanar. K4 has n = 4 vertices and 6 edges, which

exceeds the upper bound of 2(4)−3 = 5 edges. Although it is not one-page

embeddable, K4 does admit a two-page embedding (see Figure 3).
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Figure 3.

Two-page book embedding of K4.

2. Book Thickness of Planar Graphs. A two-page book consists

of two half-planes that meet at the spine. This may be realized by drawing

a straight line L in the plane for the spine. The two pages correspond to

the half-planes above and below L. Thus, it is clear that any two-page

embeddable graph is planar. Is the converse true? Does every planar graph

have a two-page embedding? The following characterization of two-page

embeddable graphs helps answer this question [1].

Theorem 4. bt(G) ≤ 2 if and only if G is a subgraph of a planar

Hamiltonian graph.

Proof. Let G be a graph with bt(G) ≤ 2. Consider a two-page book

embedding of G. The desired Hamiltonian cycle is found by following the

natural ordering of the vertices along the spine, adding any missing edges

to form the outer cycle. With the added edges, we now have a planar

Hamiltonian graph.

Conversely, suppose G is a subgraph of a planar Hamiltonian graph G′.

Draw G′ in the plane and trace out a Hamiltonian cycle C in G′. The cycle

C together with the edges inside C form one page and the edges outside

C form the second page. Now we have a two-page embedding of G′ which

induces the desired two-page book embedding of G.

The 3-dimensional hypercube Q3 is a bipartite planar graph that is not

outerplanar [14]. Hence, Q3 is not embeddable in a one-page book. Figure

4 shows an optimal two-page book embedding of Q3 using a Hamiltonian

ordering of the vertices.
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Figure 4.

Two-page book embedding of Q3.

Graphs that are subgraphs of planar Hamiltonian graphs are called sub-

hamiltonian. Planar Hamiltonian graphs are clearly subhamiltonian, and

thus, two-page embeddable. We have large classes of two-page embeddable

graphs due to the following results of Whitney [16] and Tutte [15].

Theorem 5. (Whitney) A maximal planar graph without separating

triangles has a Hamiltonian cycle.

Theorem 6. (Tutte) A 4-connected planar graph with at least two

edges has a Hamiltonian cycle.

Maximal planar graphs without separating triangles are embeddable in

two-page books by Whitney’s Theorem. To find examples of planar graphs

that are not two-page embeddable, we seek maximal planar graphs with

separating triangles that are not subhamiltonian. The stellation St(G) of a

planar graph G is formed as the result of placing a new vertex in every face

(including the outer face) of G and connecting it to each vertex around the

face. We can repeat this process by letting Stn(G) = St(Stn−1(G)). The

smallest such maximal non-subhamiltonian planar graph St2(K3) is shown

in Figure 5. It is formed by starting with a triangle (K3) and stellating

twice.
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Figure 5.

The second stellation of the triangle St2(K3).
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Figure 6.

Three-page book embedding of St2(K3).

In their 1979 paper, Bernhart and Kainen conjectured that the book

thickness of planar graphs is unbounded. Specifically, they suggest that

bt(Stn(G)) can be made arbitrarily large if G is any maximal planar graph.

Heath [8] disproves the specific claim by showing that Stn(K3) are all em-

beddable on three pages. Figure 6 depicts a three-page book embedding of

St2(K3). Several authors have disproved the larger conjecture for planar

graphs [2, 8, 9, 11, 17, 18] by giving various finite bounds for the book

thickness of a planar graph. Yannakakis settles the issue for planar graphs

by offering a best bound of four pages [17, 18].
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Theorem 7. (Yannakakis) If G is a planar graph, then bt(G) ≤ 4.

In his paper, Yannakakis also outlines the construction of a planar

graph which needs four pages. Hence, four pages are also necessary to

accommodate all planar graphs. Since the example of Yannakakis is ex-

tremely large and complex and it is the only published example needing

four pages, it appears that three pages are sufficient for most small planar

graphs. If the original triangulation has sparse separating triangles, Kainen

[10] suggests that only three pages are needed for the book embedding. In

fact, it has been shown that if G is planar and bipartite (has no cycles of

odd length), then two pages are enough [4, 13].

Theorem 8. If G is a planar bipartite graph, then bt(G) ≤ 2.

In fact we can even allow odd cycles, other than triangles, and we get

the following result [13].

Theorem 9. If G is a triangle-free planar graph, then bt(G) ≤ 2.

Theorem 8 and Theorem 9 give optimal book-thickness for several

common graphs. The n × n square grid is the planar graph formed by

taking the Cartesian product of two paths of length n (see Figure 7). This

set of graphs, previously shown to be 2-page embeddable in [3], contains no

odd cycles. Thus, the two-page book thickness of square grids follows from

these two theorems.

Figure 7.

The 4 × 4 square grid.

3. Beyond Planar Graphs. We observed that every two-page em-

beddable graph is planar. Thus, embedding a non-planar graph requires

at least a three-page book. We also noted that the book thickness of any

planar graph is at most four. When we move beyond the plane, is there a

limit to how large a book we will need? This question can be answered by
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examining the complete graph Kn. It is the graph with n vertices and all

possible
(

n

2

)

edges joining pairs of distinct vertices.

First, we will examine the standard k-book. A k-page embeddable

graph with n vertices can have at most e = n+ k(n− 3) distinct edges. We

can have n edges for the outer cycle and up to n − 3 non-cycle edges on

each of the k pages. Solving this for k, we get k ≥ e−n

n−3
. This gives us a

lower bound for the book thickness in terms of the number of vertices and

edges. We can now use this bound to obtain the optimal book thickness of

Kn [1, 12].

Theorem 10. If n ≥ 4, then bt(Kn) = dn/2e.

Proof. Let n ≥ 4. First, we show that bt(Kn) ≥ dn/2e. The graph Kn

has n vertices and
(

n

2

)

edges. By the previous observation, we have that

bt(Kn) ≥
(

n

2

)

− n

n − 3
=

n(n − 1)/2− n

n − 3
= n/2.

Since the book thickness of a graph must be an integer, it follows that

bt(Kn) ≥ dn/2e.
To obtain the other inequality, we will assume that n is even. Suppose

that n = 2m. We will show that bt(K2m) ≤ 2m/2 = m. The result for odd

n will follow from the fact that K2m−1 is a subgraph of K2m. The m pages

of the book are formed by rotating the triangulated 2m-gon of Figure 8

through m successive positions.

Figure 8.

Triangulation of the 2m-gon.
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A triangulation of the 2m-cycle has 2m−3 edges. It is easy to see that

each inner diagonal of this 2m-cycle cannot appear in more than one of the

m rotations. We get 2m edges for the outer cycle and m(2m− 3) edges for

the m triangulations for a total of 2m + m(2m − 3) = 2m2 − m =
(

2m

2

)

distinct edges. Hence, all
(

2m

2

)

edges of K2m are accounted for and we have

the desired result.

As n increases, it is clear that the book thickness of Kn can be made

arbitrarily large. Beyond Kn, the book thickness question becomes difficult

since the ordering of the vertices along the spine must be considered as well

as the assignment of edges to pages. Despite this difficulty, there are several

classes of graphs for which the book thickness, or at least good bounds for

book thickness, is known [5].
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